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Abstract
We consider a quantum processor based on five qutrits represented by spins S = 1, 
which is driven by radio frequency (RF) pulses selective in transitions between adja-
cent levels. Numerical simulation of the implementation of the quantum-adiabatic 
clustering algorithm was performed on the example of partitioning a set of six points 
into three groups. We find the amplitudes and durations of rectangular RF pulses, as 
well as the durations of free evolution intervals in the control pulse sequence, which 
made it possible to engineer a time-dependent effective Hamiltonian in the discrete-
time approximation. Also we studied the dependence of the implementation fidelity 
on the parameters. We took quadrupole nuclei as qutrits, but the results obtained 
will be useful for controlling quantum processors based on qutrits represented by 
other systems.

1  Introduction

Multiple-pulse methods of magnetic resonance have made it possible to signifi-
cantly increase the possibilities of this method in studying the local properties of 
substances [1]. They are based on the manipulation of the interactions between mag-
netic moments (spins) using a sequence of coherent pulses of radio frequency (RF) 
or microwave (MW) fields. In this way, an effective (average) Hamiltonian with 
given (required) characteristics is created [2–10].

Such effective Hamiltonians are currently used not only in spectroscopy, but also 
in solving problems in the field of quantum computing: modeling some quantum 
systems on others [11–13], studying the physics of quantum information [7, 14, 
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15], adiabatic quantum computing [16] (quantum annealing [17]), and many oth-
ers. In this field, spin systems serve as a convenient object for studying regularities. 
Most of the work is done on spins S = 1/2, which represent qubits (two-level quan-
tum elements) [13, 18]. However, the interest of researchers in quantum computing 
on quantum elements with a large number of levels has recently grown [19]: with 
three levels, qutrits, or, in the general case, d levels, qudits. Such calculations have 
a number of advantages. They have greater noise immunity [20, 21]. Due to the use 
of additional levels, it is possible to more efficiently implement gates and algorithms 
on qubits [22–24]. Finally, when using n qudits instead of qubits, the Hilbert space 
(computational basis) will grow by (d/2)n times [19, 25–27].

To date, several experimental implementations of coherent control of systems of 
qutrits have been performed: ions in a trap [28], quadrupole nitrogen nuclei in a 
crystal [5], NV centers in diamond [29–31], transmons in a superconductor [32, 33]. 
To control qutrits, pulses of an electromagnetic field (RF, MW or laser) are applied 
to the system, resonant to one or another pair of qutrit levels. These pulses cause 
selective state transformations of the selected two-level system, which can be repre-
sented by selective rotation operators. Sequences of selective rotation operators and 
the construction of an effective Hamiltonian for solving some problems on qudits 
were considered in several works: decoupling of the dipole–dipole interaction (DDI) 
[4, 5, 9, 10], factorization on two qudits [34] and three qutrits [35], modeling the 
propagation of quantum information in a system of five transmons [32].

Recently, we have shown theoretically that it is possible to solve artificial intel-
ligence problems such as associative memory [36] or data clustering [37] using 
qutrits, by means of a slow (adiabatic) change of the Hamiltonian in time [16]. Then, 
in [38], we found a sequence of selective rotation operators to implement the data 
clustering algorithm. In the present paper, we will find a sequence of RF pulses to 
simulate the experimental solution of this problem on a quantum processor of five 
qutrits, represented by quadrupole nuclei with spins S = 1, and coupled with DDI. 
After applying the found sequence to the system of spins, a set of six data points is 
grouped into three clusters according to the proximity of properties.

The article is structured as follows. In next section we consider the control Ham-
iltonians for qutrits. Section 3 describes a quantum processor based on 5 qutrits. In 
Sect. 4, we obtain a sequence of selective rotation operators for clustering using a 
simple example. In Sect. 5 we found a sequence of RF pulses. In Sect. 6, numerical 
simulations are performed. A brief summary is concluded in Sect. 7.

2 � Adiabatic Clustering Algorithm on Qutrits

We will study the control of the system of spins S = 1, which represents a quantum 
processor on qutrits, using the example of clustering. The clustering task is to group 
data by proximity in the space of some properties [17]. We will consider points 
in a two-dimensional plane with coordinates (x, y) representing two properties of 
this data. The proximity of points with numbers i and j will be characterized by the 
Euclidean distance Rij between them:
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where ( xi,yi ) and ( xj,yj ) are coordinates of points i and j on the Cartesian plane. The 
solution of the clustering problem is to find such a partition of the set of n points into 
K clusters C� , which minimizes the sum of the sums of distances between points in 
each of the clusters:

Let us consider case of partitioning a set of n data points into three clusters, the sim-
plest for qutrits. As a computational basis, we will use the basis ��m1,m2, ...,mn⟩ of the 
eigenfunctions of the operator Sz

i
 of spin projections onto the Z axis. For each data point 

i, we assign a qutrit represented by the spin operator Sz
i
 . The spin projection value mi , 

which takes one of three values: 1, 0, − 1, denotes the belonging of point i to one of the 
three clusters.The points with the same spin projections refer to the same cluster. The 
minimum value of the weight function (2) corresponds to the minimum value of the 
energy of the system with the Hamiltonian, which we proposed in [37],

Let us explain the choice of the form of the Hamiltonian (4). If the spins i and j refer 
to the same cluster and have the same projection values, then the expression in square 
brackets in (4) is equal to 1, and the contribution to the energy (3) takes a positive value 
Rij . If the spins i and j refer to different clusters and have different projections, then the 
expression in square brackets in (4) is equal to -1, and the contribution to the energy (3) 
takes a negative value −Rij . To obtain the minimum value of the total energy (3), the 
sum of positive contributions should be minimal (near spins), and the sum of negative 
contributions should be maximum (far spins).

We will solve the clustering problem via the slow (adiabatic) evolution of the system

with the effective time-dependent Hamiltonian 0 ≤ t ≤ T  [37]:

In (5) Q̂ is time ordering operator, and in (6)

(1)Rij =

√(
xi − xj

)2
+
(
yi − yj

)2
,

(2)W =
1

2

K∑
�=1

∑
i,j∈C�

Rij.

(3)Hf =
1

2

∑
i,j

Hfij

(4)Hfij = Rij

[
Sz
i
Sz
j
+ 3

(
Sz
i

)2(
Sz
j

)2

− 2
(
Sz
i

)2
− 2

(
Sz
j

)2

+ 1

]
.

(5)⟨Ψ� = ⟨𝜓� Q̂ exp

⎛⎜⎜⎝
−i

T

∫
0

H (t)dt

⎞⎟⎟⎠
,

(6)H(t) =
(
1 −

t

T

)
H0 +

t

T
Hf .
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is the initial Hamiltonian of interaction with the transverse magnetic field ( Sx
i
 is the 

spin projection operator on the X axis), the ground state 
⟨�� = 1

2n

∏n

j=1

�
⟨1�j +

√
2⟨0�j + ⟨−1�j

�
 of which can easily be prepared, and Hf  is 

the target Hamiltonian (3), the ground state ⟨Ψ� of which encodes the solution of our 
problem. At present, the quantum adiabatic clustering algorithm has already been 
implemented on qubits [17].

At the initial moment of time, the system of spins is prepared in the eigenstate of 
the Hamiltonian H0 (7), which is a superposition of all variants of partitioning the 
set of points into three clusters. As a result of the adiabatic evolution (5) with Ham-
iltonian (6), the system will pass to the ground state of Hamiltonian (3), which cor-
responds to the minimum of the weight function (2) [17, 37]. The energy minimum 
determines the projections of the spin mi at the points. The points with same spin 
projections belong to the same cluster. Since in (4) the three projections 1, 0, − 1 are 
equivalent, the ground state is sixfold degenerate. To remove the threefold degen-
eracy, we fix the value of the projection at one of the spins, for example, at the first 
spin Sz

1
= 1 . Thus, we have simplified the calculation by reducing the Hilbert space 

dimension by a factor of three and taking the Hamiltonian (3) in the following form:

3 � Quantum Processor on Five Spins

In this section, we describe a five-spin quantum processor on which we will imple-
ment the proposed quantum algorithm. To provide addressing in control (selectiv-
ity), we take a system of five spins with different Larmor frequencies �i and differ-
ent quadrupole constants Qi in a static external magnetic field and local crystal fields 
with a Hamiltonian (in frequency units):

The values �i and Qi are given in Table 1. Let us introduce the notation E1
j
,E2

j
 and 

E3
j
 for the energy levels of the spin j with the projections Sz

j
 1, 0, − 1, respectively. 

For the energy differences (transition frequencies) between adjacent levels of the 
spin j, we find

(7)H0 = −h

n∑
i=1

Sx
i

(8)Hf =
1

2

∑
i,j≠1

Hfij +
∑
j≠1

R1j

[
Sz
j
+
(
Sz
j

)2

− 1

]

(9)H5 = −

5∑
j=1

�jS
z

j
+

5∑
j=1

Qj

[
3
(
Sz
j

)2

− 2

]
+ Hdd

(10)�1↔2
j

= E1
j
− E2

j
= −3Qj + �j, �2↔3

j
= E2

j
− E3

j
= 3Qj + �j
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Hdd is Hamiltonian of the dipole–dipole interaction (DDI):

in which we retained only the interaction between the longitudinal components of 
the spins (secular part), and neglected the interactions between the transverse com-
ponents of the spins with different transition frequencies |||Jij

||| <<
|||𝜔k↔n

i
− 𝜔

p↔q

j

|||.
We will drive the state of the system using selective pulses of the RF magnetic 

field with frequencies equal to the selected transition between energy levels k and n 
of the system �rf = �k↔n

j
 (10) [9, 34]. In a reference frame rotating with frequency 

�rf  [39], the Hamiltonian of the action of a RF pulse takes the form:

where Hfield is Hamiltonian of interaction with a transverse RF magnetic field:

where Sx
i
 and Sy

i
 are spin projection operators on the X and Y  axes, respectively, and 

hpulse is amplitude of the RF magnetic field (or RF pulse) in frequency units (in mag-
netic units the amplitude of the RF pulse is hpulse∕�j , where �j–gyromagnetic ratio of 
spin j). In order to reduce crosstalk, this amplitude should satisfy the selectivity con-
dition: |||Jij

||| << hpuls <<
|||𝜔k↔n

i
− 𝜔

p↔q

j

||| . � is phase of the RF field of the applied 
pulse. For rotations around the X axis, we will take � = 0 at a positive value of the 
angle of rotation and � = � at a negative value. For rotation around the Y  axis, we 

will take � =
3�

2
 and � =

�

2
 respectively. To implement selective rotation by the 

angle Ω =
√
2hpulsetpulse , the RF magnetic field Hfield (13) is switched on for a finite 

period of time tpulse
(
tpulse >> 1

/
𝜔rf

)
 . The action of the RF pulse on the state of 

the system is determined by the evolution operator:

(11)
Hdd = J12S

z

1
S
z

2
+ J13S

z

1
S
z

3
+ J14S

z

1
S
z

4
+ J15S

z

1
S
z

5
+ J23S

z

2
S
z

3
+ J24S

z

2
S
z

4
+

+ J25S
z

2
S
z

5
+ J34S

z

3
S
z

4
+ J35S

z

3
S
z

5
+ J45S

z

4
S
z

5
,

(12)Hpulse = −

5∑
j=1

(
�j − �rf

)
Sz
j
+

5∑
j=1

Qj

[
3
(
Sz
j

)2

− 2

]
+ Hdd + Hfield,

(13)Hfield = hpulse

5∑
j=1

(
Sx
j
cos� − S

y

j
sin�

)
,

(14)exp
[
−itpulseHpulse

]
.

Table 1   Values of constants 
in Hamiltonian (9) used for 
calculations

Spin number �i Qi

1 3000 15000
2 2500 10000
3 2800 12000
4 3200 18000
5 3800 30000
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In the ideal case, i. e. neglecting the DDI and the non-selective effect on other 
levels, the action of selective RF pulses (14) is represented by selective rotation 
operators {Ω}k↔n

�,j
[9, 34, 35], which in matrix form look like:

where Ω is angle of rotation around the axis �(� = x, y, z) , k and n are the level 
numbers, j is the number of rotating spin. The matrix of X rotation differs from the 
matrix of Y rotation by coefficients equal (–i) in front of both sine functions.

Finally, for rotations around the Z axis, we will apply a composite RF pulse:

4 � Creation of an Effective Interaction for Partitioning a Set of Six 
Points into Three Clusters

Let us study the operation of a quantum processor on a simple example [37, 38]. 
Using a random number generator from the interval [−  10, 10], we obtained the 
coordinates of six data points:

The first point (4,   –2) has assigned the value of the projection Sz = 1 and the 
number 0. The rest of the points are assigned numbers from 1 to 5 in the order they 
follow. Having calculated the distances Rij (1) (given below in formulas (29) and 
(30)), we substitute them into the Hamiltonian (4 and 8). The result of clustering, 
performed in [37] using the proposed algorithm (5), is shown in Fig. 1.

Now let’s consider the solution of this problem on the five-spin quantum pro-
cessor (instead of the sixth spin, corresponding to the point (4,-2), terms represent-
ing the field from it are introduced into the second part of the Hamiltonian (8)). To 
implement algorithm (5), we should apply to the system a control sequence of selec-
tive RF pulses to engineer the time-dependent effective Hamiltonian (6) from the 
original Hamiltonian (9). In order to find the corresponding sequence of selective 
rotation operators, we pass in (5) to the discrete time l (0 ≤ l ≤ N):

(15)

{Ω}1↔2
z,j

=

⎛
⎜⎜⎜⎝

exp
�
−i

Ω

2

�
0 0

0 exp
�
i
Ω

2

�
0

0 0 1

⎞
⎟⎟⎟⎠
, {Ω}2↔3

z,j
=

⎛
⎜⎜⎜⎝

1 0 0

0 exp
�
−i

Ω

2

�
0

0 0 exp
�
i
Ω

2

�
⎞
⎟⎟⎟⎠
,

{Ω}1↔2
y,j

=

⎛⎜⎜⎝

cos
Ω

2
− sin

Ω

2
0

sin
Ω

2
cos

Ω

2
0

0 0 1

⎞
⎟⎟⎠
, {Ω}2↔3

y,j
=

⎛⎜⎜⎝

1 0 0

0 cos
Ω

2
− sin

Ω

2

0 sin
Ω

2
cos

Ω

2

⎞
⎟⎟⎠
,

(16){�}k↔n
z,i

= {−�∕2}k↔n
y, i

⋅ {�}k↔n
x, i

⋅ {�∕2}k↔n
y, i

.

(17)(4,−2), (−7, 7), (6,−9), (−6, 8), (−2,−6), (−9, 5)

(18)⟨Ψ� ≈ ⟨��
N�
l=0

Ul,
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where

Here, following [16, 35–37], the operator of adiabatic evolution over time 
T = ΔtN with the Hamiltonian changing according to the linear law (6), we pre-
sented as a product of evolution operators on a sequence of N small time intervals 
Δt. On each such interval, we will neglect the change in Hamiltonian (6). Then, 
we approximately represented the evolution operator (19) as a product of three 
non-commuting operators.

Let us substitute the Hamiltonians (8 and 4) into the evolution operator 
exp

[
−iΔt

l

N
Hf

]
 . We express it as a product of exponential operators correspond-

ing to the separate terms of different types in Hf  , which is possible, since all 
terms commute with each other.

First, we take the one-spin field terms. The corresponding evolution operators 
can be obtained by a sequence of operators of selective Z rotation as follows [34, 
35]:

The next one-spin terms in Hf  are quadratic in spin operators. The correspond-
ing evolution operators can be obtained by the formula [34, 35]:

where I is identity matrix. For example:

Here and below, we have introduced the notation Δtl =
l

N
Δt.

(19)
Ul = exp

{

−iΔt
( l
N
Hf +

(

1 − l
N

)

H0

)}

≈ exp
[

−iΔt
2

(

1 − l
N

)

H0

]

exp
[

−iΔtHf
l
N

]

exp
[

−iΔt
2

(

1 − l
N

)

H0

]

,

(20)exp
[
−iΩSz

k

]
= {2Ω}1↔2

z,k
{2Ω}2↔3

z,k
.

(21)exp
[
−i3�

(
Sz
k

)2]
= {2�}1↔2

z,k
{−2�}2↔3

z,k
exp [−i2�I],

(22)
exp

[
−2iΔtlRij(S

z

j
)2
]
=
{
4ΔtlRij∕3

}1↔2

z,j

{
−4ΔtlRij∕3

}2↔3

z,j
exp

[
4iΔtlRijI∕3

]
,

Fig. 1   The result of partition of 
a set of six data points into three 
clusters. The clusters are marked 
by three types of markers: 
(− 9.5), (− 7.7) and (− 6.8) by 
circle; (− 2, − 6) and (4, − 2) by 
square; and (6, − 9) by triangle
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Now we consider the two-spin terms in Hf  and obtain the evolution operators 

exp

[
−iΔtl3Rij

(
Sz
i

)2(
Sz
j

)2
]
 from the evolution operator under the action of DDI 

(11) exp
[
−itdHdd

]
 , where td is the duration of the evolution interval, which will be 

determined later. First of all, we derive the factor of the desired form from the 
factor exp

[
−iΔtlRijS

z

i
Sz
j
∕3

]
 according to the following formula [34, 35]:

This formula includes a factor containing only the DDI of a single pair of spins. 
To emphasize it from the general evolution of the system with Hamiltonian (11) con-
taining the sum of all interactions, we divide the evolution interval into eight parts. 
Then we perform the inversion of individual spins on these intervals in such a way as to 
exclude unnecessary interactions. We obtain the spin inversion using the operators [34, 
35]:

As an example, we get exp
[
−i8ΔtlJ56S

z

5
Sz
6

]
:

In the evolution operators in (23), the corresponding exponents contains ΔtlRij∕3 , 
and in (25) it turned out 8tdJij . To bring it into conformity, we take the duration of the 
evolution interval with DDI as

According to the rules described above, we have found the complete sequence of 
selective rotation operators and evolution intervals with the DDI Hamiltonian, which is 
necessary for clustering (18). In more detail, obtaining a sequence is considered in [38].

(23)

exp

[
−iΔtl3Rij

(
Sz
i

)2(
Sz
j

)2
]
=
{
4ΔtlRij∕3

}1↔2

z,i

{
−4ΔtlRij∕3

}2↔3

z,i

× exp
[
−4iΔtlRijI∕3

]
× {−�}2↔3

y,j

{
4ΔtlRij∕3

}1↔2

z,j

{
4ΔtlRij∕3

}2↔3

z,j

×{−�}2↔3
y,i

exp
[
−iΔtlRijS

z

i
Sz
j
∕3

]
{−�}1↔2

y,i
exp

[
−iΔtlRijS

z

i
Sz
j
∕3

]

×{�}1↔2
y,i

{�}2↔3
y,i

{−�}1↔2
y,j

{
4ΔtlRij∕3

}1↔2

z,j

{
4ΔtlRij∕3

}2↔3

z,j
{−�}2↔3

y,i

× exp
[
−iΔtlRijS

z

i
Sz
j
∕3

]
{−�}1↔2

y,i
exp

[
−iΔtlRijS

z

i
Sz
j
∕3

]
{�}1↔2

y,i

×{�}2↔3
y,i

{�}1↔2
y,j

{�}2↔3
y,j

(24)

P−1
k

= {−�}1↔2
y,k

{−�}2↔3
y,k

{−�}1↔2
y,k

Pk = {�}1↔2
y,k

{�}2↔3
y,k

{�}1↔2
y,k

P−1
k
SkPk = −Sk

(25)

exp
[
−i8ΔtlJ56S

z

5
Sz
6

]
= P−1

1
exp

[
−iΔtlHdd

]
P1 exp

[
−iΔtlHdd

]

× P−1
2
P−1
1

exp
[
−iΔtlHdd

]
P1 exp

[
−iΔtlHdd

]
P2

× P−1
3
P−1
1

exp
[
−iΔtlHdd

]
P1 exp

[
−iΔtlHdd

]

× P−1
2
P−1
1

exp
[
−iΔtlHdd

]
P1 exp

[
−iΔtlHdd

]
P2P3

(26)td = ΔtlRij∕(24Jij)
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5 � Parameters of RF Pulses

In this section, we implement selective rotation operators in the found sequence 
using rectangular RF pulses (14), which have three parameters: frequency �rf  , pulse 
duration tpulse , and pulse amplitude hpulse . The addressing of the selective rotation 
caused by the RF pulse is adjusted by selecting the RF pulse frequency equal to the 
desired transition frequency (10). To exclude the error caused by the phase shift 
from the energy levels of the main Hamiltonian, we take the duration tpulse as a mul-
tiple of all periods 2�

�j

 and 2�
Qj

 [40]. To this purpose, we have found that the constants 
given in Table 1 have the greatest common divisor D = 100 . If we take

where Cj is an integer, then we will satisfy the required multiplicity condition for all 
constants. The choice of coefficients Cj in specific cases will be discussed below. For 
given tpulse and angle of selective rotation Ω , the amplitude of the RF pulse will be 
determined based on the following relation:

The DDI Hdd (11) is also a source of error in (14). To reduce this error, we take 
the DDI constants much smaller than the amplitude of the pulse by introducing a 
small scale factor � = 10−6 , while the ratios between the constants are determined 
by the distances (1) between points in our example (17) for clustering:

The small value of the DDI of quadrupole nuclei is related to their small dipole 
moments; this is a well-known fact [5, 41]. Additional adjustment of the values of 
the DDI constants (or rather their actions) can be performed using the durations of 
the time intervals, as we noted above (26). We take the interaction of five spins with 
the selected (excluded) spin included in the second term in Hamiltonian (8) in the 
following form:

(27)tpulse = 2�
Cj

D
,

(28)hpulse =
Ω√
2tpulse

=
DΩ

2�
√
2Cj

(29)

Hdd = −

√
425

24
�Sz

1
Sz
2
−

√
2

24
�Sz

1
Sz
2
−

√
194

24
�Sz

1
Sz
1
−

√
8

24
�Sz

1
Sz
5
−

−

√
433

24
�Sz

2
Sz
3
−

√
73

24
�Sz

2
Sz
4
−

√
421

24
�Sz

2
Sz
5
−

√
212

24
�Sz

3
Sz
4
−

−

√
18

24
�Sz

3
Sz
5
−

√
170

24
�Sz

4
Sz
5

(30)

√
202

�
Sz
1
+
�
Sz
1

�2
− 1

�
+
√
53

�
Sz
2
+
�
Sz
2

�2
− 1

�
+
√
200

�
Sz
3
+
�
Sz
3
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This part from (8) does not use the two-spin DDI in its construction and can be 
obtained using selective RF pulses (20–22).

Consider the specific RF pulses needed to solve the clustering problem. Let’s 
start with the selective operators of rotation around the Y  axis by angles � , −� , �

2
 , 

−
�

2
 , which are involved in the transformation of the factors of the evolution opera-

tor of the form (23, 24) and (16). First, by sorting through the numbers Cj in rela-
tion (28), we achieve the required value of the RF pulse amplitude hpulse . Using this 
amplitude, on the basis of relation (27), we obtained the RF pulse duration tpulse . The 
found numbers, amplitudes and pulse durations are shown in Table 2.

At the next stage, we consider the RF pulses of the rotation around the X axis 
by an arbitrary angle from relations (16) for Z-rotations in expressions (18, 22 and 
23), which depend on the number l . First, at each step l we choose the integer Cj , for 
which we calculate the RF pulse amplitude based on relation (28). Then, using rela-
tion (27), we find the pulse duration. The parameters used in the program for these 
rotations are shown in Table 3. Since the angle, amplitude and duration of the pulse 
change at each step and are given by relations (27 and 28), we do not list them in the 
Table 3.

Now we obtain the factors exp
[
−i
(
Δt − Δtl

)
H0∕2

]
 in the evolution operator Ul 

(19). Let us use the fact that the operators Sx
j
 in H0 commute with each other. This 

allows us to break the considered exponential operator

to the product of five operators of rotations exp
[
−i
(
Δt − Δtl

)
hSx

j
∕2

]
 of each spin j 

separately. We obtain each such operator by simultaneously acting on two transitions 
between levels 1 ↔ 2 and 2 ↔ 3 (10) by two RF fields [4, 9, 35] with frequencies 
�1rf = �1↔2

j
 , �2rf = �2↔3

j
 and with equal amplitudes hpulse during the time tpulse . To 

obtain the corresponding effective operator, we made a transformation to a general-
ized rotating frame [4, 42], which rotates not as usual with one frequency, but with 
two frequencies—at each transition with its own. After neglecting the rapidly 

(31)exp
[
−i
(
Δt − Δtl

)
H0∕2

]
=
∏
j

exp
[
−i
(
Δt − Δtl

)
hSx

j
∕2

]

Table 2   Parameters of RF 
pulses for the implementation 
of rotations around the Y axis by 
angles � and �

2

Ω Spin number hpulse tpulse Cj

� 1 0.5124 4.3354 69
2 0.5124 4.3354 69
3 0.5124 4.3354 69
4 0.5277 4.2097 67
5 0.5277 4.2097 67

�

2
1 0.2525 4.3982 70
2 0.2238 4.9637 79
3 0.26 4.2726 68
4 0.2525 4.3982 70
5 0.2996 3.7071 59



671

1 3

Clustering into Three Groups on a Quantum Processor of Five…

Ta
bl

e 
3  

P
ar

am
et

er
s o

f R
F 

pu
ls

es
 fo

r t
he

 im
pl

em
en

ta
tio

n 
of

 ro
ta

tio
ns

 a
ro

un
d 

th
e 

X 
ax

is
 b

y 
an

gl
es

 Ω
 , w

hi
ch

 c
ha

ng
e 

at
 e

ac
h 

an
ne

al
in

g 
ste

p

3
Ω

Sp
in

 n
um

be
r

C
j

4
Δ
t l

√ 1
7
0

, 4
Δ
t l

√ 2
1
2

, 4
Δ
t l

√ 7
3

, 4
Δ
t l

√ 1
9
4

, 6
Δ
t l

√ 5
2

,2
Δ
t l

� √
5
2
−
2
√ 1

9
4
−
2
√ 7

3
−
2
√ 2

1
2
−
2
√ 1

7
0

�
4

1

4
Δ
t l

√ 1
7
0

 , 4
Δ
t l

√ 1
8

, 4
Δ
t l

√ 2
1
2

, 4
Δ
t l

√ 8
, 6
Δ
t l

√ 2
1
8

 , 2
Δ
t l

� √
2
1
8
−
2
√ 8

−
2
√ 4

2
1
−
2
√ 1

8
−
2
√ 1

7
0

� ,
5

1

4
Δ
t l

√ 1
8

, 4
Δ
t l

√ 2
1
2

, 4
Δ
t l

√ 4
3
3

, 4
Δ
t l

√ 2
, 6
Δ
t l

√ 2
0
0

,2
Δ
t l

� √
2
0
0
−
2
√ 2

−
2
√ 4

3
3
−
2
√ 2

1
2
−
2
√ 1

8

� ,
3

68

4
Δ
t l

√ 4
2
1

, 4
Δ
t l

√ 7
3

, 4
Δ
t l

√ 4
3
3

, 4
Δ
t l

√ 4
2
5

, 6
Δ
t l

√ 5
3

,2
Δ
t l

� √
5
3
−
2
√ 4

2
5
−
2
√ 4

3
3
−
2
√ 7

3
−
2
√ 4

2
1

�
2

80

4
Δ
t l

√ 8
, 4
Δ
t l

√ 1
9
4

, 4
Δ
t l

√ 2
, 4
Δ
t l

√ 4
2
5

,2
Δ
t l

� √
2
0
2
−
2
√ 4

2
5
−
2
√ 2

−
2
√ 1

9
4
−
2
√ 8

� , 6
Δ
t l

√ 2
0
2

1
11

2



672	 I. S. Pichkovskiy, V. E. Zobov 

1 3

oscillating contributions in the effective Hamiltonian, we obtain for it instead of (12) 
the following expression

We substitute this Hamiltonian into the RF pulse evolution operator (14) to per-
form the numerical calculation of the rotation of the spin j specified by the operator 
exp

[
−iΩ2S

x
j

]
 in the product (31). The angle of rotation 

Ω2 = t2pulseh2pulse =
(
1 −

l

N

)
hΔt

2
 , which is in the exponent, changes at each anneal-

ing step. We obtain the effective time t2pulse from relation (27), taking in this case an 
integer Cj = 1 for all five spins. From here we find the effective field. To calculate all 
five factors in (31), we use the same parameters t2pulse and h2pulse . The frequencies 
(10) of the RF fields are different for different spins.

Finally, the factors exp
[
−itdHdd

]
 , included in (25), are obtained from the free 

evolution operator exp
[
−itfreeH5

]
 with the total Hamiltonian (9) and with the dura-

tion of the time interval tfree , which differs from td by a small value. We take time tfree 
as a multiple of all periods 2�

�j

 and 2�
Qj

 . As a result, we eliminate the contributions of 

−
∑5

j=1
�jS

z

j
 and 

∑5

j=1
Qj

�
3
�
Sz
j

�2
− 2

�
 . For this purpose, we represent �j = D(�j∕D) 

and Qj = D(Qj∕D) . Time tfree is given by the equation

where C0(Δt,N) is an integer coefficient, which we will define as the nearest inte-
ger, after equating (33) to the exact phase shift td

�j

D
D over time interval td (26). We 

obtain

For example, for N = 201 , Δt = 0.052515 and � = 10−6 we find C0 = 4158 , and 
C0 = 416 for � = 10−5.

6 � Computation and Discussion

According to the rules derived in the previous section, a sequence of RF pulses and 
free evolution intervals was found to implement the clustering algorithm (18). The 
sequence contains 2369N pulses and 320N free evolution operators. A program for 
numerical simulation of the solution of the problem was written and calculations 
were performed for different values of the parameters N,h and Δt . It should be noted 
that when passing from the representation (19) to the found sequence of RF pulses, 
these parameters are transformed into formal parameters in terms of which the 

(32)

Hpulse = −

5�
j=1

⎛⎜⎜⎝

�j − �1rf 0 0

0 0 0

0 0 −�j + �2rf

⎞⎟⎟⎠j
+

5�
j=1

Qj

�
3
�
Sz
j

�2

− 2

�
+ hpulse

5�
j=1

Sx
j
+ Hdd

(33)tfree

�j

D
D = 2�C0(Δt,N)l

�j

D
,

(34)C0(Δt,N) = closest integer to,
ΔtD

2�N�
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rotation angles of selective operators are determined. For fixed values of the param-
eters N , h , and Δt the physical parameters hpulse , tpulse and tfree change over a wide 
range from pulse to pulse in the sequence.

The result of calculation (18) is obtained in the form of a superposition of 
35 = 243 states of the computational basis (we fixed the selected spin in a state with 
a projection value of 1):

In the ideal case considered in [37], at the end of evolution at t = T, the system is 
in the state ⟨1,−1, 0,−1, 1,−1� with a probability of 0.99. The corresponding clus-
tering result is shown in Fig.  1. The same result of clustering corresponds to the 
state ⟨1, 0,−1, 0, 1, 0� obtained after the rearrangement of the spin projections 0 and 
-1. At the end of evolution, the system is in this state with a probability of 0.01. Such 
a difference in probabilities was due to the fact that the curve for the instantaneous 
energy level [37] corresponding to this state passes above the curve corresponding 
to the state ⟨1,−1, 0,−1, 1,−1� throughout the evolution interval. The coincidence 
of the energies of the two states occurs only at t = T. Therefore, the probability of 
finding the system in this state is small. Symmetry breaking occurred due to fix-
ing the value of the projection of the selected spin. On this basis, as the fidelity 
(accuracy) of the solution, we take the probability of finding the system in the state 
�1,−1, 0,−1, 1,−1⟩:

The dependences of the fidelity of the solution of the clustering problem on the 
parameters obtained as a result of numerical simulation are shown in Figs.  2, 3, 
4. Figure  2 shows the dependence of fidelity on the duration of the discrete time 
step Δt . It can be seen that the fidelity monotonically increases up to the value of 
0.05252, and then monotonically decreases. The decrease in fidelity at small values 
of Δt is due to the violation of adiabaticity. The decrease in fidelity at large values 
of Δt occurs due to the replacement of a continuous change in the Hamiltonian by a 
discrete one. The dependence of the fidelity on the magnitude of the transverse mag-
netic field h shown in Fig. 3 has a maximum at h = 6.5. Figure 4 shows the depend-
ence fidelity on the number of steps N . The fidelity increases monotonically with 
increasing number N , which indicates that the adiabatic condition is satisfied. At 
large values N, the increase of the fidelity stops at a certain limiting value, due to 
other contributions to the error. This error in Fig. 4 decreased with decreasing Δt 
and increasing h . As a result, we brought the fidelity to the value of F = 0.9887.

In addition, we have studied the dependence of fidelity on the value of the 
DDI. Some results of the simulation for different values of DDI are shown in 
Fig.  4. A slight change in the fidelity with a tenfold increase in DDI indicates 
that the smallness of DDI, given in (29) by the scale factor � = 10−6 , is taken 
with a large margin and that DDI of such a value makes an insignificant contribu-
tion to the error. We observed a noticeable decrease in fidelity to F = 0.5 (com-
pared to F = 0.97) in our calculations with an increase in the scaling factor up to 

(35)⟨Ψ� = �
m1,m2,...,m5

C1,m1,m2,...,m5
⟨1,m1,m2, ...,m5

��.

(35)F = �⟨Ψ � 1,−1, 0,−1, 1,−1⟩�2 = ��C1,−1,0,−1,1,−1
��2.
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� = 9 ⋅ 10−5 (at N = 201 , Δt = 0.05252 , h = 6.5 ). In the last example, when the 
field was increased to h = 7.5 , the error decreased and the fidelity rose to F = 0.79, 
due to a decrease in the duration of the RF pulses. With a further increase in the 
amplitudes of the RF pulses, their selectivity will be violated, and the error will 
increase again. Such dependences of the error were studied in [34] on a simpler 
system of two qudits. On the other hand, in order to implement the algorithm 
with a small DDI, one has to take large durations of time intervals. This is accept-
able in an isolated model system, but may lead to an increase in the error due 
to decoherence (relaxation) processes in real systems. The same applies to the 
long duration of selective RF pulses. To reduce their duration, experimenters use 

Fig. 2   The fidelity of clustering 
as a function of the discrete time 
step duration Δt with h = 4.3 , 
N = 201 , � = 10−6 and with 
the parameters of selective RF 
pulses given in Tables 2, 3

Fig. 3   The fidelity of clustering 
as a function of the magni-
tude of the magnetic field h 
with N = 201 , Δt = 0.05252 , 
� = 10−6 and with the param-
eters of selective RF pulses 
given in Tables 2, 3
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pulses of complex shape instead of rectangular ones [1, 2, 33, 40, 41, 43]. Finally, 
the number of RF pulses can be reduced if, instead of three pulses (16), in order 
to obtain a Z-rotation by an angle � , the phase of subsequent RF pulses acting on 
this transition is changed by the corresponding value [1, 32, 33].

7 � Conclusion

We have found a sequence of selective RF pulses and free evolution intervals to 
engineer a time-dependent control effective Hamiltonian for quantum annealing. As 
a result of the action of this sequence on a system of five spins S = 1, we have solved 
the problem of partition of a set of 6 data points into three clusters. The dependence 
of the fidelity of obtaining the result on the physical parameters has been studied. 
The simulation has shown that the adiabatic clustering algorithm can be successfully 
performed on qutrits. Moreover, qutrits demonstrate advantages over qubits, since to 
solve the same problem on qubits, a system of 15 spins S = 1/2 is needed [17].

We simulated the operation of a five-qutrit quantum processor using five quadru-
pole nuclei with S = 1 as an example. These can be nitrogen, lithium, or deuterium 
nuclei [5, 27, 41, 43]. However, the results obtained can be useful when using qutrits 
implemented on other quantum systems: trapped atoms and ions [19, 28, 44], super-
conducting systems [32, 33], objects with spin S = 1 in the magnetic and crystal 
fields. The latter include NV centers in diamond (paramagnetic color centers formed 
by electrons on vacancies near nitrogen atoms) [9, 10, 29–31].

Fig. 4   The fidelity of clustering as a function of the number of annealing steps N for Δt = 0.05252 and 
with the parameters of selective RF pulses given in Tables  2, 3. The results obtained for the anneal-
ing field h = 4.3 are shown by empty squares, and for the field h = 6.5 , by empty circles (triangles at 
Δt = 0.0442 ). Empty figures show the results of the calculation performed at � = 10−6 . Filled figures 
show fidelity values obtained with the same parameters, but with � = 10−5
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