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Probing Majorana bound states through an inhomogeneous Andreev double dot interferometer

S. V. Aksenov *

Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia

(Received 16 July 2022; revised 4 February 2023; accepted 7 February 2023; published 16 February 2023)

In modern experiments with hybrid superconducting (SC)/semiconducting nanowires the presence of zero-
energy Andreev bound states (ABSs), characterized by a partial overlap of the Majorana wave functions, is
a common problem that significantly complicates the detection of a genuine Majorana bound state (MBS). In
this article, taking into account spatial inhomogeneity of experimentally investigated nanowire samples, we study
interference transport features of a curved heterostructure in which two normal wires (or arms) are separated by a
superconducting wire. Since Andreev reflection on the two N/S interfaces with smoothly changing electrostatic
and SC pairing potentials results in the emergence of bound states, the low-energy interference transport is
described in the framework of the model of two noninteracting Andreev levels or the Andreev double quantum
dot. A set of limiting cases is analyzed allowing us to highlight the interference properties that are unique for the
different types of ABSs, such as bulk ABS, inhomogeneous ABS, and MBS. In particular, considerable attention
is paid to the features of the Aharonov-Bohm (AB) effect. It is shown that the response of each state can be
recognized analyzing both AB period and extrema positions of the conductance oscillations which take place
without any fine-tuning of the system parameters.
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I. INTRODUCTION

Andreev reflection is a fundamental process defining
the properties of normal metal/superconductor (N/S) het-
erostructure [1]. It leads to the emergence of subgap Andreev
bound states (ABSs) localized in the normal part. These Bo-
golyubov excitations play an essential role in current-carrying
phenomena in S/N/S junctions and superconducting (SC)
quantum point contacts [2,3] which are the building blocks
for the applications in SC electronics, quantum computing,
and simulations [4,5]. Recently, a lot of attention has been
paid to the ABS spatial extension and the hybridization of
these states. For example, these phenomena are crucial for the
realization of Andreev molecular states [6–8].

Another area where the spatial structure of the ABS
wave function has become an important factor is topological
superconductivity, which is currently undergoing rapid devel-
opment [9–11]. The popularity of this direction is largely due
to the unique properties of a special type of ABS, namely,
the Majorana bound state (MBS) [12,13]. This subgap excita-
tion consists of two zero-energy Majorana components (MCs)
whose wave functions are separated in space. Possessing spa-
tial nonlocality, such states may turn out to be a promising
basic element for the implementation of quantum calculations,
which are more resistant to incoherent scattering processes
and, as a result, to information loss [14,15].

In the problem of MBS detection much attention
is focused on the tunneling spectroscopy of hybrid
semiconducting/superconducting nanowires [16,17]. The ex-
isting experimental data, in particular, the observation of the
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quantized zero-bias peak of conductance [18], do not allow us
to unambiguously determine the presence of MBSs and real-
ization of the topological phase transition [19,20], stimulating
further development of the transport theory in systems with
topological superconductors.

As a result, it was found that the aforementioned zero-
bias peak can be induced by ABSs of nontopological nature
[21–23]. The part of trivial ABSs is related to the presence of a
quantum-dot region typically located at the nanowire edge (or
both of them). In the experiments it can be formed due to the
Schottky barrier between the lead and SC-covered segment
[18,24,25]. It was demonstrated that for such a system in the
trivial phase the ABSs emerge due to a smooth change of
chemical potential and SC gap [26–28] or when the resonant
conditions for a spin-orbit coupling strength are satisfied [29].
Note that depending on the specific properties of the inhomo-
geneity at the N/S interface (e.g., the degree of smoothness,
quantum-dot area length, MC localization length), the overlap
of two MC wave functions can be comparable with the one in
the topological phase. As a result, nonlocal trivial ABSs occur
which are also called partially separated ABSs and pseudo-
or quasi-MBSs [30–32]. Another mechanism that causes the
ABSs is a random disorder [33–35]. Essentially, the energies
of all these states can be pinned close to zero value in an
extended range of the magnetic fields and gate voltages that
mimics the MBS response in the transport measurements and
substantially complicates interpretation of the experimental
data [19,20,36–39].

Here we study a one-dimensional interference heterostruc-
ture consisting of two normal wires (or arms) separated by
an SC segment and coupled with a normal contact as dis-
played in Fig. 1(a). It is assumed that the electrostatic and
SC pairing potentials change smoothly at the N1/S and S/N2
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FIG. 1. (a) �-shaped device with nonuniform profiles of the
electrostatic, V ( j), and superconducting pairing, �( j), potentials. In
general, their smooth dependence on a spatial variable at the N/S
interfaces can induce two trivial Andreev bound states with zero
energy, one each on half of the device. The probability densities
of the Majorana components, M1−4, composing these excitations
are shown schematically by curves. An in-plane magnetic field, B,
is applied locally to a superconducting part of the device (S) and
oriented parallel to it. A magnetic flux piercing the device plane
induces the Aharonov-Bohm phase for the carriers tunneling from a
normal contact (N) to the top and bottom arms of the device (denoted
by “1” and “2” indices). The Rashba spin-orbit field, BSO

1,2,S , is present
in all three sections of the device. (b) Profiles of the electrostatic and
superconducting pairing potentials for “steep-steep” (dashed curves)
and “gentle-gentle” (solid curves) cases. Parameters: ε1 = −0.1,
ε2 = −0.5, εS = 1.4, μ = 0, �0 = 0.3, N1,2 = 52, NS = 60.

interfaces. The corresponding profiles of V ( j) and �( j) are
plotted in Fig. 1(b). As was mentioned above such a behavior
induces the trivial zero-energy ABSs in both arms (or inho-
mogeneous ABSs). It allows us to explain the low-energy
physics employing a model of an inhomogeneous Andreev
double quantum dot. The nonuniformity manifests itself in
the asymmetric coupling of the contact with the Majorana
components constituting the separate ABS that can be probed
by the measurement of linear-response conductance.

Due to the bent shape it becomes possible to analyze the
features of local interference (the definition “local” means
that there is only one normal-metal contact) caused by the
ABSs of different type, i.e., the usual bulk states, inho-
mogeneous ABSs (including quasi-MBSs), and topological

MBSs, and to distinguish between them. In other words, the
proposed setup gives an opportunity to test not only the ap-
pearance of the zero-bias conductance peak but, additionally,
the Aharonov-Bohm (AB) effect avoiding the utilization of
nonlocal techniques, for example, measurement of transcon-
ductance [40] or current correlations in different normal leads
[41]. It is assumed that the latter are necessary to confirm the
nontrivial nature of the subgap states.

It is worth noting that the found transport properties of
the inhomogeneous Andreev double quantum dot are in good
agreement with the numerical results obtained for the micro-
scopic model of the �-shaped device depicted in Fig. 1. Thus,
one can expect that the predicted effects do not qualitatively
depend on the specific form of the setup. Taking it into ac-
count, there are several options for a potential verification
experiment. Keeping in mind recent studies of AB interfer-
ometers that have been made using InSb nanowires [42,43] or
InAs 2DEG [44], a triangular-shaped device can be investi-
gated in which the SC wire is the base of the triangle, while
its sides are straight or smoothly curved normal segments,
respectively.

The rest of article is organized as follows: In Sec. II we
describe the Hamiltonian of the system. In Sec. III we derive a
linear-response conductance formula for the Andreev double
dot taking into account the generally asymmetric couplings
of the MCs with the reservoir caused by the presence of the
smooth inhomogeneities. The obtained expression is a spinful
generalization of the result obtained in [45] for the case of
spin-independent transport in the single arm. In Sec. IV we
analyze the spectral and transport properties which are found
numerically for a device microscopic Hamiltonian and are
in good agreement with the effective model predictions. We
conclude in Sec. V with a summary.

II. MODEL DESCRIPTION

Let us define the device tight-binding Hamiltonian in terms
of the Gorkov-Nambu spinors, ψ̂T

mi = (ami↑ a+
mi↓ ami↓ a+

mi↑),
with the components that are annihilation and creation oper-
ators of the electron on the ith site in the mth section (m =
1, 2, S), i.e.,

ĤD =
∑

n=1,2

[Ĥn + ĤSn] + ĤS, (1)

where

Ĥn = 1

2

Nn∑
i=1

ψ̂+
ni [(Vni − μ)τ̂z − hniσ̂x − �niτ̂x]ψ̂ni

− 1

2

Nn−1∑
i=1

[ψ̂+
ni (t − iαnσ̂x )τ̂zψ̂n,i+1 + H.c.], (2)

ĤS = 1

2

NS∑
i=1

ψ̂+
Si [(VSi − μ)τ̂z − hSiσ̂x − �Siτ̂x]ψ̂Si

− 1

2

NS−1∑
i=1

[ψ̂+
Si (t − iαSσ̂y)τ̂zψ̂S,i+1 + H.c.], (3)
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ĤS1 = −1

2
ψ̂+

1N1
(t − iα1σ̂x )τ̂zψ̂S1 + H.c.,

ĤS2 = −1

2
ψ̂+

SNS
(t − iα2σ̂x )τ̂zψ̂21 + H.c. (4)

The first two terms in (1) are Hamiltonians of the 1st and
2nd predominantly normal wires including N1 and N2 sites,
respectively, and serving as the top and bottom arms of the
interferometer [see Fig. 1(a)]. In turn, the last summand in
(1) is a Hamiltonian of the predominantly SC wire containing
NS sites and being, in fact, one of the contacts. The remaining
terms in (1) describe an interaction between the three sections.

The specification “predominantly” here indicates the spa-
tially inhomogeneous character of the total SC pairing
potential, �( j) = �1i ∪ �Si ∪ �2i ( j = 1, . . . , N , N = N1 +
NS + N2), that changes smoothly at the N1/S and S/N2 in-
terfaces. Such a feature can be attributed, for example, to
imperfect covering of the semiconducting core with the SC
material leading to the appearance of its tails in the normal
wire segments. The corresponding functional dependence is
set by the following standard expression [28,30–32]:

�( j) = �0

2

[
tanh

(
j − N1

σ1

)
− tanh

(
j − N1 − NS

σ2

)]
, (5)

where �0 is a bare SC gap; σ1,2 are parameters defining
a smoothness degree of the profile at the N1/S and S/N2
interfaces, respectively. These parameters are assumed to be
the same for the electrostatic potential profile, V ( j) = V1i ∪
VSi ∪ V2i, i.e.,

V ( j) = ε1 + ε2

2
+ εS − ε1

2
tanh

(
j − N1

σ1

)
(6)

−εS − ε2

2
tanh

(
j − N1 − NS

σ2

)
,

where ε1,2,S are the on-site energies in the three subsystems.
As was already mentioned in Sec. I, the smoothness of the
V ( j) profile can be caused by the presence of the Schottky
barriers and gate electrodes. During the numerical calcula-
tions of spectral and transport properties of the interferometer
we will consider two limiting cases of steep and gentle slopes
(or their combination for the opposite interfaces) for the �( j)
and V ( j) profiles depicted in Fig. 1(b) by the dashed and solid
curves, respectively.

Next, the inhomogeneities at the two boundaries related to
the Zeeman energy and spin-orbit interaction are supposed to
have a steplike character. In particular, an in-plane magnetic
field (real or effective [46]) is assumed to be applied locally
to the S part, i.e., h1,2;i = 0 and hSi = h. The effective Rashba
field BSO

m (m = 1, 2, S) with the amplitude proportional to αm

rotates 90 degrees when moving from the one section to the
other [see Fig. 1(a)]. Finally, in (2)–(4) μ and t are a chemical
potential and hopping parameter. The Pauli matrices σ̂ and τ̂

act in the spin and particle-hole subspaces, respectively.
As displayed in Fig. 1(a) the interference device is

coupled with the normal contact that is modeled by a stan-
dard single-band Hamiltonian, ĤN = 1

2

∑
k ψ̂+

k (εk − eU/2 −
μ)τ̂zψ̂k , where ψ̂T

k = (ck↑ c+
k↓ ck↓ c+

k↑). The interaction be-
tween the normal contact biased with a voltage U/2 and the

directly grounded superconductor is implemented via the two
arms and is described by the following tunnel Hamiltonian:

ĤT = −ψ̂+
k τ̂z

(
t̂1	̂ψ̂11 + t̂2	̂

+ψ̂2N2

) + H.c., (7)

where t̂1,2 are matrices containing the tunneling coefficients
which are, in general, spin-dependent and complex, i.e.,
t̂1(2) = diag(t1(2)↑, t∗

1(2)↓, t1(2)↓, t∗
1(2)↑); 	̂ = diag(ei φ

2 , e−i φ

2 ,

ei φ

2 , e−i φ

2 ) includes the AB phase φ = 2π	/	0 due to a
magnetic flux 	 penetrating the device; 	0 = h/e is the flux
quantum.

III. SPINFUL ZERO-BIAS CONDUCTANCE
OF INHOMOGENEOUS ANDREEV DOUBLE

QUANTUM DOT

Since, in general, there are two interfaces, N1/S and S/N2,
where the electrostatic and SC pairing potentials smoothly
change, one has to expect that the trivial zero-energy ABSs
can emerge in each N section and the adjacent edge of
the S segment [23]. Therefore, aiming at an explanation of
low-energy transport features of such an Andreev-double-dot
structure we derive the corresponding expression for linear-
response conductance. In this regime only local Andreev
reflection contributes to the current between the normal and
SC contacts. Then, the conductance in terms of the scattering
matrix, Ŝ, can be written as

Gω = 2G0Tr[Ŝ+
ehŜeh], Ŝ =

(
Ŝee Ŝeh

Ŝhe Ŝhh

)
. (8)

Using the Mahaux-Weidenmüller formula [47–49] the S ma-
trix is expressed via the operator of single-particle retarded
Green’s function for the open system (i.e., the device interact-
ing with the reservoir), ĝr [50],

Ŝ = 1 − 2π iŴ ĝrŴ +, ĝr = (ω · 1 − Ĥ + iπŴ +Ŵ )−1, (9)

where Ŵ = t̂ ′
1	̂Î1 + t̂ ′

2	̂
+ ÎN is a tunneling matrix; t̂ ′

1(2) =√
ρ · t̂1,2; ρ is a density of states of the normal contact which

is assumed to be constant; 1 is a 4 × 4 unity matrix; Î1(N ) is a
4 × 4N matrix where only the 1st (N th) block is nonzero and
equal to 1.

As noted above we are interested in the transport mediated
by the two eigenstates of ĤD localized in the opposite halves
of the structure. In order to make the underlying physics
related to the spatial inhomogeneity more clear it turns out
to be useful to pass to the basis of Majorana wave functions,

ψM
1,3 = i√

2

(
ψh

n − ψe
n

) = i√
2

∑
j

ŵT
jnτ̂zâ j,

ψM
2,4 = 1√

2

(
ψe

n + ψh
n

) = 1√
2

∑
j

ẑT
jnâ j, n = a, b. (10)

Here ψe,h
a,b are the electron- and hole-like Bogolyubov excita-

tions with energies Ea,b = ±A,±B, respectively. In (10) the
Gorkov-Nambu representation is used, namely,

ŵT
jn = [v∗

jn↑ − u jn↑ v jn↓ − u∗
jn↓ v∗

jn↓ − u jn↓ v jn↑ − u∗
jn↑],

ẑT
jn = [v∗

jn↑ + u jn↑ v jn↓ + u∗
jn↓ v∗

jn↓ + u jn↓ v jn↑ + u∗
jn↑],

âT
j = [a j↑ a+

j↓ a j↓ a+
j↑]. (11)
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The spatial dependence of the probability densities related
to the wave functions (10), i.e., M1(3)( j) = ŵ+

ja(b)ŵ ja(b) and
M2(4)( j) = ẑ+

ja(b)ẑ ja(b), is schematically displayed in Fig. 1(a).
The projection onto the Hilbert subspace spanned by

the four MCs that is executed by the operator P̂M =
[ψM

1 ψM
2 ψM

3 ψM
4 ] gives the following Hamiltonian and tun-

neling matrix:

ĤM =

⎛
⎜⎜⎝

0 iA 0 0
−iA 0 0 0

0 0 0 iB
0 0 −iB 0

⎞
⎟⎟⎠, (12)

ŴM = t̂1	̂√
2

[iτ̂zŵ11 ẑ11 Ô] + t̂2	̂+
√

2
[Ô iτ̂zŵN2 ẑN2]

= [iτ̂z	̂τ̂1 	̂τ̂2 iτ̂z	̂
+τ̂3 	̂+τ̂4]. (13)

In the first line of (13), the zero blocks Ô are the consequence
of the localization of ψM

1,2 and ψM
3,4 in the opposite halves of

the structure [see Fig. 1(a)]. Next, to simplify the subsequent
derivation of the conductance formula it is supposed that the
t1,2σ phase adjustment allows us to consider the intensities of
interaction between σ -spin transport channel of the reservoir
and ith MC, τiσ , as real numbers [45,51].

A. Features of Aharonov-Bohm oscillations

Substitution of ĤM and ŴM into (9) and following calcula-
tion of the linear-response conductance, Gω=0 ≡ G, results in

Gtriv = 4G0
A2��

2
34 + B2��

2
12 + 2AB��12��34 cos 2φ

�triv + (��13��24 − ��12��34 sin2 φ)2
,

(14)

where

�triv = (A�34 + B�12)2 + (A��34 + B��12)2

+ AB(AB − 2��12��34 − 2��13��24

− 2��12��34 sin2 φ),

�i j =
∑

σ

�iσ, jσ , �i j =
∑

σ

�iσ, jσ̄ ,

��i j =
∑

σ

σ�iσ, jσ , ��i j =
∑

σ

σ�iσ, jσ̄ , (15)

and the broadening parameters related to the MCs are defined
as �iσ, jσ ′ = 2πτiσ τ jσ ′ (i, j = 1, . . . , 4). Note that the AB
oscillations are π -periodic and the AB effect is present unless
��12��34 = 0.

If the S segment is in the topologically nontrivial phase
then the 2nd MC moves to the opposite N section of the
device. Taking it into account, we obtain the following ex-
pression for the zero-bias conductance:

Gtopo = 4G0
A2��

2
34 + B2��

2
12 + 2AB��12��34 cos φ

�topo + B2��
2
12 sin2 φ

,

(16)

where

�topo = [A�34 + B�12 cos φ]2 + [A��34 + B��12 cos φ]2

+ [AB − ��13��24 cos φ]2. (17)

Thus, in general, the φ dependence of conductance is 2π -
periodic.

When the hybridization of the first and second MCs is
negligible, i.e., A → 0,

G(0)
triv = 4G0

B2��
2
12

B2
[
��

2
12,+ �2

12

] + [��13��24 −��12��34 sin2 φ]2
, (18)

G(0)
topo = 4G0

B2��
2
12

B2
[
��

2
12 + �2

12 cos2 φ
] + ��

2
13��

2
24 cos2 φ

. (19)

Therefore, the nontrivial conductance becomes π -periodic
under the φ change. In spite of that one can still distinguish
between the different states if φ = π (n + 1/2), n ∈ Z, as the
trivial conductance reaches 4G0-quantized maximum only at
a certain ratio between the tunneling amplitudes τiσ whereas
G(0)

topo equals 4G0 for any B, τiσ [52].
In general, the different periodicities can imply that both

inhomogeneous ABSs are needed to generate the AB oscilla-
tions in the trivial phase while the single nonlocal excitation
(i.e., the MBS) is sufficient in the nontrivial phase. It is
confirmed in the regime B � A, �iσ, jσ ′ where Gtriv �= Gtriv(φ)
and Gtopo = Gtopo(φ). Moreover, to obtain the same result,
one can simply set the interaction parameters related to the
second ABS to zero, τ3,4σ = 0. Since the condition B �
�iσ, jσ ′ can be achieved in practice employing gate electrodes,
the absence/presence of the AB oscillations itself is another
marker allowing us to distinguish between the inhomogeneous
ABSs and MBSs.

Despite this, for a more complete analysis, it is necessary to
additionally consider the interference transport mediated by a
typical low-energy ABS with a spatial distribution throughout
the device (i.e., a bulk ABS). It can emerge, for example,
if the topological gap collapses at the high magnetic fields
[52] or due to the presence of random disorder in the triv-
ial phase [27]. In the framework of the above-formulated
model, both MCs of such an excitation interact with the
normal contact via both arms. Neglecting for simplicity the
contribution from the second Bogolyubov state (that is guar-
anteed if A 
 B) and denoting the coupling constants of the
first (second) MC as τ1,3σ (τ2,4σ ), the conductance can be
expressed as

Gbulk = 4G0
a1 cos2 φ + b1 cos φ + c1

a2 cos2 φ + b2 cos φ + c2
, (20)
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TABLE I. Robust features of low-energy Aharonov-Bohm effect
in the bent inhomogeneous superconducting wire.

Extrema
AB period positions, φ

inhomogeneous Andreev bound states π πn/2
bulk Andreev bound state 2π πn
Majorana bound state 2π πn/2

where a1 = 4��
2
12��

2
34, b1 = 2(��12 + ��34)(��14 −

��23), c1 = (��12 − ��34)2 + (��14 − ��23)2, a2 =
(�14 − �23)2 + 4�13�24, b2 = b1 + 2(�12 + �34)(�14 −
�23), c2 = c1 + (�12 + �34)2 + A2. Note that Gbulk (τ3,4σ =
0) = Gtriv(B → ∞) and Gbulk (τ2,3σ = 0) = Gtopo(B → ∞).

In general, the AB oscillation period in (20) is 2π implying
that this property alone is not sufficient for unambiguous
characterization of the various states utilizing solely the
interference picture. To solve this problem we suggest sup-
plementing the study with the analysis of the conductance

extrema at φ = πn/2, n ∈ Z, which are parameter indepen-
dent. The final results for the most general situation, when
only robust properties are considered, are presented in Table I.

Thus, the AB effect makes it possible to distinguish be-
tween all three types of excitations. Here it is important to
emphasize once again that both characteristics can be the same
for the different states due to fine-tuning of the parameters.
For example, besides the already-noticed halving of the AB
period in the topological phase at A = 0 [see the expression
(19)], the extrema of Gbulk (φ) may accidentally appear at
φ = π (n + 1/2) if c1b2 = c2b1 (in addition to the parameter-
independent extrema at φ = πn) or the AB period for the bulk
ABS becomes equal to π if b1,2 = 0.

B. Effect of inhomogeneity

At the end of this section we consider the special
cases concerning the coupling parameters τiσ . First, in the
case of symmetric couplings, i.e., when τ1(2)σ = τ3(4)σ and
�12 = �34 = �, ��12 = ��34 = ��, ��12 = ��34 = ��,
��13 = ��24 = 0, the expressions (14) and (16) take a sim-
pler form,

Gsym
triv = 4G0

��
2
(A2 + B2 + 2AB cos 2φ)

(AB − ��
2

sin2 φ)2 + (�2 + ��
2
)(A + B)2 − 2AB��2

, (21)

Gsym
topo = 4G0

��
2
(A2 + B2 + 2AB cos φ)

(�2 + ��
2
)(A + B cos φ)2 + B2(A2 + ��

2
sin2 φ)

. (22)

Second, in the situation of the inhomogeneous device [Fig. 1(b)] the MC localization significantly depends on the smoothness
degree of V,� profiles [31,45]. In the setup under consideration as we will show below, the larger σi, the stronger one of the
Majorana wave functions is localized in the inhomogeneous region. If, for example, σ2 � σ1 (a “steep-gentle” case described
in Sec. IV B), then in the trivial phase the probability density of the first MC, M1, becomes small near the bottom edge of the
device and τ1σ 
 τ2−4σ [see Fig. 5(c)]. Therefore, the trivial conductance equals (if A �= 0)

Gs−g
triv1 ≈ 4G0

��34(A��34 + 2B��12 cos 2φ)

A
(
B2 + �2

34 + ��
2
34

) + 2B(�12�34 − ��13��24 − ��12��34 sin2 φ)
. (23)

The other possible situation here is when the MC of the higher-energy ABS is confined in such a wide inhomogeneous area, e.g.,
τ3σ 
 τ1,2,4σ , resulting in

Gs−g
triv2 ≈ 4G0

��12(B��12 + 2A��34 cos 2φ)

B
(
A2 + �2

12 + ��
2
12

) + 2A(�12�34 − ��13��24 − ��12��34 sin2 φ)
. (24)

Finally, when σ1,2 � 1 (a “gentle-gentle” case) one can expect the relation τ1,4σ 
 τ2,3σ to be fulfilled and we find

Gg−g
triv ≈ 4G0

A2��
2
34 + B2��

2
12 + 2AB��12��34 cos 2φ

�triv
. (25)

It follows from (24) and (25) that in the case of zero-energy
ABS (A = 0) the last two expressions become equivalent and
do not depend on the magnetic flux. In opposite, the AB
oscillations persist when τ1σ 
 τ2−4σ if ��12��34 �= 0.

IV. RESULTS AND DISCUSSION

Below we focus on the spectral and transport properties
of the inhomogeneous interference device obtained numeri-
cally. The linear-response conductance is calculated using the

nonequilibrium Green’s function method. The details of this
technique in the tight-binding approximation are presented in
[13]. Unless otherwise specified, the following parameters are
used in the calculations: NS = 60, N1 = N2 = 52, ε1 = −0.1,

εS = 1.4, ε2 = −0.5, t1,2σ = 1, �0 = 0.3, α1 = −α2 =
0.3, αS = 0.2, μ = 0, �1,2 = 0.04. The energy quantities
are measured in units of t = h̄2/ma2 ≈ 2 meV where a = 50
nm and m = 0.015m0 in order to model the experimentally
investigated InAs, InSb wires of micrometer size. Zeeman-
energy dependencies of conductance discussed in Secs. IV A
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FIG. 2. Low-energy part of spectrum (a) and linear-response conductance (b) of the interference device as functions of the Zeeman energy
for smooth steep change of electrostatic and superconducting pairing potentials at both N1/S and S/N2 interfaces. Spatial distributions of
the probability densities of Majorana components for the first (plotted without markers) and second (plotted with markers) lowest-energy
excitations in the trivial (c) and nontrivial (d) phases. Parameters: σ1 = 2, σ2 = 3.

and IV B as well as conductance maps in Sec. IV C are plotted
in the zero-temperature limit, kT ≈ 0.

A. “Steep-steep” case

We start with the situation where the V ( j) and �( j)
functions are smooth at both interfaces and the correspond-
ing changes are steep, σ1 = 2, σ2 = 3 [see dashed curves
in Fig. 1(b)]. A low-energy part of the device spectrum as
a function of the Zeeman energy is depicted in Fig. 2(a).
The local nature of the in-plane magnetic field leads to the
presence of states whose energies weakly depend on h. A
vertical dashed line, h = hc1, indicates a lower border of
the topologically nontrivial phase of the S segment, hc1,2 =√

�2
0 + (εS − μ ∓ t )2 . Note that even if it is in the trivial

phase, the zero-energy inhomogeneous ABSs occur provided
by the two pairs of the Bogolyubov excitations (instead of the
one pair in the case of single smooth inhomogeneity [26,31])
and inhabit only a certain part of the device.

A typical spatial distribution of their MC probability den-
sities, M1−4, is depicted in Fig. 2(c) for the Zeeman energy
marked with point A in Fig. 2(a). The Majorana wave func-
tions of the first trivial ABS are localized inside the N2
section and in the SC part close to the S/N2 interface where,
in particular, both M1 and M2 (displayed by solid and dashed
curves, respectively) have the pronounced maxima.

As was already emphasized in the analysis of the expres-
sion (14), in the trivial phase, for a complete and correct
description of interference effects, it is necessary to take into
account the presence of the second ABS, which can also have
a low energy and is localized in the opposite arm of the device.
The probability densities related to the second trivial ABS, M3

and M4, are drawn in Fig. 2(c) by the curves with markers “x”
and “o,” respectively. The Majorana wave functions dwell in
the N1 section and in the SC part near the N1/S interface.
Thus, the trivial ABSs (with both zero and nonzero energy)
are characterized by a strong overlap of the MCs wave func-
tions. These MCs interact with the contact only through one of
the device arms. Note the observed features of spectrum and
Majorana wave functions resemble those found in the simpler
system with a single quantum dot attached to the SC wire
[31,53]. This is a typical structure studied in modern tunnel
spectroscopy experiments with the hybrid nanowires pursuing
the MBS detection [20].

In Fig. 2(b) the h dependence of conductance is displayed.
The trivial zero-energy ABSs lead to resonant peaks in G(h)
which can be close to the quantized value 4G0. As follows
from the numerator of (14), in the most common situation,
the antiresonances arise as a result of destructive interference
involving the transport channels associated with both ABSs
(although the Fano effect mediated by the two MCs local-
ized in the same arm is also possible). Consequently, such
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antiresonances are φ-dependent. This behavior is shown in
Fig. 2(b) where the Fano antiresonance appears at h = 0.3 if
φ = 0 (dotted curve) and is absent if φ = π/4, π/2 (dashed
and solid curves, respectively). In turn, the AB phase does
not affect the trivial peaks, which agrees with the formula
(18) for B � A, �iσ, jσ ′ (for the chosen parameters B ∼ 10−3,
�iσ, jσ ′ ∼ 10−4).

After the topological phase transition (h > hc1) the pair
of eigenstates converges to zero energy. The corresponding
spatial distributions of M1 and M2 plotted in Fig. 2(d) become
separated and are localized in the opposite parts of the struc-
ture [compare the solid as well as dashed curves in Figs. 2(c)
and 2(d)]. One can see that the MCs leak out from the SC
wire opposite ends into the adjacent normal sections [54,55].
Hence, at h > hc1 the MCs are coupled to the contact through
the different arms which makes it possible to implement the
AB effect even without the additional consideration of tunnel-
ing into the second state. This provides the main difference
between the trivial ABS and topological MBS. Note that
since the SC-wire Hamiltonian belongs to symmetry class
D [56,57] with the only possible MBS, the M3 and M4 are
still present in the same part of the device as seen from
Fig. 2(d).

According to (19), immediately after the topological phase
transition, the conductance can be amplified by the mag-
netic flux and reaches a 4G0-height plateau at φ = π/2 [see
Fig. 2(b)] [52,58]. Then, as the Zeeman energy grows the con-
ductance starts to oscillate with the increasing amplitude due
to the overlap of MC wave functions. Thus, the zero-energy
trivial ABSs and nontrivial MBSs can be distinguished by the
different behavior of the function G(φ). Interestingly, since
the MC leakage into the arms is sustainable to the change of
the model parameters, one can efficiently control the interfer-
ence transport, e.g., varying the on-site energy of the normal
section [see Figs. 6(a) and 6(b) and Sec. IV C].

The AB oscillation period provides another distinction be-
tween the ABS and MBS. As was noticed in Sec. III the G(φ)
is always π -periodic in the trivial phase [see dotted curve in
Fig. 3(a)] whereas the periodicity after the topological phase
transition essentially depends on the A value. In other words, it
correlates with the A oscillations as one can see comparing the
solid (A ≈ 0) and dashed (A �= 0) curves in Fig. 3(a). Since in
practice the situation of the MBS with nonzero energy is more
likely to arise, the different periodicity of the AB oscillations
is a suitable feature for distinguishing between the trivial and
nontrivial subgap states.

However, as we also mentioned above, at the high mag-
netic, when M1 (M2) penetrates sufficiently into the bottom
(top), the bulk ABS emerges (formally in the nontrivial phase)
and the AB period, in general, is 2π even though A ≈ 0. The
latter takes place since each Majorana mode couples with
the normal contact via both arms [52]. Such a situation at
h = 2, near the upper border (h = hc2) of the S-segment topo-
logical phase, is depicted by dash-dotted curve in Fig. 3(a).
According to the results of Table I, in order to successfully
separate these three situations, it is also necessary to pay at-
tention to the extrema positions in G(φ). In particular, the AB
interference based on the MBS causes the parameter-
independent maxima and minima at φ = πn/2 as displayed
by solid and dashed curves. The trivial inhomogeneous ABSs
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FIG. 3. The Aharonov-Bohm oscillations of conductance if the
smooth inhomogeneity has the steep spatial dependence at both
normal metal/superconductor interfaces. The Zeeman energy of the
point A (B and C), indicated in Fig. 2(a), corresponds to the trivial
(nontrivial) phase of the S section. (a) NS = 60, (b) NS = 120. Pa-
rameters: σ1 = 2, σ2 = 3.

possess the same feature shown by the dotted curve. In op-
posite, such robust extrema for the bulk ABS appear only if
φ = πn, while the positions of the extrema between them can
be changed by varying the system parameters.

In Fig. 3(b) the AB oscillations are plotted when the SC-
wire length is doubled (NS = 120). It can be seen that the AB
effect induced by the inhomogeneous ABSs is not modified in
this situation since these excitations are caused by the features
of the N/S interfaces and are predominantly localized in the
N sections. In turn, since the bulk ABS turns into the MBS
the robust extrema appear at φ = π (n + 1/2) in addition to
the extrema at φ = πn, while the 2π period does not change.
Interestingly, the oscillations due to the MBS with initially
nonzero energy are transformed from 2π - to π -periodic and
the conductance maxima acquire quantized values [compare
dashed curves in Figs. 3(a) and 3(b)]. The effect is explained
by the decrease in the MBS energy by two orders of magni-
tude, which actually leads to the zero-energy MBS [this case
is also shown by solid curve in Fig. 3(a)].

The gradual evolution of the AB effect properties as the
Zeeman energy is swept is presented in Fig. 4. The top
(bottom) row corresponds to the SC wire length NS = 60
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FIG. 4. Properties of the low-energy Aharonov-Bohm effect in the bent inhomogeneous superconducting wire as function of the Zeeman
energy for NS = 60 [(a)–(d)] and NS = 120 [(e)–(h)]. (a), (e) Excitation spectrum; (b), (f) Aharonov-Bohm period; (c), (g) Aharonov-Bohm
phase of the conductance maxima (red stars) and minima (blue stars); (d), (h) values of conductance maxima (red) and minima (blue).
Parameters: σ1 = 2, σ2 = 3.

(NS = 120). The data are in full agreement with the analytical
results collected in Table I. At the low magnetic fields h < 0.5,
when the SC wire is in trivial phase, the AB period is π

[Fig. 4(b)] and the robust conductance minima and maxima
appear at φ = πn/2 [see blue and red stars in Fig. 4(c),
respectively]. Immediately after the topological phase transi-
tion, in a small range of h the period does not change since
A ≈ 0. Here, the maximum conductance in the AB effect is
quantized on the 4G0 plateau, while the minimum one mono-
tonically decreases [see red and blue solid curves in Fig. 4(d)].
Then, oscillations of the AB period are observed, which are
unique for the MBS case, as predicted by the formulas 16
and 19. Simultaneously, Gmax(h) and Gmin(h) also start to
oscillate. It can be stated with good accuracy that in both
these Zeeman-energy regions (0.5 < h < 1) the conductance
extrema arise at φ = πn/2. As h increases further, the period
stabilizes at 2π . However, at h > 1 the oscillations of φmax

around π/2 and 3π/2 grow indicating the realization of the
bulk ABS whose conductance extrema at φ = π (n + 1/2)
are parameter-dependent. The described behavior does not
fundamentally change for the longer S section. The AB-period
oscillations in the nontrivial phase shift to the higher val-
ues of h [Fig. 4(f)]. Hence, the bulk ABS occurs now at
1.5 < h < 2.4 where the AB phases of the robust conductance
extrema are only φ = πn. To conclude this section, it is worth
noting that near the critical energies hc1 ≈ 0.5, hc2 ≈ 2.4 the
pronounced changes in the AB period are observed. Here the
linear-response transport is determined by at least two bulk
ABSs. The analysis of the AB effect in the immediate vicinity
of the topological phase transitions is beyond the scope of this
study.

B. Effect of profile smoothness

Next, let us consider the “steep-gentle” case when the
change of V ( j) and �( j) at the S/N2 interface is gentle (σ2 =
12) while the smooth inhomogeneity at the N1/S boundary
remains steep (σ1 = 2). One can see from Fig. 5(a) that the
energy of the ABS localized in the bottom part at h < hc1

demonstrates decreasing oscillations near zero as the Zeeman
energy increases. Meanwhile, the dependence on h of the
energy of the upper-arm ABS remains practically the same
as in Fig. 2(a).

The spatial distribution of the MC probability densities for
this state is also similar to the “steep-steep” case. In partic-
ular, the M3 and M4 strongly overlap, have the maxima at
the N1/S boundary, and are suppressed in the bulk of the S
segment and the N2 region [see marked curves in Fig. 5(c)].
The ABS with the stabilized-near-zero energy includes the
Majorana components which are significantly separated. The
M2 exhibits a peak in the normal part of the inhomogeneous
area and oscillating behavior throughout the whole N2 region.
On the contrary, the M1 does not oscillate. It is localized
in the SC part of the gentle inhomogeneity and overlaps
with the second MC only slightly giving rise to the quasi-
MBS. The separation of M1 and M2 is enhanced with the
increase of h that can be treated as a precursor of the topo-
logical phase transition since the first MC moves to the top
arm.

In Fig. 5(b) the conductance for the “steep-gentle” case
(dashed and solid curves) is compared with the one for the
“steep-steep” case (dotted curve). In the trivial phase the peak
at h ≈ 0.4 related to the zero-energy ABS which is induced by
the steep inhomogeneity remains unchanged. Indeed, accord-
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FIG. 5. Low-energy part of spectrum (a) and conductance (b) of the interference device as functions of the Zeeman energy for the steep
and gentle change of electrostatic and superconducting pairing potentials at the N1/S (σ1 = 2) and S/N2 (σ2 = 12) interfaces, respectively.
(c) Spatial distributions of the probability densities of Majorana components for the first (plotted without markers) and second (plotted with
markers) lowest-energy excitations in the trivial phase (h = 0.45). (d) Zeeman-energy dependence of conductance in the “gentle-gentle” case
(σ1 = 8, σ2 = 12). Inset: The conductance peaks induced by quasi-MBSs in the higher h resolution.

ing to the formula (24), the resonance width is determined
by the coupling parameters τ1,2σ corresponding to the MCs of
the upper arm. Additionally, this conductance maximum is not
affected by the AB phase (compare dashed and solid curves).

The resonances and antiresonances corresponding to the
zero-energy quasi-MBSs are much narrower. It is in agree-
ment with the expressions (18) and (23) which dictate that the
width of conductance features is proportional to the product
of all four coupling coefficients τiσ . Note that the magnetic-
flux influence on these peculiarities is ambiguous since B ∼
�iσ, jσ ′ at h ≈ 0.4 and the product ��12��34 is h-dependent
[see formula (18)]. After the topological phase transition the
above-mentioned enhancement of conductance by the mag-
netic flux persists.

In the “gentle-gentle” case (σ1,2 � 1), we obtain two Ma-
jorana components, predominantly localized in the different
inhomogeneous regions at the N1/S and S/N2 interfaces,
respectively, leading to τ1,4σ 
 τ2,3σ . As a result, all the
resonant features in G(h < hc) displayed in Fig. 5(d) be-
come narrow. Moreover, according to the expression (25) the
influence of the AB phase on the peaks is negligible [see inset
of Fig. 5(d)]. In contrast, if the S section is in the nontrivial

phase the conductance maximum can still be controlled by
the magnetic flux.

It is worth emphasizing that in all three cases of the
different profiles (“steep-steep,” “steep-gentle,” and “gentle-
gentle”) the numerically obtained period of the AB oscilla-
tions in the trivial phase is equal to π , while at h > hc1 it is
2π (if the MBS energy is not exactly zero), which confirms the
analytical results (14) and (16). Such stability of the results
allows us to consider the change in the periodicity of the
AB oscillations as a sign indicating the topological phase
transition in the inhomogeneous Majorana wires.

C. Conductance maps

In Fig. 6(a) the conductance is plotted as a function of h
and μ at φ = 0 for the “steep-steep” profiles of V ( j), �( j).
There are two areas separated by red solid curves,

μ = ±
√

h2 − �2
0 + εS − t,

where the G(h, μ) behavior significantly differs. The para-
metric region to the left of the boundary corresponds to the
trivial phase of the SC wire. Here the conductance exhibits
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FIG. 6. Conductance maps G(h, μ) at (a) φ = 0 and (b) φ = π/2 for the “steep-steep” type of the V ( j), �( j) profiles. The red solid
curves indicate the boundary between the trivial (left) and nontrivial (right) phases of the S segment in the (h, μ) parametric space. (c) Spatial
distributions of the probability densities of Majorana components for the first (plotted without markers) and second (plotted with markers)
lowest-energy excitations at h = 0.5, μ = 0.58. (d) Zeeman-energy dependence of conductance at μ = 0.58.

a set of individual resonances induced by the zero-energy
ABSs which are localized in one of the arms. In general,
the map has the layered texture due to the two-channel inter-
ference and the dependence of coupling parameters τiσ on h
and μ.

To the right of the boundary (or inside the parabola), the
S segment is in the nontrivial phase. As was discussed be-
fore, here the h dependence of conductance demonstrates the
plateau and increasing oscillations as the Zeeman energy rises.
Consequently, it results in the appearance of solid lines (in
contrast to the trivial area outside the parabola) at μ < 0.5
where G is close to 4G0. These lines of maxima are separated
by intervals of minimum conductance. The latter arise since,
according to the approximate solution (19), the Bogolyubov
coefficients are again the functions of h and μ leading to
the possibility of transmission antiresonances. In turn, such
minima have to disappear if φ = π/2 which is confirmed in
Fig. 6(b), where G = 4G0 while A ≈ 0. The trivial conduc-
tance in this situation is only slightly modified. As the Zeeman
energy grows, the layered pattern on the map is restored.
Comparing Figs. 6(a) and 6(b) at the high h, it can be seen
that the conductance enhancement at φ = π/2 occasionally
occurs both in the case of the bulk ABS with zero energy and
in the case when the first two excitations have energies of the
same order.

When the S section is in the nontrivial phase and μ > 0.5
the resonant lines in Fig. 6(a) and the resonant region in
Fig. 6(b) are suppressed. A formal reason is shown in Fig. 6(c)
where the MCs probability densities are represented. One can
see that the second MC of the lowest-energy excitation is
localized at the S/N2 interface and exponentially decays into
the bulk of the bottom arm becoming disconnected from the
normal contact via this path (the effect of its weak connection
via the top arm on the conductance will be discussed below).
In fact, we have transport in the single Andreev dot [45] and
the absence of the AB effect. Indeed, the area at μ > 0.5
acquires no changes for different φ.

To reveal the physics of the feature shown in Fig. 6(c) it
must be taken into account that the spectrum of the isolated
homogeneous N2 subsystem defined by the Hamiltonian Ĥn=2

with V2i = ε2, h2i = 0, �2i = 0 [see expression (2)] is given
by

El = ε2 − μ − t cos
π l

N2 + 1
± α2 sin

π l

N2 + 1
, (26)

where l = 1, . . . , N2. Therefore, for the chosen parameters the
largest positive value of the chemical potential correspond-
ing to the zero-energy eigenstate is μ ≈ 0.5. Next, let us
consider the situation when the lowest-energy excitation of the
N1+S-subsystem interacts with the one of the N2 subsystem
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FIG. 7. Influence of nonzero temperature on the conductance for
the “steep-steep” type of the V ( j), �( j) profiles.

(the hybridization is described by a parameter T ). If the SC
wire is in the topologically nontrivial phase and μ > 0.5, then
EN2 � EN1+S . Additionally assuming for simplicity that the
coupling between the subsystems is weak, i.e., EN2 � T , the
eigenvalues and eigenstates in such a model are E1 ≈ EN1+S ,
E2 ≈ EN2 and ψ1 ≈ [1, 0]T , ψ2 ≈ [0, 1]T , respectively. Thus,
if μ > 0.5 the device lowest-energy state tends to settle in the
N1+S section. In other words, a local modification of the elec-
trostatic potential in one of the normal regions (in practice by
means of gate electrodes) can control the AB effect, allowing
or preventing the MC leakage from the superconducting wire.

Interestingly, the G(h > hc1) behavior at μ > 0.5 shown
in Fig. 6(d) means that the second MC may not be com-
pletely isolated from the normal contact affecting the transport
through the upper arm. Its influence is negligible immediately
after the topological phase transition in the SC wire leading
to the 2G0-quantized peaks due to the resonant Andreev re-
flection mediated by the first Majorana mode (see solid curve
at h ≈ 0.4). The wave function ψM

2 penetrates more into the
N1+S part of the device as the Zeeman energy increases
resulting in the direct coupling of the second MC with the
reservoir. According to Vuik et al. (see the expression (16)
and its discussion in [45]), the two-channel interference is able
to induce resonances with the amplitude 2G0 < G � 4G0 and
antiresonances G = 0. Both are clearly seen in Fig. 6(d). If
the S section is elongated, then the effect of the second MC
is reduced (see dashed curve). In particular, the 2G0 maxima
transform to the plateau and the subsequent resonances have
a smaller amplitude than that of the shorter SC wire.

D. Disorder and temperature factors

At the end of the original part, let us discuss the in-
fluence of the factors which are obviously encountered in
practice, disorder and finite temperature, on the established
transport features. In Fig. 7 the effect of nonzero temper-
ature on the conductance of the clean device is displayed
for the “steep-steep” configuration of the V, � profiles. The
resonances induced by the trivial zero-energy ABSs begin
to broaden at kT ∼ 10−4 which is of the same order of
magnitude as the broadening parameters of the effective
model, �i j, ��i j, ��i j . In turn, at h > hc1 the plateau height

decreases and the conductance oscillations are smoothed out.
Indeed, such a modification is predictable since at low bias
voltages the conductance is a convolution of transmission
coefficient with the Fermi function derivative [59]. As shown
by the dot-dashed curve the separation between the two trivial
maxima and the plateau related to the nontrivial phase persists
at the experimentally available temperatures, T ∼ 10 mK.
Moreover, the flux amplification effect discussed above is still
present. Actually, the maximal conductance value increases
by more than two times when the AB phase changes from
φ = 0 to φ = π/2 (compare dotted and dot-dashed curves).
In this case, the height of the peaks in the trivial phase does
not change.

In Fig. 8 the influence of both random disorder and
nonzero temperature on the properties of the AB effect is
displayed. To investigate the former factor we have inserted
fluctuations of the electrostatic and SC pairing potential in
the device Hamiltonian (1). These terms are modeled by
uncorrelated Gaussian distributions with zero means and stan-
dard deviations σε,�, i.e., Vdis ∼ N (0, σε ), �dis ∼ N (0, σ�).
The V ( j) and �( j) profiles with the incorporated single
disorder realization are plotted in Fig. 8(a) for σ� = 0.1�,
σ m

ε = 0.1εm (where m = 1, 2, S). In general, the spectrum
calculations for the different disorder strengths and realiza-
tions repeat the conclusions obtained in earlier studies of
the individual SC wire (see, e.g., [60]). In particular, as
long as the deviation in the S section σ S

ε is less than the
topological gap, the nontrivial phase in our inhomogeneous
device survives; i.e., the separated MCs of the lowest-
energy excitation, which exponentially decay into the SC
bulk, can be observed. Since the increase of h leads to the
topological gap suppression (at the high magnetic fields the
p-wave pairing amplitude ∼αS�/h), the gap in the excitation
spectrum shown in Fig. 8(e) actually collapses at h > 2. How-
ever, at the weak and moderate fields (0.6 < h < 1) the large
enough gap still persists. The analysis of the MCs’ spatial
distributions in the disordered structure reveals the existence
of all three types of the states with energies close to zero
(inhomogeneous ABSs, MBSs, and bulk ABSs).

This is also backed by the AB effect features which are
consistent with the results of Table I at both zero and nonzero
temperatures. The inhomogeneous ABSs and MBSs can be
distinguished by the AB period. In the latter situation, it oscil-
lates and then stabilizes at 2π as the Zeeman energy increases,
while in the former, the AB period is always equal to π

[Fig. 8(b)]. Interestingly, an additional proof of the disorder-
induced decrease of the topological gap is that the region of h
where the AB period oscillates, indicating the MBS-mediated
transport, now appears at the lower fields h ≈ 0.6 leaving
no room for the region where the AB effect is constantly
π -periodic due to A ≈ 0 [compare Figs. 8(b) and 4(b)]. In
turn, the MBS and bulk ABS cases can be separated taking
into account both the AB period and robust positions of the
conductance extrema G(φ). For the bulk-type excitations, the
period does not change and the sustained AB phases are πn.
It is clearly seen in Fig. 8(c) that the other extrema phases
are randomly distributed at 1 < h < 2. The observed sus-
tainability of the results is explained by the fact that weak
disorder does not change the spatial behavior of the states
providing the low-energy interference transport. Comparison
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FIG. 8. Influence of random disorder and temperature factor on the properties of the low-energy Aharonov-Bohm effect. (a) Profiles
of electrostatic and superconducting pairing potentials with incorporated single disorder realization for the “steep-steep” case; (e), (i) h
dependencies of excitation spectrum; (b), (f), (j) h dependencies of Aharonov-Bohm period; (c), (g), (k) h dependencies of Aharonov-Bohm
phase corresponding to the conductance maxima (red stars) and minima (blue stars); (d), (h), (l) maximum (red) and minimum (blue)
conductances as functions of Zeeman energy. kT ≈ 0 in (b)–(d); kT = 10−3 in (f)–(h) and (j)–(l). The top and middle rows of the plots
correspond to the same disorder realization displayed in (a). Parameters: σ1 = 2, σ2 = 3, σε = 0.1ε, σ� = 0.1�.

of Figs. 8(b) and 8(c) with Figs. 8(f) and 8(g) shows that finite
temperature has no detrimental effect on the properties of the
AB oscillations.

In the bottom row of Fig. 8 the same dependencies as in
the middle row are displayed but for the different disorder
realization. It can be seen that the modification of the AB
effect characteristics in Figs. 8(j) and 8(k) is only quanti-
tative. Importantly, before the topological phase transition
(h < hc1) the possibility of conductance amplification by the
magnetic flux depends on the specific view of the potentials
profiles. In Fig. 8(e) there are two almost degenerate ABSs
with close-to-zero energy. Returning to the effective model,
it means A, B 
 �iσ, jσ ′ leading to the stronger AB-phase de-
pendence of the conductance according to (18). In Fig. 8(l),
B � A, �iσ, jσ ′ around the conductance resonances and the
AB oscillations amplitude is much smaller. At h > hc1 the
magnetic-flux enhancement persists over a wide range of
the Zeeman energies as long as the gap in the excitation
spectrum is significant.

V. SUMMARY

In the reported study we have analyzed the features of
coherent local transport associated with the presence of An-
dreev and Majorana states in a nonuniform one-dimensional
N/S/N structure. Unlike traditional measurements used to
probe MBSs, when the contact interacts with one end (or two

contacts are connected to the opposite ends), the proposed
curved geometry additionally allows us to study interference
transport. The inhomogeneity in the device has been mod-
eled by the profiles of electrostatic and SC pairing potentials
smoothly changing in the vicinity of the two N/S boundaries.

It has been demonstrated that even if the SC wire is in the
trivial phase, Andreev reflection in such a structure leads to
the appearance of inhomogeneous ABSs which are localized
in the different normal arms and adjacent edges of the S
segment and can have zero energy. Taking it into account we
have formulated the effective model that describes low-energy
interference transport in the two noninteracting Andreev lev-
els coupled in parallel with electron and hole reservoirs.
Based on the scattering matrix formalism, the linear-response
conductance in the low-temperature limit has been analyzed
analytically including various limiting cases of inhomoge-
neous ABSs, bulk ABS and MBS.

In particular, we have focused on the consequences of
the existing spatial nonuniformity. Depending on the in-
homogeneity strength, the wave functions of the Majorana
components, which constitute the trivial ABSs, behave dif-
ferently. If the profiles change steeply at the given interface
then the spatial distributions of both MCs are delocalized
throughout the nearest N section and overlap sizably resulting
in the inhomogeneous zero-energy ABS. In turn, if the pro-
file change is gentle the MCs’ overlap becomes comparable
with the one exhibited by the topological MBS. As a result,
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the trivial quasi-MBS emerges. It has been shown that the
width of conductance resonances associated with the different
trivial excitations differs significantly. On the contrary, the
resonances induced by the topological MBS are immune to
changes in the smoothness degree.

We have demonstrated that if the SC wire is in the trivial
case, then the AB effect is based on the interference processes
involving two inhomogeneous ABSs localized in the opposite
arms. In the nontrivial phase, the conductance oscillations can
be determined by Andreev reflection on the Majorana modes
composing the single lowest-energy excitation, either MBS
(at the low magnetic fields) or bulk ABS (at the high mag-
netic fields). Then, in order to effectively distinguish between
these three types of low-energy excitations, it is necessary to
analyze the features of both AB period and extrema of the
conductance oscillations which do not require fine-tuning of
the parameters.

Essentially, if the conductance peak is induced by the
topological MBS with exponentially small energy, its height
can be always increased to the quantized value by the

magnetic flux. The maximum is equal to 4G0 at φ = π (n +
1/2) since the AB effect is determined by the transport only
into the Majorana modes of the first excitation which are
localized in the opposite arms of the device. In the case of
the inhomogeneous and bulk ABSs, the interaction between
the contact and separate arm is implemented via the MCs of
both types leading to the different possible scenarios when
the AB phase varies. Here the quantized conductance at φ =
π (n + 1/2) is achieved only accidentally with a proper choice
of the tunneling coefficients. It has been demonstrated that the
dependence of the AB effect properties on the ABS type is
retained in the presence of weak disorder and at temperatures
available in modern experiments.
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