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ABSTRACT

We consider a layered metal–dielectric microcavity with a liquid crystal used as a resonator layer. The transformation of the microcavity
spectra is shown experimentally using three methods, namely, mechanical rotation of the sample, heating, and applying external voltage. The
obtained spectra exhibit multiple vanishing resonant lines. It is found the vanishing resonant lines are not a spectral manifestation of the
bound state in the continuum for this system. Despite the absence of true bound states in the continuum, an experimental tuning of
the resonance Q factor via changing the radiation loss rate is demonstrated through variation of the optical properties of the liquid crystal layer.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0157430

The bound state in the continuum (BIC) is a nonradiative local-
ized state of an open system.1 The existence of the BIC was theoreti-
cally predicted in Ref. 2–5 for the eigenvalue problem for a quantum
particle with an energy above the oscillating and exponentially decay-
ing potential. The simplest type symmetry-protected BICs (SP-BICs)
are implemented in a system with the orthogonal localized and propa-
gating modes.6 In 1985, Friedrich and Wintgen first demonstrated the
BICs that arise in systems due to the destructive interference of nonor-
thogonal eigenmodes (FW-BIC).7 Later, the BICs were found in acous-
tic8–11 and electrodynamic12,13 systems. The BICs are used to create
ultrahigh-Q cavities,14 laser sources,15–18 sensors,19,20 optical vortex
sources,21,22 and perfect absorbers.23,24 The Q factor of the resonance
near a BIC (quasi-BIC) can be tuned by changing the energy radiative
decay rate from the resonant mode by changing the parameters of the
system.25 Therefore, the BIC conception is very attractive for designing
of different photonic devices.26

In 1D systems, the BICs can be implemented by introducing
anisotropic materials.27–31 The anisotropic materials conventionally

used in photonics are liquid crystals (LCs), which are characterized by
a high anisotropy and sensitivity to external fields, allowing for
dynamic tuning of the optical properties. The introduction of LC
materials as a resonator layer into a 1D photonic crystal (PhC) makes
it possible to tune both the position of the resonance32,33 as well as the
width of the quasi-BIC.34–36

In our previous work,34 we demonstrated a tunable Q factor of a
quasi-BIC in a microcavity with an LC resonator layer sandwiched
between PhC and opaque gold (Au) mirrors.37 The presence of the
opaque Au layer made it possible to measure the reflectance spectra
only from the PhC side and only with TM-polarization. In this work,
we replaced the opaque Au layer by a semitransparent one, which
leads to important effects. In particular, the proposed design allows for
excitation of resonances from both sides, PhC and Au, and by both TE
and TM polarized incident waves. This enables observing resonances
in both reflectance and transmittance spectra of the system and leads
to resonant polarization conversion. Although it is impossible to
implement a true BIC due to the radiation loss through the
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semitransparent Au layer, the Q factor can be tuned, which is demon-
strated using three methods: mechanical rotation of the sample, heat-
ing, and application of external voltage.

The microcavity consists of PhC and Au mirrors deposited onto
a glass substrates [see Fig. 1(a)]. The glass substrate for the PhC mirror
was precoated with an indium tin oxide (ITO) conductive layer. The
PhC includes eight Si3N4 and SiO2 bilayers and an additional Si3N4

layer on top. The optical and geometric parameters of the layers and
the fabrication technique are reported in Sec. I in the supplementary
material. The parameters of the PhC were optimized to obtain the cen-
ter of the photonic bandgap (PBG) at wavelength k¼ 580nm at
Brewster’s angle.

An anisotropic 4-pentyl-40-cyanobiphenyl (5CB) nematic LC
layer is sandwiched between the PhC and semitransparent Au mirrors.
The gap between the PhC and the Au mirror is controlled by using
Teflon spacers. Polyvinyl alcohol (PVA) layers are deposited onto the
PhC and Au mirrors and unidirectionally rubbed for a planar align-
ment of the LC. The LC permittivity ellipsoid axis is determined by

the preferred direction of the long molecular axis. The preferred direc-
tion of the long molecular axis is defined by the unit vector
a ¼ ½cos ð/Þ cos ðhÞ; sin ð/Þ cos ðhÞ; sin ðhÞ�, called the director. In
the LC layer, the electric field vector for the ordinary waves (o-waves)
and extraordinary (e-waves) waves has the following form:
Eo ¼ Eo½a� jo�; Ee ¼ Ee½a� eeðaÞ

eo
jeðjeaÞ�.38 The propagation direc-

tions for the o- and e-waves are specified by the unit vectors
jo;e ¼

~ko;e
j~ko;ej
¼ ðjo;ex; 0; jo;ezÞ, where a is the angle between the vectors

a and je, and eeðaÞ is the permittivity for the e-wave. The initial planar
alignment without external voltage corresponds to the case h
¼ 0;/ ¼ 0 over the entire LC layer. In general, if h 6¼ 0 and / 6¼ 0,
the vectors Eo;e have all three Cartesian components, which leads to
mixing of the TE polarized waves (TE-waves) with the components
½0; Ey; 0� and the TM polarized waves (TM-waves) with the compo-
nents ½Ex; 0; Ez� in the LC layer.

Figures 1(b) and 1(d) show the transmittance spectra measured
and calculated by Berreman’s transfer matrix method39 for isolated PhC
and Au mirrors at the normal incidence. For the x- and y-polarized

FIG. 1. (a) Model of an optical microcavity. The inset shows the LC permittivity ellipsoid orientation. (b) and (d) Experimental (dashed lines) and calculated (solid lines) trans-
mittance spectra of the PhC and Au mirrors at the normal incidence of the y-polarized (red) and x-polarized (blue) waves. (c) and (e) Experimental (dashed lines) and calcu-
lated (solid lines) transmittance spectra of the PhC and Au mirrors at the Brewster angle for the TE (red) and TM (blue) waves. (f) Experimental scheme for measuring the
transmittance spectra. (g) Polarizing optical microscopy images of the LC layer texture taken in crossed polarizers at different applied voltages. R1 and R2 are the PVA rubbing
directions. Double arrows show the polarizer (P) and analyzer (A) directions.
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waves, a PBG with the center at k¼ 700nm is observed. The semitrans-
parent Au mirror exhibits the maximum transmittance at k¼ 520nm.
When light is incident at Brewster’s angle, the PBG for the TE-waves
shifts to the short-wavelengths [see Fig. 1(c)]. At the same time, the
PBG for the TM-waves vanishes due to the Brewster effect. Figure 1(e)
presents the measured and calculated transmittance spectra of the TE
and TM-waves for the Au mirror at the same incidence angle. It can be
seen that, in contrast to the PhC mirror, the Au mirror can transmit
light of both polarizations in the PBG range.

The transmittance spectra of the microcavity were measured
using the experimental setup shown in Fig. 1(f), which is described in

Sec. II of the supplementary material. Figure 1(g) presents the LC opti-
cal texture images of the layer obtained in a crossed polarizer scheme
of a polarizing microscope. The dark optical texture was observed
when the PVA rubbing direction was parallel to one of the polarizers
and the maximum light texture was observed at an angle of p=4
between the PVA rubbing direction and the polarizer. This evidences
for the planar orientation in the LC layer. When a voltage is applied,
the director aligns with the external electric field, i.e., the polar angle h
of the LC director a increases. In this case, the eeðaÞ of the anisotropic
layer changes, which manifests itself in a change in the color of the
optical texture upon variation of the applied voltage amplitude.

FIG. 2. Experimental [(a) and (b)] and cal-
culated [(c) and (d)] transmittance spectra
of the microcavity at different azimuthal
angles / of the TE-wave incidence from
the PhC side (h LC ¼ 9:2lm) [(a) and (c)]
and from the Au side (h LC ¼ 9:9lm) [(b)
and (d)]. The plots in (a)–(d) share the
same colorbar and the same axes.
The vertical axis labels are presented
on the left and the horizontal axis labels,
at the bottom. The areas enclosed in
black rectangles are shown zoomed in
(e). Red solid lines correspond to the solu-
tion of the eigenvalue problem for the
open cavity.
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At high voltages, the transition from the planar to homeotropic orien-
tation occurs.

Figure 2 presents the experimental and calculated transmittance
spectra of the microcavity at different azimuthal angles /. Figures 2(a)
and 2(c) correspond to the TE-wave incident from the PhC side. In
the transmittance spectra, no obvious spectral manifestation of the
microcavity modes in the PBG region is observed. At k > 700 nm,
there are resonant lines caused by poor reflection of the TE-waves
behind the PBG red edge. When the TE-waves are incident from the
Au side, there are multiple resonant lines with variable positions and
widths in the PBG region [seen in Figs. 2(b) and 2(d)]. The red shift of
the resonant lines is explained by the fact that, at / ¼ 0; p=2, the
polarizations do not mix in the LC layer. Due to the Bragg diffraction,
only the TE-waves with the permittivity changing from e? to ek are
localized. In addition, multiple vanishing resonant lines are observed.

To explain the features of the spectra, we apply the temporal
coupled-mode theory (TCMT). The microcavity mode can lose its
energy through three radiation channels, the coupling to which is
characterized by coupling constants d1, d2, and d3. The first radiation

channel corresponds to the TM-waves in the PhC, while the second
and third channels correspond to the TM- and TE-waves behind
the Au layer, respectively. For the coupling constants, we have d1;2
/ ffiffiffiffiffiffiffiffi

cTM
p

and d3 /
ffiffiffiffiffiffiffi

cTE
p

, where cTM and cTE are the radiative decay
rates into the continuum of TM- and TE-waves, respectively. Under
variation in the azimuthal angle /, the decay rate cTM changes, which
manifests itself as a change in the resonant linewidth. The decay rate
cTM is proportional to the Poynting vector of the TM component of
the resonant mode at the LC layer boundary:28 cTM / jExj2. There are
two possibilities with cTM ¼ 0. The first corresponds to the planar LC
orientation at which the TE and TM polarizations do not mix, / ¼ 0
or p=2; h ¼ 0. In the second case, the LC mixes the TE and TM polar-
izations and a mode with both components is localized in the cavity
layer. Since the eeðaÞ value depends on /, then the phase difference
between the o- and e-waves at the LC layer output depends on the
angle /. At certain / values, the o- and e-waves at the LC layer output
cancel out to yield a zero outgoing TM-wave component
Ex ¼ Eox þ Eex ¼ 0. These two possibilities are discussed in detail in
Sec. III of the supplementary material.

FIG. 3. Experimental [(a) and (b)] and calcu-
lated [(c) and (d)] transmittance spectra of
the microcavity at the TM-wave incident from
the PhC side (h LC ¼ 10:2lm) [(a) and (c)]
and from the Au side (h LC ¼ 8:8 lm)
[(b) and (d)] under variation in the LC
layer temperature, DT ¼ Tc � T , where
Tc ¼ 35:2 8C is the temperature of the 5CB
LC phase transition to the isotropic phase.
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The PhC mirror in the PBG region transmits only TM-waves act-
ing as a polarizer. According to the transmittance spectra in Figs. 2(b)
and 2(d), the resonant conversion of the incident TE-waves into the
transmitted TM-waves occurs. Within the TCMT, the resonant trans-
mittance from the TE to TM-waves is given by

S13 ¼ C13 þ
d1d3

iðx0 � xÞ þ c
; (1)

where c ¼ cTM þ cTE þ c0. The derivation of Eq. (1) is presented in
Sec. V of the supplementary material. When the first channel is closed,
d1 ¼ 0, the resonant line vanishes with a finite width, since the radia-
tive decay rate cTE and the material loss rate c0 are always nonzero.
This is confirmed by solving the eigenfrequency problem for the open
cavity. The eigenfrequency is a complex number xr ¼ x0 � ic. The
equations for xr are derived by wave matching with the radiation
boundary conditions.34 The spectral positions of the resonant lines
determined by the real part of the eigenfrequency x0 agree well with
the obtained spectra [see Fig. 2(e)]. Figure S1 in the supplementary
material shows the angular dependence of the imaginary part of the
eigenfrequency c near / ¼ 0 for two cases, namely, with and without
an account of absorption in the Au layer. The calculations show that,
even in the absence of absorption, we have cð/ ¼ 0Þ � cTE 6¼ 0,
which indicates radiation loss into the TE channel. Therefore, a true
BIC did not occur in the system despite the typical spectral

manifestation in the form of vanishing resonant lines.40 In this case, it
is still possible to control the Q factor of the microcavity by changing
the radiation decay rate to the TM channel.

Due to the sensitivity of the liquid crystal to the external fac-
tors, we can use two different approaches for tuning the resonant
line position and width, thermal and electric. The temperature tun-
ing of the spectra was achieved by heating the planar oriented LC
layer with h¼ 0. Figure 3 presents the experimental and calculated
transmittance spectra for the TM-wave incident from the PhC and
Au sides with the LC director oriented at an angle of / ¼ p=4.
Below the temperature Tc ¼ 35:2 �C of the phase transition of the
LC to the isotropic phase, multiple resonant lines are observed. As
the temperature increases, the resonant line shift turns out to be
insignificant since, at / ¼ p=4, the decrease in ek is compensated by
the increase in e?

41 [see Sec. VI of the supplementary material]. The
permittivities of the LC layer change upon heating and, at certain
temperatures, the resonant lines vanish, as explained above. At
T > Tc, the anisotropic LC transforms to the isotropic state, in
which the polarizations do not mix, i.e., the TE-wave amplitude is
zero over the entire LC volume. The small-amplitude and constant-
width resonances are due to the weak reflection of the TM-waves at
the Au\PVA and PVA\Si3N4 interfaces.

Figure 4 illustrates the transformation of the microcavity trans-
mittance spectra, when an 1 kHz external voltage is applied to the

FIG. 4. Measured transmittance spectra
for the incident TM-waves at different
applied voltages and a fixed azimuthal
angle of the LC director rotation, (a)
/ ¼ 0, (b) p=4, and (c) p=2. The thresh-
old voltage is Uth � 0:9 V. (d) Q factor of
the resonant line [red circles in Fig. 4(b)]
calculated from the full width at half
maximum.
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conductive Au and ITO layers. The transmittance spectra at azimuthal
angles of / ¼ 0; p=4; p=2 for a TM-wave incident from the Au side
were measured. Under voltages below Uth, the position and width of
the resonances remain constant due to the invariance of the LC struc-
ture alignment. At U > Uth, LC molecules rearrange due to the
Frederiks effect. The director tends to orient along the applied field in
the z-axis direction, which leads to an increase in the polar angle h.
The eeðaÞ changes, which causes a change in the position and width of
the resonant lines. At / ¼ 0, for all polar angles h, the polarizations
in the LC layer do not mix. It means that the coupling with the first
radiation channel is canceled, d1 ¼ 0. In the spectrum presented in
Fig. 4(a), the small-amplitude constant-width resonances are observed,
which correspond, as explained above, to the weak TM-wave localiza-
tion. At / ¼ p=4; p=2, and h 6¼ 0 the polarizations in the LC layer
are mixed, as shown Figs. 4(b) and 4(c). At certain U values, the reso-
nant lines vanish, d1 ¼ 0. In the limiting case, at high voltages U, the
LC molecules are oriented along the z axis and the LC permittivity for
resonant electromagnetic waves takes the minimum possible value e?,
which results in a blue shift of the resonant lines [see Sec. VII of the
supplementary material]. Figure 4(d) illustrates the change in the Q
factor of the resonant line highlighted with red circles in Fig. 4(b). At
the vanishing point, the resonance Q factor is doubled with a change
in the external voltage by only 1V. The maximum value of the mea-
sured Q-factor is �100 for voltage application experiment [see Fig.
4(d)] and �130 for mechanical rotation of the sample [Fig. S4(a)].
This values is approximately twice larger in comparison with previous
results for a nontransparent Au layer where the maximum value of the
Q-factor was�40–70.34,35

In this work, an optical microcavity consisting of a nematic liquid
crystal layer, a semitransparent gold mirror, and a photonic crystal
operating at Brewster’s angle is proposed. A number of important
effects were experimentally demonstrated and theoretically explained,
namely, (i) excitation of the resonant modes by both the TE and TM
polarizations from both the photonic crystal and gold mirror sides; (ii)
the resonant transmission between the channels of different polariza-
tions; and (iii) a tunable Q factor by mechanical rotation, heating of
the sample, and applying an external voltage to the liquid crystal layer.
The results obtained can be used to create energy-efficient photonics
devices, including dye microlasers,33 perfect light absorbers,35 and
sensors.20

See the supplementary material for information about parameters
of the microcavity, experimental setup, explanation of vanishing of
resonances, resonant transmission, temporal coupled-mode theory,
temperature tunability, and voltage tunability.
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