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Diffraction of a Laguerre-Gaussian beam in Raman interaction with a spatially periodic pump field
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We studied Fresnel diffraction of a Laguerre-Gaussian beam LGp,l with arbitrary azimuthal l and radial p
indices on a grating induced during its Raman interaction with a spatially periodic pump field in an atomic
medium. The diffraction pattern turned out to be more complex than the classical Talbot effect observed when
a plane wave illuminates a two-dimensional grating. The simulation results show that, under certain conditions,
at distances corresponding to the classical Talbot planes (integer and fractional), periodic amplitude-phase
distributions appear. The diffraction patterns are not a probe-field image in the induced grating plane, but a
regular array of vortex annular-shaped microbeams with an inhomogeneous intensity distribution depending on
the l and p indices and with a topological charge equal to that of the initial probe beam. The intensity and spatial
distribution of diffraction patterns can be controlled by Raman amplification in the induced grating by varying
the pump-field intensity or the Raman detuning.
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I. INTRODUCTION

In recent years, the generation and study of the propagation
of structured light beams [1], which have a complex amplitude
and phase distribution, attracted considerable interest. Such
interest is associated with their promising prospects for ap-
plications in the range from classical to quantum physics. A
striking example of structured light is optical vortex fields that
carry orbital angular momentum (OAM), which is conditioned
by the presence of a phase singularity point, where the phase
is indefinite and the field intensity is zero [2]. Vortex fields are
actively studied in optics [3,4]. The study of the propagation
of beams with OAM through periodic structures is of funda-
mental interest [5–11].

Laguerre-Gaussian (LG) beams are a wide class of optical
vortex fields that carry OAM [2]. In the Cartesian coordinate
system, the complex amplitude of the LG beam LGp,l has the
following form:

LGp,l (x, y) = 2l/2

(
x + iy

w0

)l

× exp

(
−x2 + y2

w2
0

)
Ll

p

(
−2(x2 + y2)

w2
0

)
, (1)

where w0 is the Gaussian beam waist radius, Ll
p is the as-

sociated Laguerre polynomial, l is the azimuthal index or
topological charge (TC), and p is the radial index. Compared
to Gaussian fields, LG ones have two additional degrees of
freedom: the topological charge l and the radial index p. The
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topological charge [2]

l = (2π )−1
∮

C
∇ψ (x, y)dxdy, (2)

where ψ (x, y) is the field phase, is determined by the phase
singularity on the beam axis, which leads to the helical phase
front shaping. The presence of a radial index leads to the
formation of a set of p concentric nodal rings, each point on
which is singular but has no topological charge. The shape
of the intensity cross section of such beams is preserved
during propagation in a homogeneous medium and has radial
symmetry. These properties make LG beams useful in many
applications, in particular, for free-space communication [12],
quantum information processing [13], sorting [14], and orbital
angular momentum imaging [15] for optical manipulations
with microscopic particles [16]. Since LG beams with a large
radial index have several intensity rings around the beam
axis, they can therefore be used to capture several particles
simultaneously in circular trajectories and make them orbit.

Although LG beams belong to the class of well-
studied optical fields, they still attract the attention of
researchers [17–19]. Diffraction gratings are important optical
components and are used in many areas of optics. Therefore,
studies of LG beams diffraction on gratings of various types
are of great interest. In Ref. [20], the features of an LG
laser beam Fresnel and Fraunhofer diffraction on a forked
grating were theoretically studied. Gratings with varying peri-
ods are widely used to measure topological charges [21–23].
In Ref. [24], an array of tunable optical vortices was ob-
tained by diffraction of an LG beam (p = 0, l = 1) on a
two-dimensional electromagnetically induced atomic lattice
under conditions of electromagnetically induced transparency.
With such lattices one can dynamically control the intensity
and spatial distribution of diffraction patterns; thus they are
of particular interest. Optical vortex arrays with controlled
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FIG. 1. (a) Configuration of energy levels of three-level atoms
for Raman interaction. (b) Spatial arrangement of the pump-field
microbeams with radius r = 0.1� and period � (blue spots) and the
probe LG beam (red) inside the cell with atomic gases in the x-y
plane.

intensity distribution are required, for example, in mul-
tichannel optical communication and multiparticle capture
applications.

In this paper, we theoretically study the diffraction patterns
that arise from Fresnel diffraction of LGp,l beams with arbi-
trary azimuthal l and radial p indices under Raman interaction
(stimulated Raman scattering, Raman gain) with a spatially
periodic pump field in a three-level atomic �-system. The
pump field is a two-dimensional periodic set of beams with
period � in the x and y directions [25–27]. In the Raman inter-
action of a probe field with a spatially periodic pump field, an
amplification and refraction grating is induced (the so-called
induced Raman grating). As a result, the probe field will be
diffracted by such a hybrid grating. Section II discusses the
model and derives an expression for the diffracted LG field in
the Fresnel approximation of the Huygens-Fresnel principle.
Section III presents the results of numerical simulations of
diffraction patterns under various conditions and discusses
them. The main results are summarized in Sec. IV.

II. MODEL AND BASIC EQUATIONS

Let us consider the Raman gain of a probe LG field E2

with the frequency ω2 in the presence of a spatially modulated
pump field E1 with the frequency ω1 in a three-level atomic
medium. The energy states of a three-level �-system with
two metastable states |0〉 and |2〉 are shown in Fig. 1(a). The
frequencies of allowed transitions |0〉 − |1〉 and |2〉 − |1〉 are
ω10 and ω12, respectively. Only the ground state |0〉 is initially
populated. The fields propagate in the z direction perpendic-
ular to the atomic layer. The pump field is a two-dimensional
periodic set of beams with radius r and period � in the x and
y directions. The spatial arrangement of the pump beams and
the probe LG beam inside the cell with atomic vapors is shown
in Fig. 1(b).

When the probe field interacts with the pump, the po-
larization P(ω2) = χR(ω2)E2 is induced at the probe-field
frequency ω2, where χR(ω2) is the Raman susceptibility and
E2 = LGp,l is the probe-field amplitude given by (1). The
susceptibility χR(ω2) of a three-level �-type atomic system
for the probe field can be derived by solving the density matrix
equations exactly for the pump field and in the first order for
the probe field (weak probe field limit |E2| � |E1|). In the

FIG. 2. Distribution of the normalized intensity (a), (b) I2/Ī20 and
(c), (d) the phase of the probe field at the atomic medium exit. G1=2,
δ20 = 4, w0 = 7.5�. (a), (c) l = 1, p = 1 and (b), (d) l = 2, p = 2.

steady-state approximation, we have [28]

χR(ω2) = αr
γ12|G1(x, y)|2

δ2
1[δ20 + iγ20 + |G1(x, y)|2/δ1]

. (3)

Here αr = |d12|2N/2h̄γ12, δ1 = ω1 − ω10, δ2 = ω2 − ω12

are single-photon detunings, δ20 = ω1 − ω2 − ω20 is the
Raman (two-photon) detuning, ωmn, γmn, dmn are frequency,
half-width and dipole matrix element of the correspond-
ing transitions; N is atoms density, h̄ is Planck’s constant.
G1(x, y) = d10E1(x, y)/2h̄ is the Rabi frequency of the pump
field, which represents a two-dimensional periodic function in
plane x-y with period � in each direction. The expression (3)
is derived under the condition that the pump field is detuned
from state |1〉 by large one-photon detuning δ1 � G1 so that
single-photon absorption and the change of levels population
can be neglected. For |G1|2/δ1 > γ20 the ac-Stark shift of the
Raman transition resonance frequency becomes noticeable. At
the same time, the value of the pump-field parameters were
chosen so that other nonlinear effects, such as self-focusing or
self-Kerr were insignificant. A spatially periodic pump field
leads to periodic modulation of the susceptibility χR(ω2) and,
respectively, the Raman gain (Im χR) and refractive index
(Re χR) for the probe field. We can say that in the process
of Raman interaction, a Raman grating [28] is induced. As
a result, the probe field will be diffracted by such a hybrid
grating.

In the approximation when the Fresnel number is Nf =
r2/(λ2L) � 1 (r is the pump field microbeams radius, L is
the atomic medium thickness, λ2 is the probe field wave-
length), the pump and probe-field microbeams’ diffraction
in the atomic medium volume can be ignored (thin medium
approximation) [29–31]. In this case, the probe field at the
atomic medium exit (z = L) can be represented as [32]

E2(x, y, L) = T (x, y, L)E2(x, y, z = 0),

where the transmission (gain) function of the medium
T (x, y, L) is defined as

T (x, y, L) = exp [ik2(1 + 2πχR)L]. (4)
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It is a periodic function of the transverse coordinates x and
y and depends on the Rabi frequency of the pump field and
the detuning from the Raman resonance. Its value can be
controlled by varying these parameters. Figure 2 shows the
distributions of the intensity (scaled to the average incident
probe-field intensity Ī20 ∝ ∫ |E2(z = 0)|2dS/S) and the phase
of the probe fields at the exit from the atomic medium (z =

L) for some values l and p. The probe field at the atomic
medium exit is amplified by Raman amplification and repre-
sents an LG beam spatially modulated by a periodic pump
field.

The diffracted probe field behind the atomic medium in the
near field can be calculated using the Fresnel approximation
of the Huygens-Fresnel principle [30]

E2(x, y, Z ) = exp (ik2Z )

iλ2Z

∫∫
E2(x0, y0, L) exp

{
ik2

2Z
[(x − x0)2 + (y − y0)2]

}
dx0dy0. (5)

Here x0, y0 are coordinates in the grating plane z = L, E2(x0, y0, L) = E20T (x0, y0, L)LGp,l (x0, y0) is the probe field at the atomic
medium exit and x and y are the coordinates in the observation plane Z = z − L. Let us expand T (x0, y0, L) into a Fourier series
as follows:

T (x0, y0, L) =
∑
n,m

tnm exp [iG(nx0 + my0)], (6)

where tnm are the Fourier coefficients and G = 2π/� is the reciprocal lattice vector modulus. Then expression (5) takes the form

E2(x, y, Z ) = E20
exp (ik2Z )

iλ2Z

∑
n,m

tn,m

∫∫
exp

{
ik2

2Z
[(x − x0)2 + (y − y0)2] + iG(nx0 + my0)

}
LGp,l (x0, y0) dx0dy0. (7)

The exponent in (7) can be converted to the form

ik2

2Z

[(
x2 − X 2

n

) + (
y2 − Y 2

m

)] + ik2

2Z
[(Xn − x0)2 + (Ym − y0)2], (8)

where Xn = x − nGZ/k2, Ym = y − mGZ/k2.
Taking into account (8), equation (7) can be rewritten as

E2(x, y, Z ) = E20
exp (ik2Z )

iλ2Z
exp

[
ik2

2Z
(x2 + y2)

]∑
n,m

tn,m exp

[
− ik2

2Z

(
X 2

n + Y 2
m

)]

×
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exp

{
ik2

2Z

[
(Xn − x0)2 + (Ym − y0)2

]}
LGp,l (x0, y0) dx0dy0. (9)

The integral in (9) represents the Fresnel transform of the LG beam and can be calculated [3]

1

iλ2Z

∫∫
exp

{
ik2

2Z

[
(Xn − x0)2 + (Ym − y0)2

]}
LGp,l (x0, y0) dx0dy0 = exp [−i(2p + l + 1) arctan(Z/zR)]LGp,l (Xn,Ym, Z ),

(10)
where

LGp,l (Xn,Ym, Z ) = 2l/2

(
Xn + iYm

w(Z )

)l

exp

(
−X 2

n + Y 2
m

q2(Z )

)
Ll

p

(
−2

(
X 2

n + Y 2
m

)
w2(Z )

)
,

1/q2(Z ) = 1/w2(Z ) − ik2/2R(Z ) is the complex parameter of the Gaussian beam, w(Z ) = w0(1 + Z2/z2
R)1/2, R(Z ) = Z (1 +

z2
R/Z2), zR = k2w

2
0/2.

As a result, the field E2 at a distance Z from the grating can be represented as a superposition of the spatial harmonics

E2(x, y, Z ) = E20
w0

w(Z )
exp

[
ik2Z + ik2

2Z
(x2+ y2) − i(2p+ l+ 1) arctan(Z/zR)

] ∑
n,m

tnm exp

[
− ik2

2Z

(
X 2

n + Y 2
m

)]
LGp,l (Xn,Ym, Z ).

(11)
The phase term in summation can be conveniently rewritten as

− ik2

2Z

(
X 2

n + Y 2
m

) = − ik2

2Z
(x2 + y2) + iG(xn + ym) − i2πλ2Z

2�2
(n2 + m2). (12)

One can see that the spatial harmonic phase dependence on the longitudinal coordinate Z is determined by the last term in the
expression (12). It is easy to show that at distances multiple of ZT = 2�2/λ2, all spatial harmonics acquire the same phase shift
multiple of 2π , and therefore, a regular diffraction pattern will form in these planes with a period equal to the period of the
original gratings. This expression exactly coincides with the classical expression for the Talbot length in the case of the plane

023519-3



ARKHIPKIN, IKONNIKOV, AND MYSLIVETS PHYSICAL REVIEW A 107, 023519 (2023)

waves’ near-field diffraction [33,34]. Finally, the expression for the E2 field is

E2(x, y, Z ) = E20
w0

w(Z )
exp [ik2Z − i(2p + l + 1) arctan(Z/zR)]

×
∑
n,m

tnm exp[iG(xn + ym)] exp

[
−i2π (n2 + m2)

Z

ZT

]
LGp,l (Xn,Ym, Z ). (13)

This shows that the diffracted probe field in the near field is
a superposition of spatial harmonics, each of which is an LG
beam. For l �= 0, each harmonic has a singular point where
topological charge is equal to that of the incident beam. The
position of the singular point is determined by the conditions
Xn = x − nGZ/k2 = 0, Ym = y − mGZ/k2 = 0. It can be seen
that each harmonic propagates in the direction of the corre-
sponding diffraction order x/Z = nλ2/�, y/Z = mλ2/�. At
a distance Z = ZT , these relations take the form x/� = 2n�

and y/� = 2m�, that is, in this plane, all harmonics are cen-
tered at even values of �. However, the resulting diffraction
pattern is determined by the interference of all harmonics and
the position of singularities may not coincide with those for
individual harmonics. For l = 0, p = 0, the probe wave is
a Gaussian beam and has no TC (it is not a vortex). The
diffraction patterns in the Talbot planes have the same form
as in the classical Talbot effect.

III. RESULTS AND DISCUSSION

In numerical calculations, parameters corresponding to the
D1 line of sodium atoms were used. Metastable levels |0〉
and |2〉 correspond to long-lived sublevels of the ground state
2S1/2. The parameters of this atomic system can be given
by γ10/2π = 10 MHz, γ21 = γ10, γ20 = γ10/100. The Rabi
frequency G1 and one-photon detuning δ1 are given in the
γ10 units, the Raman detuning δ20 in the γ20 units: G1 = 2,
δ1 = −100, δ20 = 4. The Raman detuning value was chosen
to compensate for the ac-Stark shift and ensure resonant con-
version conditions. The atomic media length L = 75 µm. The
grating period is � = 600λ2, w0 = 7.5�, r = 0.1�.

Figure 3 shows diffraction patterns in different Talbot
planes. In integer Talbot planes [Figs. 3(a) and 3(b)], complex
periodic amplitude distributions are observed, which differ
from the field self-images on the grating [Fig. 2(a)]. The
central microbeam has an annular intensity distribution while
microbeams not lying in the center of symmetry acquire a
crescent-shaped distribution and are rotated at a certain angle
relative to the center of the diffraction pattern, depending
on their coordinates. It can be seen from the figure that the
formed microbeams are not LG beams and the diffraction
pattern is not a self-image of the field on the grating. It
turns out to be more complicated than the classical Talbot
effect observed where the grating is illuminated by a plane
wave. But it can be considered as an analog of the Talbot
effect (quasi-Talbot effect). Similar diffraction patterns are
also observed in other, including fractional, Talbot planes.
Figures 3(c) and 3(d) show the diffraction patterns in the
fractional Talbot planes Z = 1/2ZT and Z = 1/4ZT . It can be
seen that, as in the classical Talbot effect, in the Z = 1/2ZT

plane, microbeams are formed in positions shifted by half a

period along both axes in the transverse plane and in the Z =
1/4ZT plane the period of the diffraction pattern is halved.
Although on the Talbot length all harmonics acquire the same
phase shift multiple of 2π , nevertheless, due to the curva-
ture of the wavefront of the original beam and, accordingly,
the individual harmonics, the diffraction patterns in different
Talbot planes will differ from each other: with increasing
coordinate Z , the transverse dimensions of the microbeams
will increase; moreover, the intensity distribution within the
microbeams themselves will change, but their position will re-
main unchanged and is determined by the grating period. With
a further increase in the coordinate Z > 2ZT (for the given
parameters), the microbeams begin to overlap significantly, as
a result, the diffraction pattern becomes more complicated.

Obviously, the diffraction pattern depends on the choice of
the parameters of the interacting fields and is determined by
their ratio. Figure 4 shows intensity distributions of the central
microbeam in the y = 0 plane in diffraction patterns depend-
ing on the chosen parameters r, w0, l , and p. As expected, the
increasing of the pump beams’ radius r leads to an increase
of the microbeam relative intensity [Fig. 4(a)]. One can see
that for r less than a certain value, the intensity distribution
has a set of low-intensity rings and their quantity is equal
to the radial index p of the incident LG beam. If this value
is exceeded, the number of low-intensity rings decreases by
1. An increase in the waist radius leads to a decrease in the
wavefront curvature of the incident LG beam and, accord-
ingly, to a decrease in the microbeam diameter [Fig. 4(b)].

FIG. 3. Intensity distribution of diffraction patterns for an LG
probe field with l = 1, p = 1 at the distance (a) Z=ZT , (b) Z=2ZT ,
(c) Z = 0.5ZT , and (d) Z = 0.25ZT .
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FIG. 4. Intensity distributions of the central microbeam at y = 0
in diffraction patterns at a distance Z = ZT depending on the chosen
parameters: (a) w0 = 7.5�, l = 1, p = 1; (b) r=0.1�, l=1, p = 1;
(c) r = 0.1�, w0 = 7.5�, p = 1; and (d) r = 0.1�, w0 = 7.5�,
l = 1.

Increasing the topological charge l and/or the radial number
p of the incident LG beam leads to the microbeam broadening
[Figs. 4(c) and 4(d)] with a decrease in its amplitude. Also, a
change in p leads to a corresponding change in the number of
low-intensity rings in the microbeam.

In addition, the diffraction pattern depends on the transmis-
sion function T (x, y) defined by Eq. (4), and can be controlled
by varying the Rabi frequency of the pump field G1 and the
detuning from the Raman resonance δ20. Figure 5 shows the

FIG. 5. (a), (b) Intensity and (c), (d) phase distribution of
diffracted field at different values of the Rabi frequency of the pump
field in the Z = ZT plane, l = 1 and p = 1: (a), (c) G1 = 2, (b), (d)
G1 = 1.7. Solid (red) and dashed (green) lines are the zero isolines
of the imaginary and real parts of the diffracted field, respectively.
Green and red circles mark the position of singularities with negative
and positive TC, respectively.

diffraction patterns for various values of the Rabi frequency
of the pump field. The singularities’ position (green and red
circles) are found as intersection points of isolines with zero
values of the imaginary and real parts of the diffracted field
(solid red and dashed green lines). The value and sign of
the singularity’s TC are calculated by Eq. (2). For G1 = 1.7
the amplification is significantly less, thus, the contribution
from the parts of the incident field that have passed without
amplification becomes more significant. As a result, it can be
seen that, in this case, the shape of the incident beam is more
clearly manifested in the diffraction pattern; in addition, the
position of the singular points changes.

Figure 6 shows diffraction patterns in the Z = ZT plane for
different values of the l and p parameters. The second and
third rows show the intensity and phase distribution in the cen-
tral microbeam. The two bottom rows show the intensity and
phase distribution in the lateral microbeam (corresponding to
the pink squares from the top row). The analysis shows that,
although the microbeams contain rings with a much lower
intensity, these rings are not nodal since the intersection of
the zeros of the imaginary (solid red line) and real (dashed
green line) parts of the field occurs only in certain points.
The total number of singular points depends on l and p in-
dices. Note that diffraction patterns have a fine structure, i.e.,
each of the vortex microbeams consists of several spatially
overlapping vortices, some of which rotate clockwise and
some counterclockwise. For l �= 0, all microbeams have a TC
equal to the charge of the original LG beam. There are also
vortices localized in the low-intensity region near the lateral
microbeams. Their total charge is opposite in sign and com-
pensates for the charge of the vortices located inside the lateral
microbeams. The central microbeam reproduces l of the initial
LG field. Therefore, the total TC of the entire diffracted field
also coincides with that of the probe field.

Figure 7 shows overview distributions of the diffracted
field intensity and phase for various values of l and p in the
Z = ZT plane. In the LG beam with a radial index p �= 0, there
is a set of concentric circles with zero intensity at the boundary
of which a phase jump occurs. The number of circles is equal
to the value of the radial index p. From the examination of the
entire set of microbeams formed by diffraction of such an LG
beam (Fig. 7), then one can see that the spatial intensity and
phase distribution of the diffraction pattern as a whole reflects
that of the original LG beam (see Fig. 2). However, where the
circle-shaped phase discontinuity is crossed by microbeams,
the phase distribution is distorted and the shape of the circle is
violated. It can be seen that, when going around the singular
point at the center of the diffraction pattern, the phase changes
by 2π l (as in an ordinary vortex). Thus, although the total
diffracted field is also a vortex and its phase during propaga-
tion rotates around the optical axis with a TC equal to that of
the probe field, it cannot be called an LG beam.

It should be noted that since expression (13) was obtained
in the Fresnel approximation (i.e., it includes but is not limited
to the terms used in the Fraunhofer approximation [35]), thus
it can also calculate the diffraction pattern in the far field
(Z � zR). The diffracted field still will be a superposition of
spatial harmonics, but in this case, they will no longer be over-
lapping in space. Thus, the diffraction pattern in the far field
will be a set of LG beams propagating at angles corresponding
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FIG. 6. Diffraction patterns in the Z = ZT plane for different values of the l and p parameters (top row). Next two rows show the
intensity and phase distribution in the central microbeam; two bottom row shows the intensity and phase distribution in the side microbeam
(corresponding to the pink squares from the top row). Solid (red) and dashed (green) lines are the zero isolines of the imaginary and real parts
of the diffracted field, respectively.

to the diffraction-order directions {x, y}/Z = {n, m}λ/�, with
the same l and p indices as the original beam. Figure 8 shows
distributions of the diffracted field intensity and phase in the
far field for the central beam. During the propagation, the
phase quickly rotates and in the far field a large number of
spiral turns are present inside the beam. Nodal rings (black
dotted lines) intersect this phase spiral, the number of rings
being equal to radial index p. The corresponding distributions
in the lateral beams in planes normal to their respective di-
rection of propagation will be exactly the same. The presence
of phase singularity in the center and the set of nodal rings

confirms that each beam in the far field represents the LG
beam.

IV. CONCLUSION

The diffraction of LG beams (p �= 0, l �= 0) in the Raman
interaction with a spatially periodic pump field is studied
theoretically. It is shown that the diffracted field in the near
zone is a superposition of spatial harmonics, which are an
LG beam. At distances corresponding to the classical Talbot
lengths in the transverse plane, regular spatial structures with

023519-6



DIFFRACTION OF A LAGUERRE-GAUSSIAN BEAM IN … PHYSICAL REVIEW A 107, 023519 (2023)

FIG. 7. (a), (b) Intensity and (c), (d) phase distributions of the
diffraction field at a distance Z = ZT . (a), (c) l = 1, p = 1, (b), (d)
l = 2, p = 2.

the period of the induced grating are observed. They differ
from the self-images of the probe field on the induced grating
exit and are periodic arrays of microbeams with a nonuniform
intensity distribution. The diffraction pattern can be consid-
ered as an analog of the classical Talbot effect. Despite the fact
that microbeams contain low-intensity rings at p �= 0, never-
theless, only individual points in these rings are zero crossings
of the real and imaginary parts of the field and, accordingly,
microbeams are not LG beams. All microbeams have a TC
equal to the charge of the original probe beam. However,
near each beam (except the central one) there are singularities
of the opposite sign, so their effective charges are equal to
zero. Therefore, the TC of the entire diffracted field also
coincides with the probe-field charge and the total diffracted
field is a vortex. The spatial distribution of the diffracted field

FIG. 8. Intensity and phase distributions of the diffraction in the
far field (Z = 10zR), l = 1, p = 2 for the central beam; black dotted
line shows positions of nodal rings.

corresponds to the structure of the incident LG beam, but the
annular discontinuities of the phase caused by the radial index
p are distorted in those places where these rings are crossed
by microbeams. In the far field, the diffraction patterns are
also a superposition of harmonics, but unlike the near-field
zone, they do not overlap in space. That is why the diffraction
patterns in the far field represent a set of LG beams with the
same l and p indices as the original beam. The intensity of
diffraction images can be controlled by Raman gain in the
induced grating by varying the pump-field intensity or the
Raman detuning. The results may be promising for the real-
ization of fundamental light-matter interactions. Vortex beams
with controlled intensity and spatial distribution may be of
interest for simultaneous optical trapping and manipulations
of multiple particles, for high-density multichannel quantum
communications, and for cryptography.
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