19

Синтез, кристаллическая структура и термодинамические свойства апатита Pb₃Bi₂(GeO₄)₃

© Л.Т. Денисова¹, М.С. Молокеев^{1,2}, Е.О. Голубева¹, Н.В. Белоусова¹, В.М. Денисов¹

 ¹ Сибирский федеральный университет, Красноярск, Россия
 ² Институт физики им. Л.В. Киренского ФИЦ КНЦ СО РАН, Красноярск, Россия
 E-mail: Idenisova@sfu-kras.ru

Поступила в Редакцию 13 марта 2022 г. В окончательной редакции 13 марта 2022 г. Принята к публикации 15 марта 2022 г.

Твердофазным методом из исходных оксидов PbO, Bi_2O_3 и GeO₂ последовательным обжигом на воздухе при температурах 773–1003 К получен апатит $Pb_3Bi_2(GeO_4)_3$. Методом рентгеновской дифракции уточнена его кристаллическая структура. Методом дифференциальной сканирующей калориметрии измерена высокотемпературная теплоемкость (350–1000 К) этого соединения. На основании этих данных рассчитаны основные термодинамические функции.

Ключевые слова: апатит германат висмут-свинца, твердофазный синтез, высокотемпературная теплоемкость, термодинамические свойства.

DOI: 10.21883/FTT.2022.07.52579.312

1. Введение

В последние годы отмечается устойчивый интерес к соединениям со структурой апатитов $M_{10}(\mathrm{ZO}_4)_6 X_2$ $(M = Na^+, K^+, Ca^{2+}, Sr^{2+}, Pb^{2+}, La^{3+}, Eu^{3+}, Bi^{3+}, u \ \text{др.}; Z = Ge^{4+}, Si^{4+}, V^{5+} u \ \text{др.}; X = F^-, Cl^-,$ Br⁻, О²⁻ и др.) [1-8]. Связано это с широкими возможностями практического применения в качестве биосовместимой керамики, лазерных, флуоресцентных и акустико-оптических материалов, люминофоров, катализаторов [9-13]. Соединения этого типа кристаллизуются в гексагональной решетке (пространственная группа Р63/m) и имеют способность к замещению их структурных единиц другими ионами в широком интервале пропорций элементов без существенного искажения структуры [14]. Последнее позволяет получать новые функциональные материалы. Так, например, замена свинца в апатите $Pb_5(GeO_4)(VO_4)_2$ на редкоземельные элементы позволила получить $Pb_{10-x}R_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (*R* = La, *x* = 2 [15]; R = Pr, x = 2 [6], x = 0-3 [16]; R = Nd, x = 0-3 [6]) И на висмут $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (x = 0 - 3)[17]. Следует отметить, что $Pb_{10-x}R_x(GeO_4)_{2+x}(VO_4)_{4-x}$ в соединениях или $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$ максимальное в значение x = 3. В случае x = 4 получим соединение Рb₃Bi₂(GeO₄)₃. При исследовании стекол системы РbO-Bi₂O₃-GeO₂ установлено наличие фазы с предположительным составом Pb₃Bi₂Ge₃O₁₂, что подобно формуле граната [18]. Тем не менее, ее неизотропное поведение в поляризованном свете исключает гранатоподобное расположение изолированных тетраэдров GeO₄. Авторы

работы [19], изучавшие эту систему, также отметили наличие Pb₃Bi₂(GeO₄)₃. Гомогенизацией расплава $3PbO \cdot Bi_2O_3 \cdot 3GeO_2$ в платиновом тигле при 1100 К и последующим охлаждением со скоростью 5 K/h спонтанной кристаллизацией получены монокристаллы Рb₃Bi₂(GeO₄)₃ [20]. Прозрачные слегка коричневые монокристаллы имели структуру апатита. Определена их кристаллическая структура (пр. гр. $P6_3/m$). Эти результаты уточнены позднее [21]. Монокристаллы Pb₃Bi₂(GeO₄)₃ были выращены аналогично [20], только вместо платинового тигля использовался золотой. Во время роста кристаллов из расплава часть тигля из Pt растворяется, что приводит к появлению коричневатых включений. Этого при использовании тиглей из Аи не наблюдалось. Для описания кристаллической структуры использовали как монокристаллы, так и порошки. В этом случае кристаллическая структура описана пр. гр. Рб₃ со значениями параметров элементарной ячейки a = 10.0182(7) Å, c = 7.2612(7) Å. Обзор структурных отклонений и кристаллохимии апатитов сделан авторами работы [22]. Снижение симметрии $(P6_3/m \rightarrow P\bar{6} \rightarrow P6_3 \rightarrow P\bar{3} \rightarrow P2_1/m \rightarrow P2_1)$ pacemotрено в работах [21-23].

Целью настоящей работы является синтез, исследование кристаллической структуры и термодинамических свойств апатита Pb₃Bi₂(GeO₄)₃.

2. Синтез образцов и техника экспериментов

Соединение $Pb_3Bi_2(GeO_4)_3$ получали твердофазным синтезом из исходных оксидов PbO, Bi_2O_3 — ос. ч,

GeO₂ — 99.999%. Стехиометрическую смесь предварительно прокаленных оксидов перетирали в агатовой ступке и прессовали в таблетки. Их последовательно обжигали на воздухе при 773 и 873 К (по 10 h), 3 раза при 973 K (по 30 h) и 1003 K (10 h). Для достижения полноты протекания твердофазной реакции таблетки через каждые 10h перетирали и снова прессовали. Контроль фазового состава полученных образцов проводили с использованием рентгенофазового анализа на дифрактометре X'Pert Pro MPD (PANalytical, Нидерланды) на излучении СиК_а. Регистрацию дифрактограмм выполняли при комнатной температуре высокоскоростным детектором PIXcel в угловом интервале $2\theta = 10 - 100^{\circ}$ с шагом 0.013° . Время экспозиции на каждый шаг — 2 s. Уточнение Ритвельда проведено в программе TOPAS 4.2 [24]. Установлено, что в синтезированном соединении Pb3Bi2(GeO4)3 содержится примерно 1% примеси в виде Bi₄Ge₃O₁₂. Полученный апатит имел светло-желтый цвет.

Теплоемкость $Pb_3Bi_2(GeO_4)_3$ измеряли на термоанализаторе STA 449 C Jupiter (NETZSCH, Германия) методом дифференциальной сканирующей калориметрии в атмосфере воздуха. Методика экспериментов аналогична описанной в работах [25,26]. Погрешность измерений теплоемкости не превышала 2%.

3. Экспериментальные результаты

Все рефлексы были проиндицированы гексагональной ячейкой (пр. гр. $P6_3/m$) с параметрами, близкими к $Pb_5(GeO_4)(VO_4)_2$ [27]. Поэтому структура этого кристалла взята в качестве стартовой модели для уточнения. Для преобразования структуры в обе независимые позиции ионов свинца (Pb1 и Pb2) поместили ионы Pb/Bi. Их заселенности позиций уточнялись с учетом того, что сумма заселенностей в каждой из позиций равна 1. В итоге оказалось, что позиция Pb1 заселена ионами Bi на 100%, а позиция Pb2 — ионами Pb на 100% (рис. 1). Единственная позиция Ge/V была заселена на 100% ионами Ge. Тепловые параметры всех атомов уточнены

Рис. 1. Кристаллическая структура Pb₃Bi₂(GeO₄)₃.

Рис. 2. Экспериментальный (1), расчетный (2) и разностный (3) профили рентгенограмм $Pb_3Bi_2(GeO_4)_3$ после уточнения методом минимизации производной разности; штрихи — расчетные положения рефлексов.

в изотропном приближении. Уточнение шло стабильно и дало низкие величины *R*-факторов (табл. 1, рис. 2). Координаты атомов и основные длины связей представлены в табл. 2 и 3 соответственно.

Таблица 1. Основные параметры съемки и уточнения кристалла $Pb_3Bi_2(GeO_4)_3$

Настоящая работа	[20]
$P6_3/m$	$P6_3/m$
10.04987(11)	10.034(1)
7.29076(9)	7.267(2)
637.711(16)	633.60
2	2
10-100	-
8.82	-
6.49	-
4.93	-
1.99	—
1.79	-
	Настоящая работа <i>P</i> 6 ₃ / <i>m</i> 10.04987(11) 7.29076(9) 637.711(16) 2 10–100 8.82 6.49 4.93 1.99 1.79

Примечание. a, c — параметры ячейки; V — объем ячейки; факторы недостоверности: $R_{\rm wp}$ — весовой профильный, $R_{\rm p}$ — профильный, $R_{\rm exp}$ — ожидаемый, $R_{\rm B}$ — интегральный; χ^2 — качество подгонки.

Таблица 2. Атомные координаты и изотропные тепловые параметры кристалла $Pb_3Bi_2(GeO_4)_3$

Атом	x	Y	z	$B_{\rm iso},{\rm \AA}^2$	Occupancy
Bi1	1/3	2.3	0.0103(5)	3.42(11)	1.0(3)
Pb2	0.25618(19)	0.0031(3)	0.25	2.44(12)	1.0(3)
Ge	0.3983(5)	0.3854(6)	0.25	2.21(15)	1
O1	0.309(3)	0.4095(3)	0.25	6.6(5)	1
O2	0.602(3)	0.505(2)	0.25	6.6.(5)	1
O3	0.3490(18)	0.2628(18)	0.064(2)	6.6(5)	1

Таблица 3. Основные длины связей в Pb₃Bi₂(GeO₄)₃

Связь	Длина связи, Å	Связь	Длина связи, Å
Bi1-O1	2.381(17)	Pb2-O3	2.662(15)
$Bi1-O2^{i}$	2.850(15)	$Pb2-O3^{v}$	2.472(15)
Bi1-O3 ⁱⁱ	2.954(15)	Ge-O1	1.734(19)
Pb2–O1 ⁱⁱⁱ	2.85(3)	Ge-O2	1.78(2)
Pb2–O2 ^{iv}	2.09(2)	Ge-O3	1.730(15)

Примечание. Элементы симметрии: (i) -x + 1, -y + 1, z - 1/2; (ii) y, -x + y + 1, -z; (iii) -x + y, -x, -z + 1/2; (iv) -y + 1, x - y, -z + 1/2; (v) y, -x + y, -z.

Ранее нами было показано, что замещение свинца висмутом в апатите $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (изменение *x* от 0 до 3) приводит к уменьшению параметров элементарной ячейки *a*, *c* и *V* и росту плотности *d* [17]. Из рис. 3 следует, что с увеличением *x* до 4 эта тенден-

Рис. 3. Влияние замещения висмутом на параметры кристаллографической решетки $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (x = 0-4).

Рис. 4. Кривая ДТА апатита Pb₃Bi₂(GeO₄)₃.

Рис. 5. Влияние температуры на молярную теплоемкость Pb₃Bi₂(GeO₄)₃.

ция сохраняется (величины параметров элементарной ячейки апатитов со значениями x, равными 0, 1, 2 и 3, взяты из работы [17]).

Поскольку сведений о термической стабильности апатита $Pb_3Bi_2(GeO_4)_3$ в литературе нет, то был проведен дифференциальный термический анализ (ДТА differential scanning calorimetry, DSC). Эксперименты вели на том же термоанализаторе, только с другими держателями. Данные ДТА приведены на рис. 4. Видно, что в исследованном интервале температур имеется только один эндо-эффект, максимум которого составляет 1019 K, а его площадь — 84.8 J/g.

На рис. 5 показано влияние температуры на молярную теплоемкость C_p для Pb₃Bi₂(GeO₄)₃. В области 350–1000 К значения C_p закономерно увеличиваются, а на зависимости $C_p = f(T)$ нет экстремумов. Это, совместно с данными ДТА (рис. 4), и позволяет считать, что у апатита Pb₃Bi₂(GeO₄)₃ в этом интервале температур нет полиморфных превращений. Установлено,

<i>Т</i> , К	$C_p, \mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1}$	$H(T) - H(350 \mathrm{K}),$ kJ · mol ⁻¹	S(T) - S(350 K), J · K ⁻¹ · mol ⁻¹	$\Delta G/T^*,\ { m J}\cdot { m K}^{-1}\cdot { m mol}^{-1}$
350	450.2	-	-	_
400	462.7	22.83	60.95	3.87
450	473.8	46.25	116.1	13.32
500	484.0	70.19	166.6	26.22
550	493.8	94.64	213.1	41.03
600	503.1	119.6	256.5	57.23
650	512.2	144.9	297.1	74.18
700	521.1	170.8	335.4	91.40
750	529.9	197.1	371.7	108.9
800	538.5	223.8	406.2	126.5
850	474.1	250.9	439.1	143.9
900	555.6	278.5	470.6	161.2
950	573.5	338.3	533.4	197.1
1000	575.8	346.4	541.4	201.8

Таблица 4. Термодинамические свойства Pb₃Bi₂(GeO₄)₃

Примечание * $-\Delta G/T^* = [H(T) - H(350 \text{ K})]/T - [S(T) - S(350 \text{ K})].$

что экспериментальные данные по теплоемкости исследованного апатита хорошо описываются уравнением Майера-Келли [28]:

$$C_p = a + bT - cT^{-2}, (1)$$

которое для $Pb_{3}Bi_{2}(GeO_{4})_{3}$ имеет следующий вид $(J\cdot K^{-1}\cdot mol^{-1}):$

$$C_p = (411.20 \pm 1.52) + (163.5 \pm 1.6) \cdot 10^{-3}T$$

- $(22.25 \pm 1.58) \cdot 10^5 T^{-2}.$ (2)

Коэффициент корреляции для уравнения (2) равен 0.9993, а максимальное отклонение экспериментальных точек от сглаживающей кривой 1.2%.

С использованием уравнения (2) по известным термодинамическим соотношениям рассчитаны основные термодинамические функции $Pb_3Bi_2(GeO_4)_3$. Эти результаты приведены в табл. 4. Сравнить полученные нами результаты по теплоемкости данного апатита с данными других авторов не представлялось возможным вследствие их отсутствия. Поэтому такое сравнение сделаем с рассчитанными величинами методом групповых вкладов, который основывается на использовании уравнения

$$C_p = a + bT + cT^{-2} + dT^2, (3)$$

параметры которого определяются на основе таблиц, приведенных в работе [29]. Заметим, что основным достоинством метода групповых вкладов является то, что он не требует каких-либо дополнительных сведений об анализируемом соединении. Нами установлено, что при 298 К расчет дает значение C_p на 2.4% меньше, чем полученное по уравнению (2). Тем не менее, температурную зависимость $C_p = f(T)$ этот метод описывает плохо. Начиная с T = 400 К, рассчитанные значения превышают экспериментальные величины C_p (чем выше температура, тем больше это различие; на рисунке это не показано). Сделанный анализ метода групповых вкладов авторами работы [30] показал, что он дает удовлетворительные результаты для C_p при 298 K, тогда как при других температурах могут наблюдаться различия с экспериментальными результатами. Последнее отмечено и авторами данного метода [29].

4. Заключение

Обжигом на воздухе при температурах 773–1003 К стехиометрических смесей PbO, Bi_2O_3 и GeO₂ синтезирован апатит Pb₃Bi₂(GeO₄)₃. Исследовано влияние температуры на его молярную теплоемкость. Установлено, что в области температур 350–1000 К температурные зависимости $C_p = f(T)$ хорошо описываются уравнением Майера–Келли. На основании экспериментальных данных рассчитаны термодинамические свойства апатита.

Благодарности

Авторы выражают благодарность Красноярскому региональному центру коллективного пользования ФИЦ КНЦ СО РАН.

Финансирование работы

Работа выполнена при частичной финансовой поддержке в рамках государственного задания на науку ФГАОУ ВО "Сибирский федеральный университет", номер проекта FSRZ-2020-0013.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- E.I. Get'man, N.V. Yablochkova, S.N. Loboda, V.V. Prisedsky, V.P. Antonovich, N.A. Chivireva. J. Solid State Chem. 181, 9, 2386 (2008).
- [2] E. Chakroun-Ouadhour, R. Ternane, D. Ben Hassen-Chehimi, M. Trabelsi-Ayadi. Mater. Res. Bull. 43, 8–9, 2451 (2008).
- [3] P. Ptáček, T. Opravil, F. Šoukal, E. Bartoničková, J. Tkacz. Ceram. Int. 43, 10, 7827 (2017).
- [4] M. Pasero, A.R. Kampf, C. Ferraris, I.V. Pekov, J. Rakovan, T.J. White. Eur. J. Mineral. 22, 2, 163 (2010).
- [5] T. Baikie, S.S. Pramana, C. Ferraris, Y. Huang, E. Kendrik, K.S. Knight, Z. Ahmad, T.J. White. Acta Cryst. B66, 1, 1 (2010).
- [6] Н.В. Яблочкова. ЖНХ 58, 7, 871 (2013).
- [7] E.N. Bulanov, K.S. Korshak, M.I. Lelet, A.V. Knyazev, T. Baikie. J. Chem. Thermodyn. 124, 74 (2018).
- [8] Л.Т. Денисова, Е.О. Голубева, Н.В. Белоусова, В.М. Денисов, Н.А. Галиахметова. ФТТ 61, 7, 1397 (2019).
- [9] Т. Каназава. Неорганические фосфатные материалы. Наук. думка, Киев (1998). 298 с.
- [10] Yu. Zang, Sh. Tan, Ya Yin. Ceram. Int. 29, 113 (2003).
- [11] D. Grossin, S. Rollin-Martinez, C. Estournus, F. Rossignol, E. Champion, C. Comdes, C. Rey, C. Geoffroy, C. Drouet. Acta Biomater. 6, 2, 577 (2010).
- [12] J. Zhang, H. Liang, H. Yu, Q. Su. Mater. Chem. Phys. 114, 1, 242 (2009).
- [13] L. Kovács, Á. Péter, M. Gospodinov, R. Capelletti. Phys. Status Solidi C 2, 1, 689 (2005).
- [14] Ш.Ю. Азимов, А.А. Исматов, Н.Ф. Федоров. Апатиты и их редкоземельные аналоги. ФАН, Ташкент (1990). 116 с.
- [15] В.Д. Журавлев, Ю.А. Великодный. ЖНХ 54, 10, 1626 (2009).
- [16] Л.Т. Денисова, Ю.Ф. Каргин, Е.О. Голубева, Г.М. Зеер, А.К. Абкарян, В.М. Денисов. Неорган. материалы 56, 10, 1081 (2020).
- [17] Л.Т. Денисова, М.С. Молокеев, В.М. Денисов, Е.О. Голубева, Н.А. Галиахметова. ФТТ **62**, *11*, 1828 (2020).
- [18] E.F. Riebling. Mater. Res. Bull. 10, 1, 23 (1975).
- [19] A. Munpakdee, K. Pengpat, T. Tunkasiri, D. Holland. Adv. Mater. Res. 55–57, 473 (2008).
- [20] H.H. Otto, W. Müller-Lierhelm. J. Appl. Cryst. 11, 158 (1978).
- [21] H.H. Otto. Cryst. Res. Technol. 50, 12, 922 (2015).
- [22] T.J. White, D. Zhili. Acta Cryst. B 59, 1, 1 (2003).
- [23] T.J. White, C. Ferraris, J. Kim, M. Srinivasan. Rev. Mineral. Geochem. 57, 307 (2005).
- [24] Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. — User's Manual. Bruker AXS, Karlsruhe, Germany (2008).
- [25] Л.Т. Денисова, Л.А. Иртюго, Ю.Ф. Каргин, В.В. Белецкий, В.М. Денисов. Неорган. материалы 53, 1, 71 (2017).
- [26] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ 52, 7, 1274 (2010).
- [27] С.А. Иванов. ЖСХ 31, 4, 80 (1990).
- [28] C.G. Maier, K.K. Kelley. J. Am. Chem. Soc. 54, 8, 3243 (1932).
- [29] A.T.M.G. Mostafa, J.M. Eakman, M.M. Montoya, S.L. Yarbro. Ind. Eng. Chem. Res. 35, *1*, 343 (1996).
- [30] J. Leitner, D. Sedmidubský, P. Chuchvalec. Geramics-Silikáty 46, 1, 29 (2002).

Редактор Е.В. Толстякова