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A B S T R A C T   

Current manuscript presents a study on the use of 48 experimental data points containing pa-
rameters of concrete production technological process and its properties, such as strength, den-
sity, and bending strength. It was revealed that temporal characteristics, specifically - 
compressive strength at the age of 3, 7, 28 days, R3, R7, and R28, are significantly correlated with 
each other, indicating that only one characteristic, such as R28 or Rfl 28, is sufficient for pre-
diction. The absence of multiple correlations between parameters and properties suggests that 
linear regression analysis may not be accurate. Therefore, the use of Machine Learning is optimal; 
specifically Random Forest method is preferable due to ease of use and minimum hyper-
parameters for tuning. Low prediction errors (~1–11%) for 30% of the test data, as determined by 
the cross-validation method, confirm a relationship between the experimental parameters and the 
concrete properties. The most important parameters for achieving high values of compressive and 
bending strengths, R28 and Rfl 28, were identified, namely: air-entraining additives, granite 
crushed stone consisting of a mixture of fractions 5–20 mm, crushed stone derived from gravel of 
high strength grains of large fractions 10–20 mm. To obtain explanatory model, another Machine 
Learning method, that was used, called Decision Tree. The model showed that a high amount of 
crushed stone 10–20 mm from gravel, more than 212 (kg per 1 m3 of concrete mix), leads to a 
higher number of strong grains with smooth, rounded surface, thereby, reducing the bending 
strength of concrete. However, a large concentration of crushed stone mix fractions of 5–20 mm 
from granite, more than 537 (kg per 1 m3 of concrete mix), leads to the maximum roughness, 
which makes a significant contribution to the increased strength of concrete due to the adhesion 
of the matrix and aggregates to each other.   

1. Introduction 

The primary goal of road construction is to improve traffic safety by enhancing the quality and service life of road surfaces. 
However, construction workers face multiple issues such as climatic conditions: low temperatures in winter, large depth of soil 
freezing, significant amount of precipitation, long roads, and remoteness of the road works sites from the objects of mining or pro-
duction of building materials. In addition to these limitations, the expenses, reliability, durability are key factors in the road and 
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highway construction industry [1–6]. 
The construction of cement concrete roads (Fig. 1) is particularly relevant in connection with the development of vacuum residue 

processing technologies in the oil refining industry. The quantity of building bitumen is declining because the tar used for its pro-
duction is being converted into motor fuel as much as possible. One of the main problems in the Nordic countries may be the lack of 
high-quality local materials in various regions for the production of aggregates. In most of the northern remote areas, the rocks are 
metamorphic and have low frost resistance. 

The resistance to frost destruction of crushed stone grains in concrete depends on both its own resistance and the strength of the 
"shielding" barrier of the cement-sand matrix. Strength should not be lower than B30-B40. 

The features of the capillary-porous structure of the matrix are very important. Reduced capillary porosity is achieved by using a 
complex of additives - super water-reducing and air-entraining. The use of microfillers also leads to the formation of dense cement 
shells around the aggregate grains. These methods contribute to a prolonged effect of the saturation reduction of aggregate grains. That 
is, under frost exposure, destructive processes will not manifest themselves so intensively. 

The utilization of Machine Learning techniques to address various issues is experiencing a continuous. For example, the study [7] 
has examined the use of established statistical and Machine Learning methods to predict the compressive strength of concrete as a 
function of its mixture proportions using a large dataset with over 10,000 measured compressive strengths. However, despite the 
massive dataset, the model could still predict compressive strength with an average relative error of less than 10%.Precise prediction 
model was obtained Neural Net Machine Learning method [8], using the database with 741 records with 17 input variables. However, 
it is widely understood that Neural Nets have relatively low explain ability compared to other models [9,10]. Comparison of several 
Machine Learning methods, namely Artificial Neural Net (ANN), Support Vector Machine (SVM), Decision Trees (DT) and Evolu-
tionary Algorithms (EA) to predict the compressive strength, shear strength, tensile strength, and elastic modulus of concrete has been 
reviewed in manuscript [11]. It was emphasized that the ‘black-box’ method (ANN) in complex models can lead to overfitting, which 
means that the complexity of concrete properties can be overestimated. Regarding SVM models, they have shown powerful nonlinear 
mapping and generalization abilities, but it also considered as “black-box” and cannot be used to rules extraction. In summary, the 
Decision Tree method appears to be the most effective way to forecast the strength of concrete and determine associated rules. Recently 
the DT was used for prediction of the mechanical properties of roller-compacted concrete pavement utilizing 290 data records [12]. It 
was shown that ensemble of DT, named Random Forest, significantly better than the other classification-based regression methods. 

The purpose of this work was to study the influence of the composition components of the cement concrete mixture, chemical and 
mineral additives on the physical and mechanical characteristics of cement road concrete on a large number of samples using the 
Random Forest and Decision Tree methods. To achieve this aim, 46 concrete compositions were selected with compressive strength 
class not lower than B30 and tensile strength in bending - Btb 4.8. Cubic samples were made on mixtures with mobility (cone draft 2–8 
cm) using various inert materials, plasticizing and air-entraining additives. The prediction of concrete strength through Machine 
Learning rarely utilizes a comprehensive mix of 29 feature parameters, making this study unique in its approach. Furthermore, the 
current focus of the work is to extract rules from the model, a process that is rarely observed. 

2. Data and method 

2.1. Dataset description 

The dataset of 46 experiments with 29 feature parameter sand 8 property parameters (Table 1, Appendix A, B) was chosen for 
analysis. The descriptive statistics and the plot of the considered dataset are summarized in Appendix C, D, E, respectively. The 
materials used and properties of mix and concrete are listed in Table 1. 

Preliminary data analysis revealed correlation between some feature parameters, mainly between different size of crushed stones, 
densities and airs feature parameters (Table 2, Fig. 2). Also there are correlations between property values, for example R3, R7 and 
R28, which means, for example, that strongest values R3 lead to strongest R28 (Appendix E). Therefore we took only “R 28 days”, “p 28 
days” and “Rfl 28 days” property parameters as representative. It should be noted that feature “Crushed stone 5–20 mm. Granite” has 
correlation with property “R 28 days” under consideration (Table 2, Appendix E), therefore this feature has the biggest effect on R 28 
days. However, the correlation matrix (Fig. 2) proves absence on linear relationships between selected features and “Rfl 28 days”, “ρ 28 
days” properties, which justifies the need to use Machine Learning methods. 

2.2. Random forest method 

The prediction tool used in this study is random forest (RF), an ensemble method based on regression trees [13]. The regression 

Fig. 1. Cement concrete road construction.  
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trees are built by recursive binary partitioning of the multidimensional predictor space into regions by constructing a multitude of 
“decision trees” at training time and outputting the class that is the “mode” of the classes (classification) or mean/average prediction 
(regression) of the individual trees [13]. 

To begin with, the dataset is partitioned into two distinct groups: the training dataset, which typically contains between 70 and 
90% of the total dataset, and the test dataset, which contains the remaining 10–30%. The training dataset is utilized to randomly select 
relevant features and samples for constructing the Decision Tree model (Fig. 3). This procedure is repeatedly performed until an 

Table 1 
The materials used and properties of mix and concrete.  

Number of 
parameter 

Material characteristic Unit Designation 

1 Microsilica MKU 85 (active) kg per 1 m3 of 
concrete mix 

Microsilica MKU 85 

2 Stone flour from gravel (inert) kg per 1 m3 of 
concrete mix 

Stone flour (from grave) 

3 Natural sand with fineness modulus 2.0 kg per 1 m3 of 
concrete mix 

Natural Sand Mf = 2,0 

4 Sand enriched with crushing screenings, with fineness modulus 2.3 kg per 1 m3 of 
concrete mix 

Artificial sand, Mf = 2,3 

5 Granite crushed stone of a mixture of fractions 5–20 of the optimal 
granulometric composition 

kg per 1 m3 of 
concrete mix 

Crushed stone 5–20 mm. Granite 

6 Crushed stone of medium quality with inclusions of grains of weak rocks 
of fractions 5–10 in various ratios 

kg per 1 m3 of 
concrete mix 

Crushed stone with carbonate inclusion 
5–10 mm. 

7 Crushed stone of medium quality with inclusions of grains of weak rocks 
of fractions 10–20 in various ratios 

kg per 1 m3 of 
concrete mix 

Crushed stone with carbonate inclusion 
10–20 mm. 

8 Crushed stone from gravel of high strength grains of fractions 5–10 in 
various ratios 

kg per 1 m3 of 
concrete mix 

Crushed gravel 5–10 mm. 

9 Crushed stone from gravel of high strength grains of fractions 10–20 in 
various ratios 

kg per 1 m3 of 
concrete mix 

Crushed gravel 10–20 mm. 

10 Water kg per 1 m3 of 
concrete mix 

Water 

11 Water cement ratio – W/C 
12 r =

Sand
Sand + Crushed stone 

– r 

13 Additive based on polycarboxylate ethers (RSEmix) % by weight of 
cement 

MC-TECHNIFLOW 170 

14 Additive based on polycarboxylate ethers (RSEmix) % by weight of 
cement 

MC-TECHNIFLOW 173 

15 Additive based on polycarboxylate ethers (RSEmix) % by weight of 
cement 

MC-POWERFLOW 7951 

16 Additive based on naphthalene formaldehyde sulfonic acid (SA) % by weight of 
cement 

MURAPLAST FK 49 

17 Additions based on SA + inhibitor % by weight of 
cement 

MC-POWERFLOW 7951 +
CENTRAMENT RETARD 390 

18 MURAPLAST % by weight of 
cement 

MURAPLAST FK 88 

19 Plasticizing and air-entraining complex % by weight of 
cement 

CENTRAMENT N11 

20 Air-entraining additives % by weight of 
cement 

CENTRAMENT AIR 202 

21 Mixture curing retardant % by weight of 
cement 

CENTRAMENT RETARD 390 

Properties of the concrete mixturex 
22 Estimated density kg/m3 Estimated density 
23 Density of mix after 10 min. kg/m3 Density fact 10 min 
24 Density of mix after 60 min. kg/m3 Density fact 60 min 
25 Density of mix after 90 min. kg/m3 Density fact 90 min 
26 The air content in the concrete mixture after 15 min. % air 15 min. 
27 The air content in the concrete mixture after 60 min. % air 60 min. 
28 The air content in the concrete mixture after 90 min. % air 90 min. 
29 Cone draft cm Cd 
Concrete properties 
30 Compressive strength of concrete at the age of 3 days MPa R 3 days 
31 Concrete density at 3 days kg/m3 ρ 3 days 
32 Compressive strength of concrete at the age of 7 days MPa R 7 days 
33 Concrete density at 7days kg/m3 ρ 7 days 
34 Compressive strength of concrete at the age of 28 days MPa R 28 days 
35 Concrete density at 28 days kg/m3 ρ 28 days 
36 Flexural strength of concrete at the age of 7 days MPa Rfl 7 days 
37 Flexural strength of concrete at the age of 28 days MPa Rfl 28 days  
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optimal ensemble of N trees is formed, where N represents the only essential hyperparameter that requires tuning in the Random Forest 
method. Following this, the ensemble of trees is evaluated with the test dataset. If it attains a small Mean Absolute Error (MAE) or high 
accuracy, the model is considered dependable and well-fit for making predictions. Predictions are done by passing new data pa-
rameters from the root through the internal nodes until a terminal node is reached. 

We used self-written python script named RandomForest.py using the Python 3.6 programming language [14] in order to build the 

Table 2 
Selected parameters with strongest correlation coefficients.  

Number of 
parameter 1 

Designation of parameter 1 Number of 
parameter 2 

Designation of parameter 2 Correlation 
coefficient 

3 Natural Sand Mf = 2,0 4 Artificial sand, Mf = 2,3 − 0.94 
3 Natural Sand Mf = 2,0 5 Crushed stone 5–20 mm. Granite 0.71 
5 Crushed stone 5–20 mm. Granite 13 MC-TECHNIFLOW 170 0.84 
5 Crushed stone 5–20 mm. Granite 34 R 28 days 0.71 
6 Crushed stone with carbonate inclusion 

5–10 mm. 
8 Crushed gravel 5–10 mm. 0.77 

6 Crushed stone with carbonate inclusion 
5–10 mm. 

7 Crushed stone with carbonate inclusion 
10–20 mm. 

0.91 

6 Crushed stone with carbonate inclusion 
5–10 mm. 

18 MURAPLAST FK 88 0.87 

6 Crushed stone with carbonate inclusion 
5–10 mm. 

20 CENTRAMENT AIR 202 0.85 

7 Crushed stone with carbonate inclusion 
10–20 mm. 

9 Crushed gravel 10–20 mm. − 0.78 

7 Crushed stone with carbonate inclusion 
10–20 mm. 

18 MURAPLAST FK 88 0.93 

7 Crushed stone with carbonate inclusion 
10–20 mm. 

20 CENTRAMENT AIR 202 0.89 

10 Water 11 W/C 0.73 
15 MC-POWERFLOW 7951 20 CENTRAMENT AIR 202 0.75 
18 MURAPLAST FK 88 20 CENTRAMENT AIR 202 0.93 
23 Density fact 10 min 24 Density fact 60 min 0.95 
23 Density fact 10 min 25 Density fact 90 min. 0.90 
24 Density fact 60 min 25 Density fact 90 min. 0.95 
26 air 15 min % device 27 air 60 min % 0.99 
26 air 15 min % device 28 air 90 min % 0.94 
27 air 60 min % 28 air 90 min % 0.97 
30 R 3days 34 R 28 days 0.83 
30 R 3days 32 R 7 days 0.90 
31 ρ 3 days 35 ρ 28 days 0.73 
31 ρ 3 days 33 ρ 7 days 0.74 
32 R 7 days 34 R 28 days 0.91 
33 ρ 7 days 35 ρ 28 days 0.87 
36 Rfl 7 days 37 Rfl 28 days 0.76  

Fig. 2. The correlation matrix of feature and property parameters. There is correlation between one feature “Crushed stone 5–20 mm. Granite” (parameter 5) and 
property “R28 days” (parameter 34) meaning existing relationships. 
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described RF model. The number of standard libraries were used in the program: numpy, pandas, sklearn, matplotlib and mpl_toolkits. 
Since this machine-learning algorithm is stochastic, we performed ten repeats of cross-validation and averaged the performance across 
them. Each time, the data were split into the two random datasets: a set for training procedure (80% of total data), and another set for 
test (20% of total data). The MAE of training set and test dataset for “R 28 days”, “ρ 28 days” and “Rfl 28 days” are presented in Table 3. 
Additionally, we have made 5-fold cross-validation test on whole dataset, which also summarized in Table 3. The error is low, and we 
can conclude that the main correlation between experimental features and the main properties have been revealed (Fig. 4). 

It should be noted that RF allows measuring the importance of the feature after training. The selected value is permuted among the 
training data and the error is computed on this perturbed data set. The importance score for the selected feature is computed by 
averaging the difference in error before and after the permutation over all trees [15]. The score is normalized by the standard deviation 
of these differences. Features which produce large values for this score are ranked as more important than features which produce 
small values (Fig. 4). Now we can highlight the most important parameters which influence on “R 28 days”, “ρ 28 days”, “Rfl 28 days”: 
“CENTRAMENT AIR 202”, “Crushed stone mix 5–20 mm Granite”,”Cd”, “CENTRAMENT RETARD 390” and “Crushed gravel 10–20 
mm”, respectively. 

2.3. Decision tree method 

In the previous chapter we obtained an RF prediction model and identified importance feature parameters, that exert the greatest 
influence on concrete properties. This chapter is focused on presenting the rules that will lead to best properties, i.e. interpretation of 
prediction. It is well known that Decision Tree (DT) is one of the best methods to get interpretation [16,17]. 

The process of building a Decision Tree begins with sorting the dataset by a specific feature parameter, denoted as i, and dividing 
the properties into two subsets, Y1 and Y2, based on a value of mi (Fig. 5). The goal is to minimize the normalized sum of dispersions 
(D), or entropies (E), of the subsets (determined by D = N1*D1 + N2*D2, or E = N1*E1 + N2*E2), as shown in Fig. 5. This step is 
repeated for all feature parameters, and the parameter with the lowest D or E value is selected. The rule i < mi is used to construct the 
upper portion of the Decision Tree. Y1 and Y2 may be further subdivided using the same procedure, until the full Decision Tree is 
formed. The final tree can be used to predict outcomes by passing new data parameters from the root to the internal nodes, and ul-
timately to the terminal node. 

Fig. 3. The primary process flow involves dataset processing, building, validating, and generating predictions using the Random Forest model.  

Table 3 
Mean Absolute Errors of training and test datasets after RF model building.  

Property MAE(Training Dataset) MAE(Test Dataset) MAE(Cross-Validation) 

R 28 days 1.83 5.17 5.13 
ρ 28 days 14.71 24.27 33.37 
Rfl 28 days 0.14 0.24 0.36  
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We used self-written python script named DecisionTree.py using the Python 3.6 programming language [14] in order to build the 
DT model. The standard libraries were used in this program: numpy, pandas, sklearn, matplotlib and mpl_toolkits. The DT with the 
depth equal to 2–3 was used to simplify the task. The DT models which lead to best data segregation are presented in Fig. 6. 

It was presented that the main rule to get high values of “R 28 days” property is “CENTRAMENT AIR 202” <0.221 and “Crushed 
stone mix 5–20 mm. Granite” > 537.5. There are four experiments which fulfill this condition with average “R 28 days” = 73.1+/-1.5. 
The “air 15 min” feature parameter also important and should not be bigger than 8.5, otherwise it leads to low “R 28 days” values 
(Fig. 6a). 

The same rule “Crushed stone mix 5–20 mm. Granite” > 537.5 is important to get high values “ρ 28 days” (Fig. 6b).Again four 
experiments, which fulfill this rule have the highest property values “ρ 28 days” = 2401+/-5. So we can conclude that this rule is 
general for two properties of concrete. 

The “Rfl 28 days” property demands another rule, which is depicted in Fig. 6c. This main rule is “Crushed gravel 10–20 mm”<212. 
There are 14 experiments which fulfill this inequality and have high values of “Rfl 28 days” = 5.8+/-0.5. Additional rule is “Estimated 
density”<2428 which segregates 6 experiments from these 14 experiments with the highest “Rfl 28 days” = 6.20+/-0.09. 

Fig. 4. Comparative plot of observed property values per calculated values obtained from RF model for: (a) “R 28 days”; (b) “ρ 28 days”; (c) “Rfl 28 days”. Red dots 
represent training dataset and blue dots – test dataset. Linear fit proves correctness of model. Importance of main feature parameters on properties: d) “R 28 days”; e) 
“ρ 28 days”; f) “Rfl 28 days”. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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3. Results and discussion 

3.1. Analysis of concrete structural strength by RF and DT methods 

The issue of increasing the resistance of road concrete cannot be independently addressed. When designing concrete, an integrated 
approach is always used to obtain both strength and performance properties such as frost resistance, water permeability, corrosion 
resistance, etc. Any measures aimed at enhancing the strength properties of concrete invariably lead to concrete with the densest 
structure. Such a structure has a minimum number of defects in the form of pores and microcracks. 

Random Forest method have shown that the most important components for structural strength are “CENTRAMENT AIR 202”, 
“Crushed stone mix 5–20 mm Granite”, and their sum influence on structural strength is ~70% over all components (Fig. 4). Decision 
Tree proves their high influence, since these conditions most often appears at the root and nodes of decision trees (Fig. 6). The dataset 
depicted in the space of these most important parameters really shows nice segregation of S28 with high and low values (Fig. 7). The 
Decision Tree revealed that an elevated concentration of coarse aggregate notably influences the strength of S28 (as shown in Fig. 4a). 
The observation is supported by the disparity "Crushed stone mix 5–20 mm. Granite >537.5" which results in the separation of the four 
most resilient concretes among all specimens (Fig. 7). The rough surface likely augments adhesion to the cement stone, which 
significantly contributes to the concrete’s strength by enabling better cohesion between the matrix and filler. The level of adhesion is 
determined by the roughness of the filler’s surface, the shape and size of its particles, and the value of its modulus of elasticity. 

The use of air-entraining chemical additives makes it possible to obtain small closed pores evenly distributed throughout the 
volume of the material. The inequality “CENTRAMENT AIR 202 < 0.21” (Fig. 6a) quite well separates the group of concretes with high 
compressive strength S28 from the ordinary ones. Since the equation is at the root of the Decision Tree, it has the greatest weight and 
should be fulfilled in order to obtain desired characteristics. It should be noted that within the node of the Decision Tree, the upper 
limit of 8.5%for air entrainment in concrete was identified. Beyond this threshold, the strength of R28 concrete decreases significantly 
(Fig. 4a). This is due to the increase in total and open porosity, as well as pore sizes. 

To determine the effect of air entrainment in slow-moving mixtures of road pavement concrete deformation the compressive 
strength of concrete samples was tested by using in the presence or absence of air entrainment (Fig. 8). Deformations were developed 
less in concrete specimens with 5.5% air entrainment. The cement matrix with air entrainment becomes less rigid, but more "ductile". 

Fig. 5. The process depicted in the flowchart entails main components - dataset processing, construction of a Decision Tree model, and the generation of predictions 
based on this model. 
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Therefore, the cement matrix is more resistant to cyclic impacts. 

3.2. Analysis of concrete density by RF and DT methods 

According to importance parameters obtained from Random Forest method (Fig. 4e) there are several important parameters. The 
first three of them: Cone draft (Cd); mixture curing retardant (CENTRAMENT RETARD 390); the air content in the concrete mixture 
after 90 min. They account less than 50% of influence on density over all components. It is a small value indicating that density ρ 28 

Fig. 6. The Decision Tree models obtained from whole dataset of 46 experiments: (a) “R 28 days” property; (b) “ρ 28 days”; (c) “Rfl 28 days”. The bars which depict 
root, nodes or leafs have colors: green (the highest property value), red (the smallest property value) and yellow (average values). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the Web version of this article.) 
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days appeared to be really complex value, having nonlinear dependence per many parameters, and this dependence is hard to obtain in 
a simple form. Indeed, Decision Tree proves it, showing slow segregation rate under deep tree increasing, therefore usual 3D plot 
cannot show nice segregation. Nevertheless, Random Forest, which combines many Decision Trees with the highest deep produces a 
nice model with correct prediction and small error (~ 1%) and it can be applied for ρ 28 days estimation using 29 parameters. 

3.3. Analysis of bend strength by RF and DT methods 

The Random Forest approach has revealed that "Crushed gravel 10–20 mm" and "Estimated density" are the critical factors that 
determines the bend strength with a combined impact of approximately 75% over all the components (as depicted in Fig. 4e). The 
Decision Tree analysis further corroborates their significance, as these conditions appeared at the root and the closest nodes of the 
Decision Tree (as depicted in Fig. 6). The dataset depicted in the space of these most important parameters, indeed demonstrates a clear 
segregation of Rfl 28 with high and low values (Fig. 9). 

The detailed analysis of Decision Tree for “Rfl 28” (Fig. 4c) revealed the inequality “Crushed gravel 10–20 mm < 212” is at the root 
which separates the 14 strong concretes from the rest. This is the main condition, which means that crushed gravel, having strong 
grains, but a smooth and rounded surface, reduces the bending strength of concrete (Fig. 9). 

Remarkably, the most critical factor for both structural and bend strength is a large aggregate mixture of fractions of 5–10 and 
10–20 mm, i.e. coarse filler (Fig. 4 a,e). It improves the properties of concrete due to a significant decrease in its shrinkage properties, 
and the appearance of the reinforcing effect by the inclusions having higher elastic moduli. With the optimal ratio of the quantity and 
quality of aggregates in the matrix, it is possible to obtain concretes of high density and performance properties. 

4. Conclusions 

The structural and bending strength of road concrete is influenced by many factors, including the aggregate mixture, crushed 
gravel/granite stone shape and size, and the presence of voids. The scarcity of good quality local materials in Nordic countries poses a 
significant challenge, and therefore, it is crucial to carefully select the aggregate mix and to pay close attention to the production 
process to ensure a dense and strong structure. 

In this study, Machine Learning techniques were employed to develop predictive models for key properties such as structural 
strength (S28), density (ρ28), and bending strength (Rfl 28) with small errors of 5.13, 33.37, and 0.36, respectively. These errors 
represent only 1–11% of the average, indicating the high level of accuracy achieved with this approach. The effectiveness of Machine 
Learning for such tasks was also proved by determination of the most important factors affecting the structural and bending strength of 

Fig. 7. The experimental dataset showed in 3D space spanned on two most important feature parameters: 1) CENTRAMENT AIR 202; 2) Crushed stone mix 5–20 mm. 
Granite, and 3) structural strength property R28 days. The depicted and signed colour planes segregates R28 with the highest values (red circles) from R28 with low 
values (violet, blue, green, orange). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 8. Diagrams of deformations during the compressive strength test of concrete specimens aged 2 months (a) without air entrainment (b) with air entrain-
ment 5.5%. 
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road concrete. The Decision Tree method proved to be particularly effective in extracting valuable rules, including the optimal con-
centrations of the most important components, to achieve desirable results. The summary of these rules are listed below:  

• The most important factor for structural strength of concrete is coarse aggregate 5–10 or 10–20 mm;  
• The critical concentration of Crushed gravel 10–20 mm is 212. The values lower this number lead to concretes with the highest Rfl 

28. It appeared that strong grains and smooth rounded surface of gravel reduces the bending strength of concrete;  
• The critical concentration of Crushed stone mix 5–20 mm, granite is 537.5. The values higher this number lead to concretes with a 

high S28. Apparently, this form of aggregate has the maximum roughness, which makes a significant contribution to increasing the 
strength of concrete due to the adhesion of the matrix and aggregate to each other.  

• Additionally, concretes with high S28 have the unique condition CENTRAMENTAIR 202 < 0.21, which should probably always be 
fulfilled in order to get high S28;  

• A less important, yet still worthy of attention parameter was: the upper limit of air entrainment in concrete should be about 8.5%, 
when it is exceeded, the strength of s28 concrete decreases sharply. 

Obtained critical values in particular justify the costs and necessary of used components to build road surfaces with high quality and 
service life. 

Contrary to popular belief, recent research suggests that Machine Learning is not as challenging as once thought and doesn’t require 
extensive data. In fact, a modest dataset of only around 50 examples is sufficient. Furthermore, it’s unnecessary to adjust hyper-
parameters such as those of a Decision Tree. This means that even with just a small amount of experience, one can successfully 
implement these models and achieve dependable results with clear explanations. 

In general, the results of this study provide valuable insights for engineers and architects to design road concrete with increased 
resistance and longevity. 
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Fig. 9. All experimental dataset showed in 3D space spanned on two most crucial feature parameters: 1) Crushed gravel 10–20 mm; 2) calculated Density, and 3) bend 
strength property Rfl 28 days. The depicted and signed colour planes segregates Rfl 28 with the highest values (red circles) from Rfl 28 with low values (violet, blue, 
green, orange). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Appendix A. Dataset of 46 experiments with 29 feature parameters    

Microsilica 
MKU 85 

Stone flour 
(from gravel) 

Natural Sand 
Mf = 2,0 

Artificial sand, 
Mf 2,3 

Crushed stone mix 
5–20 mm.Granite 

Crushed stone with 
carbonate inclusion 5–10 
mm. 

Crushed stone with 
carbonate inclusion 10–20 
mm. 

Crushed gravel 
5–10 mm. 

Crushed gravel 
10–20 mm. 

Water W/C r MC-TECHNIFLOW 
170 

0 0 0 540 0 393 917 0 0 150 0.357 0.292 0 
0 0 0 639 0 373 922 0 0 150 0.358 0.33 0 
0 0 0 560 0 393 917 0 0 150 0.356 0.3 0 
0 0 0 560 0 393 917 0 0 150 0.357 0.3 0 
0 0 0 560 0 393 917 0 0 160 0.37 0.3 0 
0 0 0 560 0 393 917 0 0 160 0.37 0.3 0 
0 26 0 534 0 446 818 0 0 170 0.4 0.3 0 
0 0 0 534 0 446 818 0 0 170 0.37 0.3 0 
27 0 0 533 0 538 716 0 0 183 0.38 0.298 0 
0 0 0 600 0 466 0 0 818 175 0.39 0.32 0 
0 0 0 600 0 0 0 466 818 167 0.36 0.32 0 
0 0 0 534 0 0 0 393 917 160 0.37 0.29 0 
0 0 0 560 0 0 0 466 818 160 0.38 0.3 0 
0 0 0 645 0 0 0 775 424 160 0.38 0.35 0 
0 0 0 583 0 0 0 454 806 156.8 0.348 0.3 0 
0 0 0 505 0 0 0 466 818 164 0.36 0.296 0 
0 0 0 505 0 0 0 466 818 158 0.35 0.296 0 
0 0 0 505 0 0 0 466 818 156 0.35 0.283 0 
0 0 0 505 0 0 0 385 899 165 0.37 0.283 0 
0 0 0 534 0 0 0 385 899 165 0.37 0.293 0 
0 0 0 560 0 0 0 385 895 156 0.35 0.3 0 
0 0 0 560 0 0 0 385 895 156 0.35 0.3 0 
0 0 0 560 0 0 0 385 895 149 0.33 0.3 0 
0 0 0 560 0 0 0 385 895 156 0.35 0.3 0 
0 0 0 545 0 0 0 370 880 150 0.33 0.3 0 
0 0 0 560 0 0 0 385 895 165 0.37 0.3 0 
0 0 0 560 0 0 0 385 895 156 0.35 0.3 0 
0 0 0 605 0 0 0 495 735 156 0.35 0.33 0 
0 0 0 534 0 446 818 0 0 170 0.37 0.3 0 
0 0 0 505 0 0 0 466 818 158 0.35 0.296 0 
0 0 0 534 0 0 0 385 899 165 0.37 0.293 0 
0 0 0 560 0 0 0 385 895 156 0.35 0.3 0 
0 0 0 560 0 0 0 385 895 156 0.35 0.3 0 
0 0 0 605 0 0 0 495 735 156 0.35 0.33 0 
0 0 0 600 0 0 0 466 818 175 0.37 0.47 0 

(continued on next page) 
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(continued ) 

Microsilica 
MKU 85 

Stone flour 
(from gravel) 

Natural Sand 
Mf = 2,0 

Artificial sand, 
Mf 2,3 

Crushed stone mix 
5–20 mm.Granite 

Crushed stone with 
carbonate inclusion 5–10 
mm. 

Crushed stone with 
carbonate inclusion 10–20 
mm. 

Crushed gravel 
5–10 mm. 

Crushed gravel 
10–20 mm. 

Water W/C r MC-TECHNIFLOW 
170 

0 0 0 600 0 0 0 466 818 167 0.36 0.47 0 
0 0 0 534 0 0 0 393 917 160 0.37 0.41 0 
0 0 0 560 0 0 0 466 818 160 0.37 0.44 0 
0 0 0 560 0 0 0 385 895 156 0.35 0.44 0 
0 0 0 545 0 0 0 495 735 150 0.33 0.44 0 
0 0 0 560 0 0 0 385 895 156 0.35 0.44 0 
0 0 0 605 0 0 0 495 735 145 0.35 0.49 0 
0 0 610 0 1195 0 0 0 0 164 0.36 0.34 0.7 
0 0 610 0 1195 0 0 0 0 164 0.36 0.34 0 
0 0 0 671 1135 0 0 0 0 164 0.37 0.37 0.7 
0 0 0 700 1075 0 0 0 0 160 0.36 0.39 0.7  

MC-TECHNIFLOW 
173 

MC-POWERFLOW 
7951 

MURAPLASTFK 
49 

MC-POWERFLOW 7951 +
CENTRAMENTRETARD 390 

CENTRAMENTN10 MURAPLASTFK 
88 

CENTRAMENTN11 CENTRAMENTAIR 
202 

CENTRAMENTRETARD 
390 

0 0 0 0 0 1.8 0 1.2 0 
0 0 0 0 0 1.8 0 1.2 0 
0 0 0 0 0 1.8 0 1.2 0 
0 0 0 0 0 1.8 0 1.2 0 
0 0 0 0 0 2 0 1.5 0 
0 0 0 0 0 2 0 1.5 0 
0 0 0 0 0 2.2 0 1.2 0 
0 0 0 0 0 2.2 0 1.2 0 
0 0 0 0 0 2.4 0 1.3 0 
0 0 0.6 0 0 0 0 0.51 0 
0 0 0.5 0 0 0 5.64 0 0 
0 0 0 0 0 0.6 0 0.35 0 
0 0 0 0 0 0.6 0 0.35 0 
0 0 0 0 0 0.6 0 0.35 0 
0 0.7 0 0 0 0 0 0.49 0 
0 0.5 0 0 0 0 0 0.44 0 
0 0.44 0 0 0 0 0 0.4 0 
0 0 0 0.54 0 0 0 0.44 0 
0 0 0 0.4 0 0 0 0.44 0 
0 0 0 0.4 0 0 0 0.4 0 
0 0.44 0 0 0 0 0 0.42 0.9 
0 0.44 0 0 0 0 0 0.42 1.35 
0 0.44 0 0 0 0 0 0.42 1.8 
0 0.44 0 0 0 0 0 0.13 1.35 
0 0.44 0 0 0 0 0 0.13 1.35 
0 0.44 0 0 0 0 0 0.47 1.2 
0 0.44 0 0 0 0 0 0.47 1.2 

(continued on next page) 
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(continued ) 

MC-TECHNIFLOW 
173 

MC-POWERFLOW 
7951 

MURAPLASTFK 
49 

MC-POWERFLOW 7951 +
CENTRAMENTRETARD 390 

CENTRAMENTN10 MURAPLASTFK 
88 

CENTRAMENTN11 CENTRAMENTAIR 
202 

CENTRAMENTRETARD 
390 

0 0.44 0 0 0 0 0 0.47 1.2 
0 0 0 0 0 0.48 0 0.26 0 
0 0.44 0 0 0 0 0 0.4 0 
0 0 0 0.4 0 0 0 0.4 0 
0 0.44 0 0 0 0 0 0.13 1.35 
0 0.44 0 0 0 0 0 0.47 1.2 
0 0.44 0 0 0 0 0 0.47 1.2 
0 0 0.6 0 0 0 0 0.51 0 
0 0 0.5 0 0 0 0 0.51 0 
0 0.6 0 0 0 0 0 0.35 0 
0 0.6 0 0 0 0 0 0.35 0 
0 0.45 0 0 0 0 0 0.13 0 
0 0.45 0 0 0 0 0 0.13 0 
0 0.45 0 0 0 0 0 0.47 0 
0 0.45 0 0 0 0 0 0.47 0 
0 0 0 0 0 0 0 0.157 0 
0.65 0 0 0 0 0 0 0.166 0 
0 0 0 0 0 0 0 0.182 0 
0 0 0 0 0 0 0 0.182 0  

Estimated density Density fact 10 min Density fact 60 min Density fact 90 min air 15 min % device air 60 min % air 90 min % Cd 

2433.649 2385 2400 2405 3 2.6 2.3 3 
2517.688 2432 2488 2497 9 7.3 5.9 2 
2453.656 2389 2406 2409 4 3.5 3.2 3 
2453.657 2396 2409 2411 4.5 4.1 3.4 3 
2464.17 2259 2298 2369 9.5 7.3 6.2 3 
2464.17 2376 2398 2432 6 5.1 4.3 3 
2428.1 2368 2406 2406 4.9 4.3 3.7 4 
2428.07 2371 2400 2420 5.2 4.3 3.9 4 
2457.378 2388 2422 2442 6.5 5.2 4.7 3 
2530.82 2462 2480 2480 4 3.4 3 3 
2527.82 2492 2500 2520 2 1.8 1.6 3 
2435.61 2374 2389 2410 5 4.2 3.4 4 
2435.63 2376 2398 2417 4.7 4.1 3.5 4 
2435.68 2386 2410 2428 3.7 3.3 2.9 2.7 
2451.638 2290 2350 2410 8 7 6 7 
2404.596 2208 2279 2358 9 7.1 5.9 7 
2398.486 2395 2442 2489 5.7 4.8 3.9 3.7 
2396.613 2320 2358 2397 7.5 6.3 5.2 15 
2405.493 2345 2386 2425 8 6.8 5.2 5 
2434.463 2397 2408 2423 5.9 5.2 4.7 5.5 
2448.41 2178 2241 2289 7 6.2 5.3 7.5 

(continued on next page) 
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(continued ) 

Estimated density Density fact 10 min Density fact 60 min Density fact 90 min air 15 min % device air 60 min % air 90 min % Cd 

2448.86 2203 2235 2308 6.8 6.1 5.2 5.5 
2442.29 2201 2264 2334 5.3 4.7 4.1 6.5 
2448.57 2322 2363 2404 7 5.9 4.8 3.9 
2397.55 2352 2428 2428 6.5 5.2 3.9 2.5 
2457.78 2368 2374 2390 7.5 6 4.8 17 
2448.76 2360 2379 2398 5.9 5.4 4.7 6 
2443.79 2315 2334 2396 6.2 5.5 4.7 7 
2425.41 2368 2382 2396 5.2 4.5 4.1 4 
2398.486 2396 2442 2442 5.7 4.8 3.9 3.7 
2434.463 2397 2405 2428 5.9 5 4.2 5.5 
2448.57 2322 2363 2404 7 5.9 4.8 3.9 
2448.76 2360 2379 2420 5.1 4.3 4 6 
2443.79 2315 2334 2388 5 4.4 3.9 7 
2530.95 2495 2498 2520 4 3.6 3 3 
2522.84 2500 2505 2519 2 1.8 1.7 3 
2435.73 2450 2446 2460 5 4.3 3.6 4 
2435.76 2455 2440 2455 4.7 4.1 3.6 4 
2447.37 2450 2440 2420 7 5.9 4.8 3.9 
2376.35 2384 2398 2410 6.5 5.2 3.9 2.5 
2447.71 2441 2444 2452 4.4 3.9 3.3 6 
2431.76 2432 2401 2430 4.2 3.7 3.1 7 
2420.557 2468 2452 2478 5.7 4.4 3.1 4.5 
2420.516 2467 2440 2475 5.2 4 2.8 4 
2411.622 2438 2416 2438 5.3 5 4.7 5.5 
2376.632 2420 2400 2415 6.5 5.6 4.8 3.5   
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Appendix B. Dataset of 46 experiments with 8 property parameters  

R 3 days ρ 3 days R 7 days ρ 7 days R 28 days ρ 28 days Rfl 7 days Rfl 28 days 

27.6 2333 31.9 2354 36.7 2310 3.7 5.3 
16.6 2229 20 2267 19 2236 3.6 5.2 
32.7 2428 36.7 2383 37 2368 3.9 5.6 
31.9 2418 35.8 2429 38 2395 3.7 5.2 
16.2 2364 19.2 2355 22 2354 3.8 5.3 
20.2 2394 27.3 2370 34 2362 4.7 5.98 
22.7 2411 33.8 2369 35.5 2370 4.45 4.96 
23.3 2390 33.8 2355 37.3 2360 5.36 6.3 
23.7 2420 44.1 2428 51.2 2351 5.08 6.05 
13.2 2410 36 2384 49.9 2420 4 4.54 
28.35 2465 40.3 2460 50.3 2410 3.87 4.74 
24.7 2405 34.7 2384 37.8 2376 3.78 4.4 
21 2355 33.8 2414 36 2369 3.73 4.2 
22 2376 35.6 2373 38.7 2375 4.18 5 
23.4 2320 25 2331 32.1 2347 4.2 5.1 
18.8 2310 22.5 2318 27 2336 4.3 4.9 
29.3 2426 40.1 2428 35.5 2359 4.1 5 
32 2480 38 2460 43 2420 3.98 4.86 
20.2 2318 31 2376 37 2320 4.38 4.79 
13.8 2337 23.5 2344 28.9 2335 4.41 4.98 
20 2318 31.2 2249 36.8 2246 4.46 4.91 
22.1 2370 33.6 2253 39.3 2236 4.41 4.88 
30.1 2421 41.5 2329 46.9 2325 4.36 4.92 
41.2 2440 55.4 2347 57.7 2341 4.46 4.98 
39.1 2416 50.8 2371 56.1 2350 4.64 5.4 
31.4 2404 37 2385 42.4 2319 4.6 5.3 
32.3 2427 39.7 2401 45 2380 4.01 4.4 
30.6 2401 36 2391 39.6 2375 3.39 4.3 
23.3 2390 28.8 2355 37.3 2360 5.51 6.3 
29.3 2426 40.1 2428 47 2393 5.1 5.9 
13.8 2337 23.5 2344 30.1 2301 4.2 4.7 
44.6 2397 55.4 2347 56.8 2339 4.44 4.95 
33.3 2369 40.9 2348 45 2310 4.04 4.4 
31.5 2355 36.9 2338 39.6 2306 3.39 4.3 
34.1 2386 47 2344 50.1 2336 4.5 5.1 
33.2 2385 40.3 2353 50.3 2337 4.9 5 
29.8 2392 34.7 2347 43.2 2319 4.02 4.4 
30.1 2395 33.8 2365 41.8 2328 3.7 4.2 
45.6 2423 55.4 2392 57.2 2362 4.69 4.88 
42.2 2419 50.8 2396 58.9 2376 4.83 5.02 
33.1 2401 40.9 2388 45 2369 4.1 4.4 
30.1 2388 36.9 2374 39.6 2366 3.56 4.3 
44.8 2449 52 2421 74 2409 5.8 6.12 
45.1 2441 51 2417 75 2401 4.35 6.3 
44.2 2428 50.1 2415 72 2398 5.6 6.2 
44.4 2431 52.8 2413 71.3 2396 5.5 6.1  
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Appendix C. The statistic plots for all features and properties of experiments under consideration 
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Appendix D. The statistic plots for properties of experiments under consideration 

Appendix E. Plots which depicts linear correlations between: (a) “R3 days” and “R28 days”; (b) “Rfl 7 days” and “Rfl 28 
days”; (c) “ρ 3 days” and “ρ 28 days”. Additional plot (d) depicts correlation between feature “Crushed stone 5–20 mm. 
Granite” and “R 28 days” property 
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