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Effect of local Coulomb interaction on Majorana corner modes:
Weak and strong correlation limits
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Here we present an analysis of the evolution of Majorana corner modes realizing in a two-dimensional
higher-order topological superconductor (HOTSC) on a square lattice under the influence of local Coulomb
repulsion. Both weak- and strong-interaction regimes are studied. It is shown that in the homogeneous system, the
weak repulsion widens the region of the topologically nontrivial phase on the phase diagram. The open-boundary
effect, resulting in spatial inhomogeneity of the system, leads to the appearance of the ground-state crossover as
the repulsion intensity increases. Before the crossover, concentration correlators are C4 symmetric and spin
independent, and the corner states have energies that are determined by the overlap of the excitation wave
functions localized at the different corners. After the crossover, the concentration correlators are spin dependent
and possess the spontaneously broken symmetry. In turn, the corner excitation energy is size independent and
defined by the Coulomb repulsion intensity with a quadratic law. In the strong-repulsion regime we derive the
effective HOTSC Hamiltonian in the atomic representation and found a rich variety of interactions induced by
virtual processes between the lower and upper Hubbard subbands. It is shown that Majorana corner modes still
can be realized in the limit of the infinite repulsion, although the boundaries of the topologically nontrivial phase

are strongly renormalized by Hubbard corrections.
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I. INTRODUCTION

The development of the concept of topologically nontrivial
systems has led in recent years to an active study of high-order
topological insulators and superconductors (HOTSCs) [1-3].
The spectrum of their both bulk and edge states has a gap. In
turn, topologically protected gapless excitations arise, being
localized at the boundaries of higher orders, i.e., at corners
(corners and hinges) in 2D (3D) systems [4]. It is important
to note that in case of 2D HOTSCs such states are Majorana
corner modes (MCMs), which possess zero energy and obey
non-Abelian exchange statistics [5,6].

Taking into account ongoing attempts to utilize Majorana
modes for the realization of quantum computations, their “cor-
ner species” have a natural advantage over the Majoranas
emerging in 1D systems [7-9]. The latter require a purely
1D system, while the finite width of the wire leads to the
appearance of a gapless band of edge excitations. In this case,
the zero-energy Majoranas, still detached from bulk states by
a gap, are no longer separated from other edge excitations. In
addition, as the 1D system is widened, the character of the
excitations changes from purely Majorana to chiral [10,11]
with a change in the ratio between the length and width
of the system. Moreover, the braiding procedure (the spatial
exchange of the Majorana modes resulting in the phase shift
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of the ground-state wave function) can only be carried out in
2D system [12], so one need to construct 2D devices from 1D
topological superconductors [13—15] to achieve this goal.

The predicted MCMs solve these problems. First, their
energy lies in the gap of the spectrum of both bulk and
edge excitations. Secondly, their localization strictly in the
corners of the system prevents their Majorana character from
changing regardless of the size ratio of the system. Addi-
tional interest in HOTSCs is caused by the possibility to
move the corner excitations by varying the parameters of
the system. In particular, in a number of papers a magnetic
field is used to create HOTSC [16-19]. It plays the role of a
perturbation destroying the symmetry that underlies the first-
order topological system. In some cases, the MCM position
can be controlled using the direction of this magnetic field
[20,21]. A model including triangular HOTSC segments has
also recently been proposed demonstrating the possibility of
braiding using only electric fields [22]. Thus, the MCMs in
2D systems seem to be good candidates for braiding, which
is one of the key requirements for creating a topological
qubit. Another possible practical application of such systems
that deserves attention is conventional nanoscale devices with
controlled transport characteristics.

Despite the active study of HOTSCs, there are still many
unresolved issues. First, the influence of Coulomb correla-
tions on the conditions of the topological phase transition
and MCMs properties remains poorly understood. There are
studies in which superconducting pairing, which generates
the corner states, is calculated self-consistently, taking into
account the Coulomb interaction in the system [23-25]. How-
ever, many of the previously proposed models imply the
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introduction of superconducting pairing due to the proximity
effect. The question of how the obtained results would change
if there are Coulomb correlations in the system itself is not
fully resolved yet. At the same time, it is known that taking the
local repulsion into account can significantly affect the prop-
erties of conventional topological superconductors [26-29].
In the case of higher-order topological insulators, the many-
body interactions can lead both to the appearance of new
topological classes [30-32] and, conversely, to the destruc-
tion of topological states in 3D systems [33]. The discussion
about topological invariants in the interacting systems, both
fermionic and bosonic, is also being actively pursued at the
moment [34-36].

Secondly, while higher-order 2D topological phases have
already been experimentally demonstrated in photonic, acous-
tic, and topoelectric systems [37-40], their solid-state coun-
terparts have not been realized yet. Moreover, bismuth is the
only material confirmed to provide the higher-order topology
[41,42], although some uncertainty still remains [43]. Other
HOTI and HOTSC candidates are transition-metal dichalco-
genides [44-46] and rocksalt IV-VI semiconductors XY
(X =Ge, Sn, Pb and Y =S, Se, Te) [47,48], but their higher-
order topology has not been confirmed experimentally yet.
Remarkably, it has been already found out that spectral and
transport properties of some of these 2D topological insula-
tors can significantly depend on electron-electron interactions
[49-51]. Thus, the problem of the local Coulomb (Hubbard-
type) repulsion in 2D solid-state HOTSC is of fundamental
nature and its solution will make it possible to better estimate
the prospects for the experimental detection of the MCMs.

The present article is devoted to the study of the Hubbard
interaction problem in a typical two-dimensional HOTSC
model. We analyze both limits of weak and strong repulsion.
Based on this, the rest of article is organized as follows. In
Sec. IT we describe a HOTSC Hamiltonian. The effect of weak
intraorbital Coulomb repulsion on the MCMs is discussed
in Sec. III. In Sec. IV we analyze an effective Hamiltonian
of strongly-correlated HOTSC and its topological features.
We conclude in Sec. V with a summary. In Appendix A
the conditions of the HOTSC phase realization are obtained
employing a Dirac mass criterion. We discuss the derivation
of an effective Hamiltonian in the regime of the strong finite
Hubbard interaction in Appendix C. Appendix D deals with a
Green functions approach in the U — oo limit.

II. MODEL HAMILTONIAN

One of the criteria used to describe the higher-order topo-
logical phase transition is a so-called change of Dirac mass
sign. It is known that the MCMs arise if two initially gapless
topological states propagating along the adjacent edges ac-
quire the Dirac mass of the opposite sign due to an interaction
that breaks one of the symmetries responsible for the first-
order nontrivial topology. In this situation the corner can be
treated as a domain wall or, in other words, as a topological
defect. Below we describe one of the popular two-dimensional
models possessing this feature and used to study physics of
the MCMs on a square lattice. In order to obtain the gap in
the edge spectrum induced by some interaction it is necessary
to initially prepare two subsystems with inverted bands. One

of the proper candidates is a bipartite square lattice with an
interorbital Rashba spin-orbit coupling where an extended
s(d)-wave intraorbital pairing plays a role of the interaction
[52]. The corresponding tight-binding Hamiltonian is
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where ¢y, annihilates an electron with a spin o on an nth
orbital (n = A, B) at a square lattice site f = (i, j), i, j =
1,...,N; Ae¢ is an on-site energy shift opposite for differ-
ent orbitals, and w is a chemical potential. The intraorbital
nearest-neighbor 7, , as well as next-nearest-neighbor #; hop-
ping parameters are of opposite signs for different orbitals
leading to the inverted bands. The parameter o defines an
intensity of the interorbital Rashba spin-orbit coupling; ey,
is a unit vector pointing along the direction of electron motion
from the mth to fth site. The parameter Ag (A, ) is intensity
of the intraorbital on-site (intersite) singlet pairing. Unless
otherwise specified, it will be assumed that A, = A, = A;.
The Pauli matrices 6, and %, (n = x,y, z) act in orbital and
spin subspaces, respectively. The model (1) is known to pro-
vide second-order topological superconducting phase in the
case of si- (Ay = Ay) or dpa_p-wave (A, = —A,) pair-
ing depending on the high symmetry points, at which the
band inversion of the underlying topological insulator occurs
[0, ), (w,0) or (0,0), (r, w) correspondingly]. Here the
former situation is considered.

The goal of this study is to analyze the effects of local
intraorbital Coulomb repulsion on the topological properties
and corner excitations of the model (1). Then, the total Hamil-
tonian is

H =H,+ Hy. @

The last term in (2) is responsible for the many-body interac-
tions read

Hy = Z Upnppriigyys 3
fn

where U,—_4 p is a strength of the intraorbital Coulomb in-
teraction and ns,, is an orbital-dependent electron number
operator at the site f. In the subsequent sections our attention
will be drawn to the two limits of weak and strong charge
correlations. For the sake of simplicity, it will be assumed
there that Uy = Uz = U.
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III. WEAK COULOMB INTERACTION

A. Mean-field approximation for the two-orbital HOTSC
Hamiltonian

We start the analysis of the problem with the regime of
the weak Coulomb repulsion. Here one can employ the usual
mean-field approximation to reduce the Hamiltonian (3) to a
quadratic form, the spectral properties of which, in turn, can
be found using the Bogoliubov transformation. Technically, in
this case the summand (3) is reduced to
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Thus, intraorbital Hubbard interaction results in corrections of
the on-site particle energies, which are proportional to the av-
erage occupations. Next, the on-site spin-flip terms arise that,
in general, can be interpreted as an influence of longitudinal
magnetic field. The last two terms in (4) give the corrections
to the on-site singlet pairing amplitude Ay.

The averages in (4) can be found in a standard manner
using the Bogoliubov u, v coefficients,
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where f(e,/T) is the Fermi-Dirac distribution function of the
nth Bogoliubov excitation with an energy ¢, and (u, v) fyno
are corresponding coefficients. Then, the self-consistent cal-
culation of the spectrum of HY = Hy + Hjj and correlators
(5) and (6) allows to analyze the influence of the weak local
Coulomb repulsion on the MCMs.

B. Coulomb interaction effect on the HOTSC
in the uniform case

We start our analysis of Coulomb interaction effect on the
topological properties of HOTSC with uniform case in the
T = 0 limit. In this situation the correlators included in (4)
supposed to be independent of the site number and the im-
pact of the boundary on them is neglected. The correlators
are calculated self-consistently under the periodic boundary
conditions.

The numerical study shows that the influence of the in-
traorbital Coulomb interaction in such a case reduces to
corrections of the on-site energies and corresponding singlet
superconducting coupling. The former can be interpreted as
the simultaneous shift of both bands €4 3 — €4 p (resulting
in the shift of chemical potential ps corresponding to the
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FIG. 1. Topological phase diagram of the 2D square-shaped
topological insulator with extended s-wave superconducting cou-
pling without Coulomb interaction U = O [blue region with blue
dashed-line border, according to (A8)] and with on-site Coulomb
interaction U = 1 (blue and red region with black solid-line border).
Ap = {4 — uyy is chemical potential measured from the half-filling
level. The other parameters are Ae =0, t, = —1, =2, t) =1,/2,
A =05a=15.

half-filling) and the modification of Ae — &:‘), ie.,

EA,BziAaJFU"AT’B, &=A8+U¥,
~ EA+7E na +n
F= S =U— . g =U/2 (7)

The second correction is a well-known suppression of the on-
site superconducting pairing amplitude Ay — Ag. Thus the
topological properties of the system remain qualitatively the
same up to the modification of Ae and A, parameters.

To obtain the topological phase diagram we use the self-
consistently calculated corrections along with an analytic
condition for establishing the HOTSC phase (A8). The last
is derived employing a well-known Dirac mass criterion (see
Appendix A for the details) [2,16,18,21,22,52-56]. The sign
of Dirac mass can be treated as an edge topological invariant.
Indeed, it has two discrete values (up to simultaneous change
of signs at all edges). It is well defined if the edge spectrum
is gapped. And finally, it cannot be changed without the gap
closing. The system is trivial if the Dirac masses at all edges
have the same sign. Topological corner excitations emerge if
the Dirac mass signs are different at adjacent edges.

Quantitatively, the change of A¢ appears to be small and
its effect on the topological phase diagram is insignificant
compared with the A correction. In the investigated system,
the on-site spin-singlet superconducting coupling A is de-
structive for the HOTSC phase (see [52] for the qualitative
explanation and Appendix A for the mathematical details) and
at the critical value of A the system undergoes the topologi-
cal transition to the trivial phase. So its reduction with the U
increase stabilizes the nontrivial phase and allows the HOTSC
phase to appear at the larger values of Ag, when all other
parameters remain unchanged. As a result, the HOTSC phase
region expands on the topological diagram if U # 0 (Fig. 1).
In other words, in the additional region colored in Fig. 1 in
red, the A values are, in fact, reduced due to the Coulomb
repulsion to the values A corresponding to the initial HOTSC
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FIG. 2. Dependence of the first excitation energy on the intensity
of the intraorbital Hubbard repulsion E, (U) for different sizes of the
system. Inset: The energy of the first out-of-gap state as a function of
U. The system is taken at half filling (u,; = U/2 due to the bands
shift caused with Coulomb interaction as was discussed earlier) with
Ao = 0. The other parameters are the same as in Fig. 1.

region in the absence of the Coulomb interaction (colored in
blue).

C. Self-consistent solution in the open-boundary conditions case

Now we proceed with the study of corrections to the
above-described HOTSC phase and MCMs caused by the
nonuniform correlators due to finite-size effects in the open-
boundary geometry. In such situation the averages (5) and (6)
become dependent on the site index leading to the inability
of conventional topological phase analysis. Meanwhile, the
properties of the corner excitations still can be investigated.

We carried out series of self-consistent calculations for
different parameters of the model. The typical dependence of
the first excitation energy on the intensity of the intraorbital
Hubbard repulsion, ¢;(U), for different sizes of the system is
plotted in Fig. 2. The numerical calculations revealed the pres-
ence of crossover between two qualitatively different cases.
For U < U, the corner excitations remain almost unperturbed
by the Coulomb repulsion with their energies being deter-
mined by the overlapping of excitations in different corners of
the finite-size system. For U > U, the corner excitations still
exist, but their energies depend quadratically on U. Note that
there is still a considerable gap in the spectrum of the open
system between the corner states (E,—;_4) and the rest of the
excitations even at U = t,/2 [see the inset of Fig. 2(a)].

To understand the qualitative difference between the solu-
tions before and after the crossover, it is necessary to analyze
the normal correlators (5). Since time-reversal symmetry is
preserved in the bare Hamiltonian Hy the self-consisted cal-
culation at U # 0 does not generate the nonzero spin-flip
averages, (c}'ﬂgc rne) = 0. Then, the block-diagonal structure
of the system Bogoliubov-de-Gennes Hamiltonian in the basis
[Cfaos CrBos c_;TA(_T, c_;TBG] remains. Taking it into account, it
is convenient to consider the corresponding sums of the on-
site concentration averages (nras) + (nsps) as they describe

possible spatial fluctuations relative to the half filling, which
are induced by the Hubbard repulsion.

The dependencies (nfaq) + (nrps) at U < U, are dis-
played in Figs. 3(a) and 3(b). One can note that in both
half-spaces C; symmetry persists. Additionally, the separate
distributions (nfas) and (ngps) as well as the anomalous
correlators (6) possess just slight quantitative changes in com-
parison with the U = 0 case. Thus, the effect of the Coulomb
interaction is negligible in the case of U < U..

On the contrary, it follows from Figs. 3(c) and 3(d) that
at U > U, the C4 symmetry becomes spontaneously broken.
Along with that the occupation of the sites becomes unequal
for the different spin projections. The plots emphasize the
essential role of the corners in this effect. It can be concluded
with good accuracy that the average concentration deviates
from unity only at these sites. Because of the Coulomb re-
pulsion, the two distributions, (ny44) + (ngp,) and (npa) +
(nypy), are the mirror images of each other. Interestingly,
the anomalous correlators acquire an imaginary component,
which makes the main contribution again in the corners.

The crossover appears due to the competition between the
Coulomb repulsion contribution to the ground-state energy
and the contribution due to the overlapping of the excitations
localized in the different corners. Thus, the U, value is de-
pendent on the system size (for N = 20 the curve break in
Fig. 2 emerges already at U, ~ 0.04) and becomes zero at the
N — oo limit. Note that before the crossover, the excitation
energy decreases significantly with increasing system size,
which is typical for overlap-conditioned eigenvalue. The N
dependence disappears after the crossover.

The obtained results were proved by means of the ground-
state energy analysis,

Egr = — Z |vfnna|28n -=-U Z[(nfﬂTan'N)

fnno fno
+ 1ty P ®)

It was done for the fully-symmetric case, when the normal
correlators are spin independent and coincide in all corners,
and for a set of the spin-asymmetric realizations. The last
includes the situations when the same-spin normal correlators
are equal in the two opposite corners of the square diagonal,
in the two corners on the same square side, in the three and
four corners. The minimum energy corresponds to the fully-
symmetric solution for U < U, and the C,-symmetric case
with the same correlators in the opposite corners of the square
diagonal for U > U..

Thus, both phases provide the corner excitations but with
the different energy dependencies on U and N. In addition, the
spatial symmetry of the correlators changes after the crossover
acquiring dependence on the spin projection. These results
allow to conclude that the corrections to the U = 0 case at
U < U, are minor and quantitative. In opposite, they are qual-
itative at U > U.,.

In Appendix B we also analyzed the effect of boundary
geometry on the corner-excitation and ground-state prop-
erties. The numerical calculations show that the observed
results persist in the cases of the triangle- and four-corner
non-square-shaped boundaries, while the details change (e.g.,
compare Fig. 7 with Figs. 2 and 3).
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FIG. 3. Spatial distribution of the correlators (ns44) + (nsp,) and (nsa;) + (nspy) (electron occupancies in the ground state) in the Cy-
symmetric phase [(a), (b)] and in the phase with the spontaneously broken C, symmetry [(c), (d)]. Parameters: N = 10.

IV. STRONG-CORRELATION REGIME

A. Effective low-energy interactions

Having discussed the limit of the weak Coulomb interac-
tion, let us consider the properties of corner modes in the
strong-correlation regime. In this case, the Hartree-Fock ap-
proximation (4) becomes invalid and it is necessary to use the
methods of the theory of strongly correlated systems. First of
all, we note that strong electron correlations induce effective
interactions in low-energy Hamiltonian. Recently the effective
interactions have been studied in interacting topological insu-
lators [57] and first-order topological superconductors [58].
To analyze the structure of effective interactions of the system
(1), it is convenient to use the method of unitary transfor-
mations in many-body Hilbert space [59] together with the
atomic representation [60,61]. This approach is described in
Appendix C. Since the natural language of the atomic repre-
sentation is based on the use of Hubbard operators X pZ , We
introduce two-component field operators, Hubbard spinors,
built on such operators,

01
Wy, = Xf’? =P( Cfnt >P—P< nfnl )P, 9)
o\ X Chay nyy

where the Hubbard operators X ;’,‘]1 and the projection operator

P are defined in (C3). We will associate the operators X }9,‘7’
constituting these spinors with so-called Hubbard fermions. It
can be seen from Eq. (9) that in actual Hilbert space the Hub-
bard fermions are a superposition of the ordinary fermions
¢fye and charge population operators ny,s. As a result, the
commutation relations for the Hubbard fermions differ from
the ones for the ordinary fermions, which is the reason for
the appearance of the kinematic interaction [62,63]. Another
consequence of unusual operator algebra is the emergence of
effective charge and magnetic interactions for itinerant elec-
trons. So, using the Eq.(C10) it can be checked that

W W =8npy, VTV =28,8p.  (10)

where 7 is a vector consisting of the Pauli matrices acting in
the spin space of the Hubbard fermions, 7y, and S n are the
charge and spin operators defined at the site f and orbital 7,
respectively.

In terms of the spinors (9), the low-energy Hamiltonian
obtained in the second-order perturbation theory (with 1/U
as an expansion parameter) can be represented in the form
(11). If f # g # I the terms in lines 3-8 of (11) correspond
to three-center interactions. Their physical meaning consists
in the hopping and anomalous pairing of Hubbard fermions
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at the fth and gth sites with a contact interaction at the /th
site. In the lines 3, 4, and 5 of (11) such interactions have the
Coulomb, Heisenberg, and Dzyaloshinskii-Moriya character,
respectively. These couplings possess an amplitude ~1/U and
can be realized both between the same orbitals (which is
denoted by a factor 8,,) and between different orbitals (see
a factor &3, ). In the line 6 of (11) the three-center interaction
has an order ~a/U and is related to the anisotropic hopping
of Hubbard fermions. Similarly, the effective interactions with
magnitudes ~a A /U, written in the lines 7 and 8, describe
the anisotropic interaction of Cooper pairs of the Hubbard
fermions with the spin moments of the electrons at the site
I. The anisotropy is due to the chirality of the spin-orbit
interaction in Eq. (1).
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It is important to note that if f = g the three-center terms
reduce to the two-center charge and spin interactions between
the electrons, according to Eq. (10). So, the two-center sum-
mands in the third line of Eq. (11) describe the intersite
Coulomb repulsion ~ny,ny, of the electrons inside the same
orbitals, which is formed by the competition of attractive and
repulsive interactions with amplitudes ~ /U and ~A?/U,
res_Pectlvely Similarly, the symmetric Heisenberg interaction
~8y - Sgv 1s realized inside the orbitals and has an antifer-
romagnetic character with an amplitude ~t2/U Note that
the Dzyaloshinskii-Moriya terms ~S§ 'y X Sg,, as well as the

anisotropic two-center interactions do not appear, since the
spin-orbit interaction acts only between the different orbitals
in the original model (1). The discussed interactions can lead
to the implementation of charge and spin orderings, which, in
turn, should be taken into account when calculating the matrix
elements of the three-center interactions. Thus, the Hubbard
fermions move in the charge and magnetic background.

The two-center terms given in the second curly brack-
ets of Eq. (11) describe the hopping, spin-orbit interaction
and anomalous pairings between the nearest neighbors in the
ensemble of the Hubbard fermions. It can be seen that the
interorbital spin-orbit interaction induces a p-wave supercon-
ducting pairing between the neighboring orbitals, similar to
what occurs in Majorana nanowires.

The results presented show that the search for the Majorana
corner modes in the regime of strong but finite U requires to
study of spectral properties of the system taking into account
the magnetic ordering, intersite repulsion, p-wave anomalous
pairing, anisotropic hoppings as well as the three-center and
kinematic interactions. Such an analysis is beyond the scope
of this paper. Meanwhile, it is clear that in the limit U — oo
one can consider only the influence of the kinematic interac-
tion on the MCM implementation conditions.

B. U — oc limit

In the U — oo limit the system is described by two bands
corresponding to the lower Hubbard subbands for the Ath
and Bth orbitals. Here we consider the case when the bare
energies of the Ath and Bth orbitals are shifted by the pa-
rameter Ae # 0, while the intraorbital hopping between the
next-nearest neighbors with the parameter #; is neglected for
simplicity. Then, in the U — oo limit the Hamiltonian (11)
can be written as

Hy—soo =PHP

=2 2 (cpt Xy

fo n=A.B

T2 D mXEX, Y e XX
fno S==%x,%y féno

+ Y (AXPX]) 4 He), (12)
fén

where the orbital index 7 = B(A) if n = A(B), respectively.
As before toy = —tiy =1, Qg 4y = FUO, U +y = Licr.

Obviously, in the U — oo limit the on-site singlet pairing
is fully suppressed by the local Coulomb repulsion. Therefore,
the parameter A, does not appear in the Hamiltonian (12) and
the topological phase transition to the trivial phase shown in
Fig. 1 becomes inaccessible.

Using the formalism of the Zubarev’s Green’s functions
(see Appendix D) the topological phase diagram is considered
in the limit of U — oo within the Hubbard-I approximation.
Firstly, we are focused on the boundaries of nodal phases (N
phases) in which the gapless excitations exist in the bulk spec-
trum due to the s symmetry of the superconducting pairings.
To find the N phases the periodic boundary conditions have to
be applied with the uniform correlators determining Hubbard
renormalizations.
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FIG. 4. (a) The topological phase diagram in the U — oo limit in the variables Ae and electron concentration n, = ny + ng. N; and N,
denote the nodal phases in which the bulk excitation spectrum is gapless and edge or corner modes are prohibited. The maximum concentration
in this limit is n, = 2. The phase with the notation 0 is a gapped topologically trivial phase. The same phase is found in the vicinity of n, = 2.
The notation 1 marks the topologically nontrivial phase where the Majorana corner modes are realized. The dotted lines are the conditions
when the edge excitation spectra [along (10) or (01) edges] are gapless. (b) The topological phase diagram for U = 0. This phase diagram can
be symmetrically continued to the n, = [2 — 4] range. The parameters aret = 1, =3/4, A, =0.5,1, =0

In general, the gapless excitations appear when the Fermi
contour intersects the nodal lines of the superconducting order
parameter. Since the on-site superconducting pairings are sup-
pressed in the limit of U — oo, the nodal lines are determined
by simple relations k., = 2=( — |k.|). Therefore, to describe
the nodal phases we found the conditions when the zeros on
the nodal lines in the bulk energy spectrum of topological
insulator (TI) appear.

The bottom of the first TI band ¢y, and the top of the second
TI band &, (see Appendix D) are realized at the nodal points
key = 0, koy = £m. Then, the condition

prr = —Ae — 4tHg (13)

is the lower boundary of the nodal phase corresponding to the
filling of & (the N, phase), while

WUyr = Ae + 4tHy (14)
is the upper boundary of the nodal phase corresponding to the
filling of &y (the N, phase). Here H,, = 1 — n, /2 is the Hub-
bard renormalization, n, =} (X77”) is the average electron
concentration at the nth orbital (it does not depend on the site
index since the periodic boundary conditions are considered),
n = A, B. The concentrations of the Hubbard fermions with
the different spins are equal. We note that in the limit of
U — oo the electron concentration on each orbital can not
exceed 1.

The upper boundary of the N, phase and the lower bound-
ary of the N, phase are described by the expressions

1*Ae(HF — HR)
2[t*(Hy + Hp)*/2 — HyHpo?]

MutL2 = —

8H2H20?(2t? — a?) — HyHpA&?a?
12(Hy + Hp)?/2 — HyHpa?

HHg(Hy — Hp)?Ae2a?t?2 /2
WHp(Hy B) o } ’ (15)

2[t>(Ha + Hp)?/2 — HyHpa?]

when the Fermi contour intersects the points on the nodal lines
determined by

t[u(Hy — Hp) + Ae(Hy + Hp)] -
4HAHB(2t2 — Olz)
kcy = (1 — |kex])-

cos(key) = — -1,

(16)

When cos(k.,) < —1 upon changing the parameters, the upper
boundary of the N; phase corresponding to the top of &
and the lower boundary of the N, phase corresponding to
the bottom of &y are implemented at the points k., = £,
key = 0. Then, the conditions for the chemical potential read

My1 = Ae —4tHy, )

nip = —Ae + 4tHpg. (18)

In the obtained expressions (13)—(18) for the boundaries
of the nodal phases the average electron concentrations 7,
included in the renormalization parameters H, must be cal-
culated self-consistently. The self-consistent equations and
expressions for the bulk energy spectrum of HOTSC are pro-
vided in Appendix D. Note that the boundaries of the N phases
in U = 0 case can be found from these expressions neglecting
the Hubbard renormalizations, Hy = Hg = 1.

In Figs. 4(a) and 4(b) we present the topological phase
diagrams in the variables Ae and electron concentration n, =
na + ng for the limit of U — oo and for the U = 0 case, re-
spectively. The parameters t = 1, « =3/4, Ay =0.5,1, =0
are used. For clarity, we put Ag = 0 in the U = 0 case. The
red solid lines are determined by Eqgs. (13) and (14) for the
N and N, nodal phases, respectively. The blue lines are deter-
mined by Egs. (15), (17), and (18) depending on the parameter
range. The dots on these lines denote when cos(k.,) = —1 in
(16) and the equations for the phase boundaries are changed
from (15) to (17) and (18) with the increase of Ae.

The notations for the different phases on the topological
phase diagrams are the same as in Ref. [52]. As mentioned
above, inside the N; and N, phases the bulk energy spectrum
is gapless in the presence of the superconducting pairings and
there are not edge or corner states. The phases with the gapped
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FIG. 5. Probability density of the Majorana corner modes in the
topologically nontrivial 1 phase in the U — oo limit on the 2D lattice
with N = 50.

bulk energy spectrum are 0 and 1 phases distinguished by
topology. The topologically protected edge and corners states
are absent in the topologically trivial 0 phase. The Majorana
corner modes are formed in the topologically nontrivial 1
phase. This conjecture is confirmed by the Dirac mass cal-
culations for the Hubbard fermions inhabiting at the adjacent
edges (see the details in Appendix E).

In the 1 phase the edge excitation spectra along (10) or
(01) edges are gapped excepting the parameters shown by the
dotted lines. As it was shown in Ref. [52] for U = 0 and Ay =
0 the topological phase transition does not occur at this line.
Inthe U — oo limit we have the same result, since the on-site
pairings are destroyed by the Coulomb interaction.

To compare the limits of U — oo and U = 0 in Fig. 4(b)
the half of the topological phase diagram at U = 0 is shown.
The whole phase diagram is determined on the range n, =
[0 — 4] and it is symmetric relative to n, = 2. It is seen from
Fig. 4 that all phases preserve in the U — oo limit within the
Hubbard-I approximation. At the same time, the phases are
shifted to the lower concentrations and are compressed due to
the Hubbard renormalizations. In Secs. III B and [IIC at U =

0.03 1

0.02

€1,2

0.01

0 the doping level near the half-filling n, = 2 is considered.
It is seen in Fig. 4(a) that this region becomes topologically
trivial if U — oo.

To additionally check the topologically nontrivial 1 phase
the excitation spectrum ¢g; of the 2D lattice with open-
boundary conditions and the MCMs spatial distribution are
calculated using the Green’s functions. The difference of the
Hubbard renormalization factors at the different lattice sites
is neglected and the bulk uniform values for them are used.
The MCM formation deeply inside the 1 phase is displayed
in Fig. 5. The lattice contains N = 50 sites along the x and
y directions. In Fig. 6(a) the dependencies of the lowest ex-
citation energies €; on the chemical potential at Ag =1 in
the 1 phase are presented. The chemical potential runs from
the left boundary of the 1 phase to the right boundary. The
other parameters remain the same. Since the scales of the
energies €1, and ¢3 are different, we employ the different y
axes for them (the left y axis is for &), the right y axis is
for £3). For the chemical potentials denoted by the vertical
dotted lines the edge excitation spectrum is gapless. It is seen
that two zero excitation energies &), corresponding to the
MCM formation are realized in a wide range of the chemical
potential excepting the regions near the vertical dotted lines.
In Fig. 6(b) the results for U = 0 are shown. Comparing the
dependencies of ¢3 in both cases, we conclude that the energy
gap between the MCMs and higher states is slightly decreased
in the U — oo regime.

V. SUMMARY

The effect of the on-site Coulomb interaction on the two-
dimensional HOTSC was investigated on the example of the
topological insulator with enhanced s(d)-wave superconduct-
ing coupling in two regimes: Weak and strong Coulomb
repulsion. Using the mean-field approximation in the weak
regime it was shown that the on-site intraorbital Coulomb

0.04

€12

0.02

FIG. 6. (a) The dependencies of the three lowest excitation energies on the chemical potential inside the 1 phase from Fig. 4(a) at Ae = 1
and U — oo. Left y axis is for the energies ¢ », which become zero on the interval € [—1, 0.7]. Right y axis is for 3, which determines the
energy gap for the zero modes. As in Fig. 4, the edge excitation spectra are gapless for the chemical potentials denoted by the vertical dotted

lines. (b) The case of U = 0.
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interaction manifests itself only in modification of the on-site
energy shift and suppression of the on-site singlet supercon-
ducting coupling. In the uniform case it leads to the widening
of the higher-order topological phase.

When the self-consistent solution takes into account
the boundary of the finite-size system the conventional
topological analysis becomes invalid since, in this case, the
correlators are site-dependent leading to the inhomogeneous
picture. Meanwhile the corner excitations survive in this case.
The crossover between two different situations was found.
If the amplitude of the Coulomb repulsion is less than the
critical value, the corner excitation energies are determined
by the hybridization effects due to the finite-size of the
system. The electron densities for different spin projections
are equal and Cs-symmetric in this case. If the Coulomb
repulsion is stronger then the critical value, the spontaneous
symmetry breaking emerges in the system and the corner
excitation energy depends quadratically on U. The electron
densities for different spin projections are C, symmetric with
the difference taking place in the corners of the system. This
crossover is a finite-size effect appearing at the lesser U for
the larger system size N.

The effective interactions in the strongly correlated
HOTSC are derived in the framework of the second-order
operator-form perturbation theory. The appearance of an-
tiferromagnetic and ferromagnetic exchange interactions,
anisotropic interactions, as well as triplet pairings are demon-
strated. It is shown that the topologically nontrivial phase in
the vicinity of on-site electron concentration n, = 2 (half-
filling case at U = 0) becomes trivial one in the strongly
correlated regime. On the other hand, in this regime the
lower Hubbard subbands for both orbitals behave qualitatively
similar to the initial bands without the Coulomb interaction.
Therefore, the topological phase can be realized even at U —
oo. At the same time, the topological region on the phase
diagram in variables electron concentration—orbital splitting,
as well as the energy gap for the corner states are reduced due
to the Hubbard renormalizations.
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APPENDIX A: HOTSC PHASE DIAGRAM EMPLOYING
DIRAC MASS CRITERION

To analyze the conditions of the HOTI/HOTSC phase re-
alization it is useful to employ a Dirac mass criterion. It can
be introduced if the system possesses topological edge states,
which are gapped under the influence of some perturbations
[2,16,18,21,22,52-56]. In such a case the HOTSC phase ap-
pears when the Dirac mass of the edge excitations is of a
different sign for two adjacent edges. To use the Dirac mass
sign criterion in our case one needs to find the edge eigenstates
of the Hamiltonian (1) in the absence of the superconducting
coupling with one open boundary. Let us consider the bound-
ary along the x direction. The edge-state wave function in such

case can be written in the form

l 1 n n
Vor = 7357 i s |6 =)
TERY & — 413 —o?)
X102 = ——F5— )
2sign(t,)(Itp| + la])
(AD)
&, = Ag +2t,cosp, t, =t,+ 2t cos p,
= 2
N = Z |x’f - x5,
n=1
with edge band energy spectrum
&, = 2|a|sgn(t,) - o sin p. (A2)

Here the basis [cpaq, chg]T is used, p = k, is quasimomen-
tum along the boundary, an index n numerates the sites in y
direction. The values x; » can be both real or complex (in the
last case x, = x), along with |x 2| < 1 corresponding to the
solution, which descends along y direction inside the system.

The hole-like counterpart of (A1) in the [c; Ao c;BU]T basis
has the form
1 1 n n
Yipo = JTT/[Z’ : sgn(at,,)} ot ),
ep = —2|alsgn(t,) - o sin p. (A3)

Referring to (Al) and (A3) as electron and hole wave
functions and projecting the whole Hamiltonian (1) on these
lowest-energy solutions, one will obtain the next form

Hpr = |:8p K V; :Ia

Vy —&p+ 1
sgn(f
by =, -2a, S0 )
2 tpz —a?

A, = Ay +2A,cos p. (A4)

The excitation spectrum of Hamiltonian (A4) is Dirac like,

e =/(ep — W2 + V12, (AS)
around the Dirac point defined by equation
sgn(ty)sin p = /2, (A6)

and V, playing a role of the effective Dirac mass.
The wave functions of the edge states on the y boundary
with p = —k, has form

1 1 n n
\IJEPU = W[USgn(wp)] ’ (xl - x2)’ (A7)

1) _ 1 1 . ( n __ n)

hpo = V2N | —osgn(at,) 1)
with all other expressions including V), to be the same up to
the x <> y exchange. The HOTSC phase appears in the case
of V,, having different signs for x and y boundaries at the cor-
responding Dirac points. Supposing the system with hopping
amplitudes and intersite superconducting coupling to differ
only insigns ¢, = kt,, Ay = x A, (k, x = %£1) one will easily
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find the requirement x x = —1 for the HOTSC phase, which
coincides with the conclusions made in [52] (f, = —t, for the
extended s-wave superconducting coupling and d,>_,.-wave
fort, =1t,).

In the case of Ae < [tc,], |t:y] =2]t;] (the situation
considered in [52]), the HOTSC phase is defined by
the condition

0 )
— <
24, \/(1+|cosp|)2—(%)2
Ac - sgn(tyt,
- |cos p| + i) 2\
2111y (1 + L cos pl)2 — (2)

2

lcosp| = |1 — (ﬂ) . (A8)
2a

The obtained expression can describe HOTSC phase only in

the case of || < 2« as it is based on the perturbed edge states

conception and, consequently, the chemical potential should

be inside the edge states band (A2).

APPENDIX B: BOUNDARY GEOMETRY EFFECT ON
THE SPONTANEOUS SYMMETRY BREAKING

As the effect of symmetry breaking described in Sec. III C
appears due to the nonuniform correlators in the system
with open-boundary conditions, it can be expected to depend
on the boundary geometry. To investigate this issue we exam-
ined the triangle- and four-corner non-square-shaped geome-
tries of the system with the corner excitations. Both systems
possess the revealed crossover from the spin-independent
case to the case with spontaneously broken symmetry and
spin dependence, yet the details of this crossover change.
Particularly, the specific corners at which the electron den-
sity nay + np, deviates from the uniform case depend on
the geometry of the system. In the triangle-shaped system
the effect takes place in only two of the three corners [see
Figs. 7(c) and 7(d)]. Interestingly, the deviation appears at the
corners, at which the topological states emerge in the uniform
correlators case. Contrary to the square-geometry case, in
the system with the broken symmetry, there is a transition
between two types of the spatial dependence of the concen-
tration correlator. Apparently, if the boundary geometry is
more complicated one can expect more such transitions, but
the spontaneous symmetry breaking at the critical value of
the Coulomb interaction U, has to remain, while the under-
lying system without the interaction possesses the topological
corner modes.

APPENDIX C: EFFECTIVE INTERACTIONS
IN STRONGLY CORRELATED REGIME

Let us rewrite the original Hamiltonian as a sum of terms

of zero- and first-order of smallness,
H=Hy+ V. (ChH

Here H, is an unperturbed Hamiltonian and V is an operator
corresponding to the weak interactions. These operators can

(@ x10 (b)

0.8 ©)
0.6

0.4

0.2 (d)
U

\B B

o

0.02 0.04 0.06 0.08

FIG. 7. Triangle-shaped system (20 x 11) with weak intraorbital
Coulomb repulsion. (a) U dependence of the first (corner) exci-
tation energy and [(b)—(d)] spatial distributions of the correlator
(ngay) + (ngpy) at the different values of U marked in (a) by the
corresponding letters. The system is spin symmetric for U < U,
(b), then it transforms to the case with the spontaneously broken
symmetry and spin dependence. In this case, the spatial distribution
of the correlator is determined by the value of U [(c) and (d)].

be represented in the form

7_[0 = Z(_I’L + n Ag)c}—nacfrla' + U Z”fn?”fw ’
fno fn

V= Z (tfgn .- C;chmr + i (Toor X €1g); C;nacgr'w’
fgnoa’

1
+ ot + ot
+ EAng Cfnocgm’r) + Ao Z CrmCrny T He.
fn

Note that here we consider a general case in which the hop-
ping and SC pairings can take place for distant neighbors with
amplitudes 77, and A f,, respectively.

As a basis in the Hilbert space of the operator H it
is convenient to choose many-body eigenstates |m) of the
Hamiltonian Hy: Ho| m) = E,;| m ). An important assumption
for the development of the perturbation theory is the existence
of a large energy gap in the spectrum of the eigenvalues E,,.
If we consider the system in the regime of the strong electron
correlations,

U > tr, Agg,

the energy gap occurs due to the presence of the strong
Hubbard repulsion. Then, the subspace of the states M with
the eigenvalues below the gap (so-called “low-energy” sector)
include the ones without the doubly occupied orbitals at each
site, i.e.,

M= A{lm):Vf,nnplm)#2|m)lng =npmy +ngy,.

The “high-energy” sector L is formed by states |/) for which
at least one orbital have two electrons.

Using the many-body states |m) we can define a projection
operator P onto the low-energy sector M as

P=T12 &+ +X5),
f n=AB

(C2)

125401-10



EFFECT OF LOCAL COULOMB INTERACTION ON ...

PHYSICAL REVIEW B 107, 125401 (2023)

with X7 = |f 1 p)(f nq| being the Hubbard operators de-
scribing transitions from the many-body state |f n p) to the
state |f 1 q) at the site f and orbital n = A, B, with quantum
numbers p and g, respectively. In our case the basis of states at
the site f and orbital n includes | f 1 0), | f no) and | f n2) cor-
responding to the states without electrons, with one electron
that has the spin o and with two electrons, respectively. The
electron annihilation operator at the site f and orbital n with
spin projection o can be expressed in terms of the Hubbard
operators

oo = Xfy +0X72. (©3)
The projection operator (C2) allows to divide the interactions
into two parts: V = Y + V, where

YV=(1-=P)VP+PV(l=P), (C4)

is nondiagonal, since it does mix the sectors M and L.

To derive the desired effective Hamiltonian of the strongly
correlated HOTSC model, one can consider the following
unitary transformation of the Hamiltonian H:

H—>H=e¢ He =H+[H, S1+1i[[H, S1, S1+...
(C5)

It is assumed that the operator S in the formula (C6) is
nondiagonal and has the first order of smallness. Next, it is
necessary to substitute the expression (C1) into the series (C6)
and retain only those terms whose order of smallness is not
higher than two. In the obtained expression for H we want to
get rid of the nondiagonal terms by imposing the following
condition on the operators S:

V+[Ho, S1=0. (C6)

As aresult, only the diagonal terms remain in the Hamilto-
nian H up to the second order. Projecting out the high-energy
processes in the last, we are left with operators acting exclu-
sively within the low-energy sector M and, thus, forming the
required effective Hamiltonian,

Hep=PHP+3P[V, S]P+Hec. (C7)

Itis easily to verify that S can be represented in the operator
form

S=—(Hy—KHoK)'(1—P)VP—Hec., (C8)

where K is the Hermitian conjugation operator. Then, substi-
tuting the expression (C9) into the formula (C8), we obtain
the final expression for the effective Hamiltonian acting in the
low-energy subspace M,

Hepp = PHP — 1PV (Ho— KHoK)™' VP +He.) (C9)

In order to find the explicit microscopic expression for H, s it
is convenient to perform calculations representing ) in terms
of Hubbard operators,

V= Z (tre80anOXFIXS? + i0(Toor X B0’ XPO XG>+
oo'nfg

Ay G
S 0 (KEXED — XX 4 X XE) + e )+

gn fn“tgn
+ 80 ) (XP +X7)).
fn

and taking into account the relations [61]
Payrs _ pr
XpnXpy = 0 Xp,,

X7y =nm+208;, X7 = 2(5;”1 +io S:;n)'

(C10)
APPENDIX D: GREEN’S FUNCTIONS APPROACH
INTHE U — oo LIMIT

The equation of motion for the operator X}(),"’ (t) in the
Heisenberg representation and for the Hamiltonian (12) is
expressed in the Hubbard-I approximation as

.d
i XPT = (i nADXY + D tnHpao X[,
S=%x,%y
+ 2 osHoXploq + ) Mo H o XT;
8 8

(D1

where the Hubbard renormalization parameter is Hyye = 1 —
(X77). As in the case U = 0 spin-flip correlators (anoXj?,‘]’)
are neglected.

We use the Zubarev’s Green’s functions, such as

(XPr @IB@))) = —i0@ — ){XP (1), B@)}).  (D2)

to determine the excitation energy spectrum of the Hubbard
fermions and correlators. Here ©(r —t’) is the Heaviside
function, B(") is a Hubbard operator of Fermi-type describing
creation or annihilation of Hubbard fermion with quantum
numbers ¢’ and 1’ on a site f’, the braces in the right side
denote the anticommutator. The closed set of equations is
obtained for the Fourier transforms of the Green’s functions
(X0 1)) (XD 1B s ((XFO1B)) s ((XFOIB)).- From these
equations the spectra both for periodic boundary conditions
and for open-boundary conditions on a 2D lattice, and edge
spectra, when periodic boundary conditions are applied only
in one direction of the lattice, are calculated. In the uniform
case described in the main text Hy,e = H, =1 —n,/2 and
ny = 3, (X50).

For periodic boundary conditions the self-consistent equa-
tion for the electron concentration at the orbital 1 is

—1)/
O G 3= S LR

k j=12

+ (Hy — H) /2| Al + (1) v ]

+ (énk + Sﬁk)HnHﬁa]z} tanh (ﬁ>> s (D3)

2T
where &, = —u + nAe + nHyt, a,% = 4o (sin k? + sin kyz),
and the HOTSC bulk energy spectrum can be written as
E _{Sfﬂ—éﬁk H} +H}

A2
5 AVY

k= 5 + HyHpa} +

1/2
+ (—1>fv,3} , (D4)
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and
2

Hj
{(»';Ak + Ep )AL+ | Ay |2[ (sAk Ex)

1/2
2

+ (Hy — Hp)’HpHgo + (Hy — Hy) |Ak|2} }

(D5)

Excluding superconducting pairings the bulk energy spectrum
of TI is obtained

+ SR
€1k = M F Ak A = \/M + HyHpor}.
(D6)

APPENDIX E: DIRAC MASSES ATU — o0

The effective Hamiltonian in the Hubbard-I approximation
can be pulled out of the equations of motion for the Green’s
functions discussed in Appendix D, since, in general, ﬂeﬁ‘ =
w -1 — G (where [ is identity matrix). The wave functions
of the edge states along x and y directions were obtained for
the continuum case by expanding the effective Hamiltonian

around the Dirac point (ky, kyo) = (0, ) or (7,0). As a
result, the Dirac mass ratio is

| _ Z(CX + Cy) - cxp(z) — Cy |Ky|2 (E)
Vi 2ot ) el o

)

e | = tatg Pl + [Cx Tap + o4 ] P — ma mp
Y Ialp

e |2 = tatg Py — [cy Tap — s ag] py — ma mp
X tA l’B )
2= [(Ha + Hp) + Ae(Hy — HB)]2
0~ 16 H? H2 2

(E2)

where ¢y, = coskyyo; My = —p 4+ nAes 4+ 2nt(cy — ¢y);
Tagp = tamp —tgmga; ) = tH;, oy = 2aH; (as usual n = +1
if | = A, B). The wave vector pg is a new Dirac point shifted
from (ky, kyo) due to the strong many-body interactions.
By definition ¢, = —c, = %1, then |k, |2 = | Ky |2. Thus, the
Dirac mass ratio is equal to —1 in the parameter area where
the edge states exist [see the region 1 in Fig. 4(a)].
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