
PHYSICAL REVIEW B 107, 195428 (2023)

Higher-order magnetic skyrmions in nonuniform magnetic fields
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For a two-dimensional Hubbard model with spin-orbit Rashba coupling in external magnetic field the structure
of effective spin interactions is studied in the regime of strong electron correlations and at half-filling. It is shown
that in the third order of perturbation theory, the scalar and vector chiral spin-spin interactions of the same order
arise. The emergence of the latter is due to orbital effects of magnetic field. It is shown that for nonuniform fields,
scalar chiral interaction can lead to stabilization of axially symmetric skyrmion states with arbitrary topological
charges. Taking into account the hierarchy of effective spin interactions, an analytical theory on the optimal sizes
of such states, the higher-order magnetic skyrmions, is developed for axially symmetric magnetic fields of the
form h(r) ∼ rβ with β ∈ R.
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I. INTRODUCTION

Starting with the pioneering papers of Bloch [1], as well as
Landau and Lifshitz [2], topological objects began to attract
considerable attention in the physics of magnetism. Currently,
topological objects in the physics of magnetic phenom-
ena include both singular defects (domain walls, anisotropic
two-dimensional vortices, and Bloch points) and continuous
objects, which include magnetic skyrmions (MS) [3–6]. The
skyrmions were first studied by Skyrme in nuclear physics
as topologically nontrivial configurations of the baryon field
[3,4]. Later, similar structures were predicted in magnetic sys-
tems [5] and experimentally detected in MnSi [6]. In the last
decade, the development of experimental technologies [7,8]
has made it possible to create and study magnetic skyrmions
in nanowires and thin magnetic films, inducing noncollinear
magnetic structures in one- (1D) and two-dimensional (2D)
systems.

Two-dimensional magnetic skyrmions are vortexlike dis-
tributions of magnetic moments in the plane R2. In the center
of the vortex structure, the direction of the magnetic mo-
ment is opposite to the direction of the magnetic moments
at the boundary of the skyrmion and outside its boundary. If
the characteristic scales of a significant change in the mag-
netization distribution considerably exceed the interatomic
distances, then it is possible to use a continuum approxima-
tion and consider the magnetization field m(r) as a smooth
function of the spatial variable r.

Practical interest in magnetic skyrmions is due to their
topological stability. Therefore, the above-mentioned vortex
magnetic structures, despite the small (nanometer or mi-
crometer) scale, are stable against defects and temperature
fluctuations. Taking advantage of this stability, numerous
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schemes for using MS in logic devices [9,10] and mem-
ory [11] are currently proposed. In particular, methods have
been proposed for recording and reading magnetic informa-
tion by creating and moving a spin-polarized MS current
along one-dimensional paths [11]. An important point of
such constructions was the assumption that the topology of
the MS profiles does not change when writing and reading
information.

Mathematically, the question of continuous deformation of
magnetic structures is related to the homotopy theory [12].
Two magnetization configurations are called topologically
(homotopically) equivalent if there is a way of their con-
tinuous deformation into each other without overcoming an
infinite energy barrier. And conversely, two configurations are
topologically nonequivalent if such continuous deformation is
impossible.

Usually, 2D MS are considered as smooth magnetic tex-
tures on a two-dimensional real plane with m ∈ S2, r ∈ R2.
Since the two-dimensional plane R2 is also one pointwise
compactified into the sphere S2, various magnetic configu-
rations are characterized by the mapping S2 → S2, and the
homotopy group of such configurations is the homotopy group
π2(S2) ∼ Z. The latter is isomorphic to the group of integers
Z and nontrivial magnetic configurations can be characterized
by such nonzero numbers.

To establish an unambiguous correspondence of the mag-
netic configuration m(r) to the elements of the homotopy
group π2(S2), the concept of the mapping degree Q is used.
The latter is also sometimes called “topological index” or
“topological charge.” For the mapping S2 → S2, it has the
form [12]

Q = 1

4π

∫ ∞

−∞

∫ ∞

−∞

(
m ·

[
∂m
∂x

× ∂m
∂y

])
dx ∧ dy, (1)

where x and y are the plane coordinates in R2. This charac-
teristic takes integer values Q ∈ Z, which show how many
times during mapping S2 → S2 the vector m sweeps full solid
angle 4π .
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Until recently, the vast majority of 2D MS studies were
related to axially symmetric structures with |Q| = 1. This is
due to the fact that it is precisely such axially symmetric
structures that are stabilized by Dzyaloshinsky-Moriya (DM)
interaction, which is most actively involved for MS model-
ing. In recent studies, it has been predicted that frustrated
exchange interaction in combination with DM interaction can
lead to stabilization of axially symmetric higher-order mag-
netic skyrmions (HOMS) with |Q| > 1 [13–15]. Also, on the
basis of numerical modeling, the existence of skyrmion states
of nontrivial morphology with arbitrary values of topologi-
cal indices [16–18], which were called skyrmion bags, was
predicted. Recently, skyrmion bags have been experimentally
obtained in the interior of the thin plate of the B20-type FeGe
chiral magnet, as an 2D constituent parts of three-dimensional
(3D) magnetic structures, having high topological charges
and called as skyrmion tubes [19]. However, to date, both
skyrmion bags and HOMS have been studied extremely
limitedly.

Meanwhile, the search for axially symmetric MS with ar-
bitrary topological indexes is of interest from the point of
view of creating an element base of both classical and quan-
tum computing devices. For example, the implementation of
high-Q magnetic states can significantly increase the density
of recorded classical information by increasing the space of
read states [11]. From a perspective of quantum computing
devices, MS with large |Q| may be of interest as promising
objects for the implementation and management of Majorana
modes (MM) [20,21]. Particularly, in a recent paper it was
shown that in order to implement MM on the HOMS, it is
necessary that the topological charge of the latter was even
[22]. Since such states have not been discovered experimen-
tally the search for MM was carried out on bound states of
MS and superconducting vortex [23]. The stability of such
a bound state depends on many factors and may be due to
the action of stray fields of the vortex on the MS [24–29]. In
this regard, the further search for implementation of axially
symmetric HOMS in nonuniform magnetic fields is relevant
and of practical interest.

In this paper, stabilization of the HOMS due to the three-
spin interaction, induced by strong electron correlations and
inhomogeneous magnetic field, is predicted and the charac-
teristic sizes of such structures are analyzed. In Sec. II for
two-dimensional strongly correlated ensemble of electrons
with Rashba spin-orbit interaction (SOI) on a triangular lat-
tice, the effective spin-spin interactions are analyzed in the
third order of perturbation theory. Both symmetric and chiral
magnetic interactions of different nature are derived and a
hierarchy of amplitudes of such interactions is established.
In Sec. III taking into account nonuniform magnetic field
the phenomenological high-spin Heisenberg model with such
interactions is formulated. Further, in Sec. IV it is shown
that when only orbital effects of magnetic field are taken into
account, the formulated model makes it very easy to describe
the formation of the HOMS with arbitrary Q. In Sec. V the
Zeeman effects of magnetic field on HOMS’s sizes are studied
and analytical description of the HOMS is carried out for
the case of linear increased inhomogeneous magnetic field. In
Sec. VI the robustness of HOMS against field profiles varia-
tion is demonstrated. Prospects for the detection and practical

use of HOMS in nonuniform fields are discussed in Sec. VII.
Section VIII describes the main results of the study.

II. CHIRAL INTERACTIONS IN THE HUBBARD MODEL
WITH RASBA SPIN-ORBIT COUPLING IN MAGNETIC

FIELD

Let us consider the issue of formation and competition
of chiral interactions of different nature in a 2D ensemble
of strongly correlated electrons. As a starting point for such
consideration, we take the Hubbard model [30,31] on the two-
dimensional lattice subjected to an external magnetic field
and with taking into account the Rashba SOI [32,33]. Its
Hamiltonian has the form

H = H0 + V,

H0 = −
∑

f σ

(μ + gσμBB f )c+
f σ c f σ + U

∑
f

n f ↑n f ↓,

V =
∑
〈 f g 〉σ

(t f g c+
f σ cgσ + H.c.)

+ iα
∑

〈 f g〉σσ ′
(d f g × τσσ ′ )zc

+
f σ cgσ ′ . (2)

Here c f σ (c+
f σ ) are the electron annihilation (creation) opera-

tors at the site f with the spin projection on the quantization
axis (z axis) σ = ± 1

2 , μ the chemical potential, the bare onsite
energy of an electron is set to zero, B f is external magnetic
field in the cite f , n f σ = c+

f σ c f σ is the operator of electron
number at the site f and with spin projection σ , U is the
energy of Coulomb repulsion of two electrons on one site
which in the regime of strong electron correlations is supposed
to be the largest parameter of the model. In the magnetic field
the hopping integral t f g between sites f and g due to Peierls
substitution [34,35] acquires exponential factor

t f g → t f g exp

(
ie

ch̄

∫ r f =g

rs= f
A · d l

)
, l = (x, y)

where e is electron charge, c speed of light, h̄ Planck’s
constant, and integration of the 1-form constructed on the
magnetic field vector potential A is carried out along the
straight line connecting the sites f and g in the direction of
the unit vector d f g pointing from f to g. Angle brackets under
the sum symbol in (2) indicate that hoppings only between
the nearest neighbors with an amplitude t f g = t are taken into
account. The last term in the expression (2) stands for the
Rashba SOI with intensity α. The components of the vector τ

are the three Pauli matrices τ x, τ y, and τ z, and the subscript at
the right parenthesis means z component of the corresponding
vector.

The presence of SOI suggests fabrication of a two-
dimensional heterostructure. Candidate materials whose
electronic properties can be described by this model in-
clude cuprate superconductors, rare-earth intermetallides, and
water-intercallated sodium cobaltites NaxCoO2 · yH2O above
the superconducting transition temperature Tc = 5 K [36–43].
Specificity of the electronic structure of such materials is due
to the fact that dynamics of the current carriers is predom-
inantly in (quasi-)two-dimensional layers. Apart from that,
such two-dimensional layers should be brought into contact
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with another two-dimensional material and the system should
be placed in external magnetic field.

Consider the system (2) at half-filling, assuming that on
average there is exactly one electron at each lattice site. The
structure of effective interactions dependent on the spin de-
grees of freedom of the model (2) was obtained using the
method of unitary transformations in the Hilbert space of
many-body states [44]. A detailed derivation of these expres-
sions in the case of U � t, α, h is given in Appendixes A
and B. We will consider the regime of sufficiently weak SOI
and Zeeman splitting: U � t � α, h. To be more specific, it
will be also assumed that t/U ∼ α/t ∼ ε, where ε is a value
of the first order of smallness. Then, up to and including
the third order of ε, we obtain the following three effective
spin-spin interactions:

HJ = −
∑
[ f g]

J · S f · Sg, (3)

HD =
∑
[ f g]

D f g · [S f × Sg], (4)

HK =
∑

[ f gl]∈	

K · S f · [Sg × Sl ], (5)

where S f is a vector spin operator on the site f , and notation
[ f g l ] ∈ 	 in Eq. (5) means that the three nearest sites f , g,
and l form elementary triangular plaquette and the summation
is carried out over these plaquettes.

The indirect exchange interaction (3) is of antiferro-
magnetic (AFM) type with exchange integral J = −4t2/U .
Square brackets under the sum symbols mean that each pair
or triple of sites is counted once. Dzyaloshinsky-Moriya (or
vector chiral) interaction (4) with the amplitude D = |D f g| =
8tα/U formally appears in the second order of perturbation
theory [see Eq. (B13)]. But since α ∼ tε the amplitude D is
actually the value of the third order of smallness.

Operator (5) stands for the three-spin (or scalar chiral) in-
teraction. With regard to this interaction it should be noted that
in the nearest-neighbor approximation it is equal to zero iden-
tically for a square lattice due to the homeopolarity condition.
Therefore, it is convenient to consider triangular lattice. In this
case the amplitude of the three-spin interactions, according
to Appendix B, is:K = 24(t3/U 2) sin(π
	). If the magnetic
flux 
	 (given in units of magnetic flux quantum φ0 = ch/2e)
through elementary triangular plaquette 	, is taken from the
interval 1/6π � 
	 
 1, then the amplitudes K and D are of
the same order: tε2 (see Appendix B). Moreover, for HOMS,
the contribution to the energy functional from the three-spin
interactions, as we will see below [see Eq. (20)], is propor-
tional to the value of |Q| > 1, which enhances the magnitude
of this interaction as compared to the DM one. Therefore, both
chiral interactions (DM and three spin) should be considered
jointly.

Note, that the expressions (4) and (5) for DM and three-
spin interactions have been derived separately out of the
Hubbard model (see, for example, [32,33,45–47] and the cited
literature). In this paper, these expressions were obtained
jointly within unified approach (see Appendixes A and B)
making it possible to establish a hierarchy between effective
parameters (8) as well as to establish the microscopic nature of
the scalar and vector chiral interactions. In the next section, we

will phenomenologically formulate the classical Heisenberg
model with scalar and vector chiralities, keeping in mind the
parameters hierarchy (8) as well as a specific dependence of
K on magnetic field.

III. HIGH-SPIN HEISENBERG MODEL WITH A SCALAR
AND VECTOR CHIRALITIES

Having derived the microscopic model with symmetric (3)
and two chiral interactions (4) and (5) let us phenomeno-
logically reformulate it in the classical (high-S) limit. As a
justification for this, we note that a similar but much more
cumbersome microscopic derivation of effective spin-spin in-
teractions can be carried out for the case S f > 1

2 . In particular,
chiral interactions of the described type can be obtained within
the framework of the s − d ( f ) exchange model for arbitrary
value of the spin S [32,48,49]. On the other hand, it is known
that taking into account the direct exchange interaction, as
well as the multiorbitality of magnetoactive ions, can lead
to the effective ferromagnetic (FM) exchange interaction in
the Hubbard multiorbital model [50,51]. Thus, we assume
that the exchange integral J in (3) is positive. Furthermore,
in magnetic materials there is almost always a natural mag-
netic crystallographic anisotropy. Sometimes the anisotropy
can reach quite large values comparable with the exchange
interactions [52–54].

Thus, along with the interactions (3)–(5), we have to in-
clude in our effective model an anisotropy term and also
take into account Zeeman term which in fact strictly follows
from the original Hubbard Hamiltonian (2) if magnetic field
is turned on:

HA = −A
∑

f

(
Sz

f

)2
, HZ = −gμB

∑
f

B f Sz
f . (6)

If A > 0 (A < 0), then the anisotropy has an easy-axis (easy-
plane) character. The need for accounting for the terms (6)
is motivated by the fact that if we consider only orbital
effects of the magnetic field, then to stabilize HOMS the
anisotropy should be involved. Moreover, the anisotropy term
naturally arises in the continuum description of antiferro-
magnetic skyrmions [55], where Zeeman splitting results in
renormalization of the single-ion anisotropy constant A.

Thus, the phenomenological spin Hamiltonian which we
are going to study has the form

Heff = HJ + HD + HK + HZ + HA (7)

with hierarchy of energy parameters obtained in the previous
section:

J � D ∼ K � A, gμBB. (8)

With account for the classical limit, as well as a large
spatial scale of MS as compared to the interatomic spacing,
the model (7) can be considered as continuous. Hence, intro-
ducing the spin vector field m(r) with the norm |m(r)| = 1,
in the usual way we obtain an expression for the energy of
continuum version of the model (7) on triangular lattice:

E = EJ + ED + EK + EZ + EA, (9)
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with

EJ =
√

3S2J
2

∫ ∑
μ=x,y,z

(∇mμ)2ds, (10)

ED =
√

3S2D
a

∫
[mz · (∇m) − (m∇) · mz]ds, (11)

EK =
∫

2S3K(x, y) ·
(

m ·
[
∂m
∂x

× ∂m
∂y

])
ds, (12)

EZ =
∫

2SgμB

a2
√

3
B(x, y)(1 − mz )ds, (13)

EA = 2S2A
a2

√
3

∫ (
1 − m2

z

)
ds, (14)

where ∇ = (∂/∂x, ∂/∂y, 0), ds = dx ∧ dy, a is the triangular
lattice parameter, and the integration is carried out in the R2

domain, where magnetic moments exist.
It is important to note that expressions (9)–(14) describe

the excitation energy of the system over homogeneous state
with mz(r) ≡ 1. It can be easily seen that the term EK , char-
acterizing the scalar chiral interaction, is proportional to the
integral over R2 of the density of the topological charge (1)
with the kernel

2S3K(x, y) = 48t3

U 2
S3 sin [π
	(x, y)], (15)

describing the spatial profile of the externally applied mag-
netic field B(x, y). In the case of homogeneous field the
contribution of EK is reduced to a shift of the energy E by the
value proportional to the topological charge of the magnetic
configuration, and therefore cannot give rise to a new mag-
netic structure. Below we will show that due to inhomogeneity
of the external magnetic field the scalar chiral interaction can
lead to stabilization of both simple MS with n = 1 and HOMS
with n > 1.

In Secs. III and IV we will demonstrate the formation of
HOMS in the external magnetic field

B(r) = B0h(r), (16)

described by the simplest axially symmetric linear depen-
dence

h(r) = r,

with r being the distance from the center of the skyrmion mea-
sured in units of interatomic spacing a: r = |r|/a. Parameter
B0 in (16) is induction of the magnetic field at the distance a
from the center of MS.

At the same time, due to smallness of 
	(r), it can be
assumed that the spatial profile of the amplitude K(r) (15)
follows the external magnetic field profile (16):

K(r) ∼ h(r), (17)

and therefore can be varied experimentally. Later, in Sec. V
we will consider a more general profile function h(r) = rβ

(β ∈ R) in order to consider the robustness of HOMS against
magnetic field variation.

It is important to stress that in (13), (16), and below we
will mainly consider only the z component of the magnetic
field neglecting its radial components: B = ( 0, 0, B(r)). In
this case, to satisfy the Maxwell equation ∇ · B = 0, it is

necessary to assume that ∂B / ∂z = 0. Thus, except the end of
Sec. VI, we will consider idealistic case of nonuniform mag-
netic field B with the profile h(r) = rβ , which is independent
of the coordinate z.

IV. HOMS IN THE CHIRAL HEISENBERG MODEL
WITHOUT ZEEMAN SPLITTING

Let us consider the issue of HOMS stabilization within
the chiral Heisenberg model (7), which takes into account
the interaction of orbital degrees of freedom with an external
magnetic field (K �= 0), but neglects the Zeeman splitting
[H = 0, see Eq. (25)]. In particular, such a situation can be
realized both for FM skyrmions at zero values of the g factor
and for AFM skyrmions [55].

To study the conditions of HOMS stabilization we will use
the variational approach for the classical continuum functional
(9) corresponding to the effective Hamiltonian (7) with the
hierarchy of parameters set above in (8). Minimization of the
functional (9) will be carried out with the vector profile of the
HOMS defined by the following parametrization [56]:

mx = sin � cos nϕ; my = sin � sin nϕ; mz = cos �;

�(r, R, w) = 2 arctan

(
cosh (R/w)

sinh (r/w)

)
, (18)

where φ is the polar coordinate of the vector r ∈ R2, � and
nφ are polar and azimuthal angles of the unit vector m(r). The
corresponding vector profiles (with square grid for simplicity)
are shown in Fig. 1.

The parametrization with the radial function �(r) is widely
used to describe skyrmions with n = |Q| = 1 and has demon-
strated excellent agreement with physical and numerical
experiments [56]. In the case of HOMS, we have neither
numerical nor physical results for the similar comparison.
Moreover, a detailed numerical analysis of the �(r) behavior
for various parameters and boundary conditions is rather hard
and beyond the scope of this work. Thus, let us present in
our study only the qualitative arguments, which are usually
used in justifying the ansatz (18) for MS with n = 1, and
demonstrate that they are also valid for HOMS in nonuniform
fields.

Having parametrized the HOMS by Eq. (18) we, in fact,
considered it as an axially symmetric 1D π -domain wall with
w being its width, and R the distance from the center of the
skyrmion to the domain wall middle with both defined in units
of a. The equation for the spatial profile of such a domain
wall can be obtained by considering the 1D restriction of
the functionals (9)–(14) and writing the Euler-Lagrange equa-
tions for it [57]. Assuming that mz = cos �, considering the
radial direction and neglecting the magnetization changing in
the azimuthal direction in the film plane we obtain following
equation:

d2 �

d r2
− A

2J
sin 2� − H

2J
h(r) sin � = 0. (19)

It is easy to verify that the function (18) is a solution of
(19) at H = 0 and R � w. If H 
 J , the exact solutions of
Eq. (19) can still be approximated with a high precision by
the ansatz (18), as shown in Fig. 2 for field profile h(r) = rβ
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FIG. 1. Spatial profiles of HOMS: (a) n = 1, (b) n = 2. The
inserts on the right visualize the profiles by means of color scheme
used below in the text. The black and white colors correspond to
the directions with mz = +1 and −1, respectively. In the case of
mz �= 1, the color corresponds to the direction of projection of the
magnetization field m(r) onto the plane XoY. If {mx, my} = {1, 0},
then the color is red; {mx, my} = {cos 2π

3 , sin 2π

3 }, the color is green;
{mx, my} = {cos 4π

3 , sin 4π

3 } the color is blue. For clarity, vector pro-
files are presented in the same color code.

at β = 0, ±1. The deformation of the domain wall profile due
to nonuniform magnetic field can be significant if Hh(r̃) ∼ J
in the interval R − 2w < r < R + 2w. However, in what fol-
lows we will consider regimes with Hh(r) 
 J and w 
 R
neglecting the deformation of the domain wall radial profile.
In other words, we will consider the function �(r) [Eq. (18)]
as an appropriate ansatz for our study.

Note that in the presented qualitative consideration, nei-
ther the scalar chiral interaction K nor vorticity n appears in
Eq. (19). Thus, the arguments presented here to justify the
validity of the 2π domain wall ansatz are equally valid for
both ordinary skyrmions and HOMS. Also note that at the end
of Sec. VI we present another numerical justification of the
ansatz (18) for the case of linearly decreased magnetic fields.

Suppose that the center of the skyrmion core (point r = 0)
coincides with the projection of the axis of rotation of the axi-
ally symmetric profile of the applied magnetic field B(r) onto
the plane R2 hosting magnetic moments. Then, substituting
the parametrization (18) into the classical continuum version
(9) of the Hamiltonian (7), we obtain an expression for the

FIG. 2. Radial profiles of domain walls. Solid lines describe nu-
merical exact solutions of Eq. (19) with J = 20, A = 0.6, H = 0.05,
h(r) = rβ . The dashed lines are calculated using the ansatz (18) with
the fitting parameters {R,w}: {17.5, 2.9} for β = 1; {25, 5.7} for
β = 0; {35.5, 5.7} for β = −1.

energy functional allowing for magnetic skyrmion solutions:

E = EJ + ED + EK + EA, (20)

where

EJ = J

2

∫ ∞

0

[(
d�

dr

)2

+ n2

r2
sin2 �

]
r dr, (21)

ED = δn,1
D

π

∫ ∞

0

[
d�

dr
+ sin 2�

2r

]
r dr, (22)

EK = K n

2

∫ ∞

0
h(r) sin �

d�

dr
dr, (23)

EA = A

2

∫ ∞

0
sin2 � r dr. (24)

Here the following energy parameters were introduced:

J = 8π
√

3 S2 t2

U
; D = 16π2

√
3 S2 tα

U
; A = 8π√

3
S2 A;

(25)

K = 192 π2 S3 

(0)
	

t3

U 2
; H = 32 π

3
S 


(0)
	 gμB B̄,

where B̄ = φ0 / a2, 

(0)
	 is the magnetic flux of the field B0

through a triangular plaquette measured in units of magnetic
flux quantum φ0 = ch / 2e. Here we have also introduced the
parameter H describing the energy of the Zeeman splitting,
which will be taken into account in the next section [see
Eq. (32)]. Hereinafter we will assume that HOMS are char-
acterized by a narrow domain wall. This means that the
parameter ρ = R/w � 1. Then, calculating integrals (21)–
(24) under these assumptions and using approximations made
in [56] (see Appendix D), we obtain an expression for the
functional E (n, ρ,w):

E = J (ρ + n2ρ−1) − D ρ w δn,1 − K n ρ w + A ρ w2. (26)

It can be seen that in the case of n = 1, the scalar and vector
chiral interactions either enhance or compete with each other.
The functional of type (26) for n = 1 was considered in [56].
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FIG. 3. Dependencies of the optimal parameters of HOMS: ra-
dius R∗, domain wall width w∗ and energy E∗ on the topological
charge n. The circles correspond to the energy parameters in eV:
J = 160, D = 0, K = 2, A = 0.2. For the case n = 1, the squares
also represent the results of the calculation if the Dzyaloshinskii-
Moriya interaction appear, D = 8 eV. The numbers M1 and M2 from
Eq. (31) are shown in plot (d) as blue dots and red circles, respec-
tively. These dependencies correspond to the minimum of the energy
functional (26).

Making substitution D → D + K in their result we find the
optimal sizes of a MS in our model:

R∗ = (D + K )

√
J

4JA2 − (D + K )2A
; w∗ = D + K

2A
,

n = 1. (27)

Note that for competing scalar and vector chiral interactions,
sign(K ) = −sign(D), the expressions (27) are still correct if
the conditions we need R∗ � w∗ � 1 are fulfilled.

In the case of the HOMS with n > 1, the optimal parame-
ters R∗ and w∗ can also be found simply by solving a system
of algebraic equations

J (ρ2 − n2) − Knρ2w + Aρ2w2 = 0;

−Knρ2w + 2Aρ2w2 = 0. (28)

Since the parameter D is absent here, the only factor of sta-
bilization of the HOMS is the scalar chiral interaction. The
solution of Eq. (28) is convenient to write in variables:

n∗ ∈ N; ws = K / 2A; Rs = ws

√
1 − K2/4JA, (29)

where

n∗ = round

[ √
1/2

1 − (ws/Rs)2

]
= round

[ √
2 J A

K2

]
,

and round(. . .) is rounding to the nearest integer. The param-
eters Rs and ws determine the MS optimal size in the uniform
field at n = 1 and D → K . In the variables introduced, the

FIG. 4. Spatial profiles of the HOMS with n = 3, 4 with the
optimal sizes R∗ and w∗ corresponding to Fig. 3.

solution of Eq. (28) has the form

w∗(n) = ws n,

R∗(n) =
√

2 ws n2 (2n2
∗ − n2)−1/2,

E∗(n) =
√

2 J

(
n

n∗

)
(2n2

∗ − n2)1/2. (30)

As n increases from 2 to maximally allowed nmax = √
2n∗, the

HOMS domain wall width w∗ grows linearly, while the radius
R∗ grows quadratically (see Fig. 3). Hence, skyrmions become
larger and have a sharper domain wall as n increases (see
Fig. 4). At the same time, the obtained hierarchy of parameters
J � |K| � |A| leads to the desired properties of HOMS: n∗,
ρ∗, w∗ � 1.

Note that under the conditions

K n

2A
→ ±

√
J

A

the HOMS sizes (both R∗ and w∗) tend to infinity. The di-
vergence of the radius R∗ is evident from Eq. (30). The
divergence of w∗ can be seen by solving the system (28) with
respect to w and estimating the convergence conditions of
solutions according to the method [58]. This feature of the
model is due to the absence of the Zeeman term in (26).

Note that the property w > 0 leads to the condition
sign(K ) = sign(A) [see Eq. (29)]. So, for an easy-axis (easy-
plane) magnet, the stabilization of the HOMS is possible when
a magnetic flux is positive (negative) at the skyrmion core.

The topological charge of the HOMS is defined as

Q = n

2
(cos �|r=∞ − cos �|r=0) = n.

According to the homotopy theory, the continuous deforma-
tion of the between HOMS with different n is impossible
without overcoming the infinite energy barrier. Accounting
for the discreteness of the lattice makes the barriers finite
and leads to the possibility of tunneling the system between
metastable states with different n. Calculation of the minimum
energies of such transitions and lifetimes of metastable states
is beyond the scope of this study.

In order to explicitly demonstrate that the found
HOMS states are metastable ones we will calculate the
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characteristics

M1 = sign

(
∂2E

∂w2

)∣∣∣∣
w=w∗
R=R∗

,

M2 = sign

[
∂2E

∂w2

∂2E

∂R2
−

(
∂2E

∂w ∂R

)2
]∣∣∣∣∣

w=w∗
R=R∗

. (31)

Then the condition M1,2 = +1 corresponds to the local mini-
mum of the functional E (26).

Thus, the formulated model (7) demonstrates the possi-
bility of stabilization the HOMS with |Q| > 1 due to the
scalar chiral interaction and orbital effects of magnetic field
but in the absence of Zeeman ones. Wherein, there are some
constraints on the model parameters for which the formation
of HOMS is possible. Below, we will demonstrate the effects
induced by Zeeman splitting.

V. EFFECT OF ZEEMAN SPLITING

Taking into account the interaction of the magnetic field
(16) with spin degrees of freedom, the Zeeman term EZ must
be added to the energy functional (20):

E → E + EZ ,

EZ = H

2

∫ ∞

0
h(r) ( 1 − cos � ) r dr

= H
(w

2

)β+2
�β+2 Liβ+2(−e2ρ, δr). (32)

Here we assume that h(r) = 0 if r < δ r where parameter
δ r � 0 depends on β and is introduced to regularize the in-
tegral (32). Under this assumption, in Eq. (32) the incomplete
polylogarithm naturally arises,

Liβ+2(−e2ρ, δr) = −1

�β+2

∫ ∞

δr

tβ+1 dt

et−2ρ + 1
, (33)

where �β+2 is the gamma function of argument β + 2. It can
be seen from the consideration of Eq. (33) that it is necessary
to assume δr > 0 if β < −1 and we can assume δr = 0 oth-
erwise. In what follows, we will consider in detail the field
profiles with β � −1 and therefore will take δr = 0. In this
case we will use the asymptotics

Liβ+2(−e2ρ, δr = 0)|ρ�1

=
∑

2k�β+2

(−1)k (1 − 21−2k )
(2π )2k

2k !

B2k

�s+1−2k
(2ρ)s−2k,

(34)

where B2k is the Bernoulli number.
Equation (32) describes the Zeeman splitting energy of the

HOMS in magnetic field with the profile h(r) = rβ . For the
simple “linear” case β = 1, the asymptotics of Zeeman term
is

EZ = H̄ (ρ3w3 + c2ρw3), (35)

where H̄ = H/3, c = π/2. Then the excitation energy of the
HOMS with an arbitrary n has the form

E = J (ρ + n2ρ−1) − Knρw + Aρw2 + H̄w3(ρ3 + c2ρ).

(36)

Their sizes are defined by the system of two equations

J (ρ2 − n2) − Knρ2w + Aρ2w2 + H̄w3(3ρ4 + c2ρ2) = 0;

− Knρ2w + 2Aρ2w2 + 3H̄w3(ρ4 + c2ρ2) = 0 (37)

that can be represented as equation of the fifth degree in w:

w5 6H̄2 c4 + w4 7A H̄ c2 + w3 (2A2 − 2Kn H̄ c2)

+ w2 [−A Kn − 3J H̄ (n2 + c2)] − w 2J A + J Kn = 0,

(38)

when taking into account the relations

R = ρ w =
√

Kn − 2A w − 3H̄ c2 w2

H

= π

2

√
−(w − w+)(w − w−) ;

w± = ± 1

H c2
[R ∓ A sign(H )]; R =

√
A2 + K n H c2.

(39)

It was found that out of the five roots of Eq. (38), there
is always only one actual root that satisfies the conditions
ρ, w ∈ R and ρ, w � 1. Moreover, from Eqs. (38) and
(39) it can be seen that HOMS sizes are restricted by the
inequalities

1 
 w∗ � w+; 1 
 R∗ � 2R / π |H |.
Thus, taking into account the Zeeman splitting leads to a
principal limitation on the skyrmion sizes, which are obtained
from Eq. (38) at A = 0 (see Appendix D):

w∗ ≈ 1√
H

y − π2

12 JH
y4 + 5π2

√
H

288(JH )2 y7,

R∗ ≈
√

K n / H − π2 w2∗ / 4, y =
√

K n

n2 + c2
. (40)

At the same time, there are no restrictions on the very im-
plementation of HOMS. The reason for this is related to the
faster asymptotic growth of the Zeeman energy EZ with in-
crease of w as compared to the energies of anisotropy EA and
scalar chiral interaction EK [see Eq. (42) and their discussion].
Note that these conclusions are obtained in the framework of
considered “linear” field model with h(r) = r. The physical
limitations of the model itself are briefly discussed in Sec. VI.

Note that the approximate solution (40) of Eq. (38) has
been obtained for the case A = 0 (see Appendix D). Wherein,
in the case A �= 0 Eq. (38) can be solved in the similar way,
but this solution is not given here due to its complexity. In
Fig. 5 the typical dependencies of the energy and size of
HOMS on the vorticity n are shown. Dots represent depen-
dencies at A = 0, asterisks at A �= 0. Also, the cases with
A = 0 and A �= 0 are shown in Fig. 6 in w∗ vs K and R∗ vs
K dependencies by the curves and dots, respectively. It can
be seen that the behavior of such dependencies for A 
 K, J
and n � 2 coincide semiquantitatively with the case A = 0,
described analytically. Also, in Fig. 5, the squares demonstrate
the energy and size of the ordinary skyrmion (n = 1), then the
Dzyaloshinskii-Moriya interaction with the amplitude D ∼ K
is taken into account. It is seen that the size of the skyrmion
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FIG. 5. (a)–(c) Dependencies of the HOMS sizes and energy on
the topological charge n. Dots represent the case A = 0 and D = 0,
squares the case A = 0, D = 0.1 eV, and n = 1. Asterisks represent
the case A = 0.006 eV and D = 0. The behavior of M1 and M2 (dots
and circles, respectively) are the same for A = 0 and A �= 0 and
shown in (d). The other parameters in eV are J = 160, K = 0.076,
H = 10−4.

increases in this way without a significant change of its exci-
tation energy.

VI. STABILITY OF HOMS UNDER MAGNETIC PROFILE
VARIATIONS

Let us consider the stability of the HOMS in inhomo-
geneous magnetic fields beyond the linear approximation:
h(r) = rβ , with arbitrary β ∈ R. Then the functional E , which
describes the energy of a HOMS with a sharp domain wall, has
the form (see Appendix C)

E = J (ρ + n2ρ−1) − D ρ w δn,1 + A ρ w2

+ (
E (β )

K + E (β )
Z

)
,

FIG. 6. Dependencies of the optimal HOMS sizes: the domain
wall width w∗ and the radius R∗ on the amplitude of the scalar chiral
interaction K at n = 3. The solid and dashed curves correspond to
the numerical and analytical [see (40)] solutions of Eqs. (38) and
(39) at A = 0, respectively. The dots represent numerical solution of
Eqs. (38) and (39) for A = 0.006 eV. The other parameters are the
same as in Fig. 5.

E (β )
Z = −H

(w

2

)β+2
�β+2 Liβ+2(−e2ρ, δr),

E (β )
K = −K n ρβ wβ. (41)

Note that in the regime J � K � A, H one can give quali-
tative arguments concerning the existence or absence oflocal
minima of the functional (41). Taking into account only the
term with J leads to a line ρ = n of degenerate local minima
in the plane (ρ, w). Since J is the largest energy parameter,
we can restrict the functional (41) as

E → Ẽ (w) = E ( w, ρ = n ).

Then we can analyze the function of one variable, Ẽ (w), in
order to find local minima corresponding to the HOMS with
topological charge n > 1. Thus, estimating the characteristic
lengths of such structures requires solving the equation

1

w

d Ẽ

d w
= 2 A n − K β nβ+1 wβ−2

− H
β + 2

2β+1
�β+2 Liβ+2(−e2n) wβ = 0, (42)

with w � 1 and d2E / dw2 > 0. Analysis of Eq. (42) makes it
possible to find a qualitative difference between the conditions
for the formation of HOMS with and without the Zeeman
effects of magnetic field. For the last case the actual solutions
with w∗ � 1 arise if

β < 2; sign(K nβ ) = sign(β A); sign(A n) > 0.

If, along with the orbital ones, we take into account the
Zeeman effect of the magnetic field, there is a competition
between terms on the right side of Eq. (42) proportional to K ,
A, and H [recall that Liβ+2(−e2ρ ) < 0].

In the case of increasing fields β > 0, the main competition
takes place between interactions with amplitudes K and H .
So, for small w we have wβ−2 � wβ and dẼ / dw < 0, while
for large w the relations are inverse. Thus, the right-hand side
of Eq. (42) changes sign from negative to positive for certain
w∗(n), which leads to the formation of an HOMS for arbitrary
β > 0.

For decreased fields β < 0, the main competition
takes place between the interactions describing single-ion
anisotropy (A) and the interactions arised from an external
magnetic field (K and H). Moreover, the details of such com-
petition differ in cases −2 < β < 0 and β < −2. If −2 <

β < 0 the best way to find the HOMS solution is to fulfill
the relations

sign(A n) = 1, sign(K ) = sign(H ) = −1. (43)

Thus, an applied magnetic field should be negative. In the case
of rapidly decreased fields β < −2, HOMS stabilization is
also possible, but with the dominance of the Zeeman effects
of the magnetic field.

Thus, the conditions for the formation of HOMS are much
broader if we take into account the Zeeman splitting compared
to if we neglect it. However, in a uniform magnetic field (β =
0), HOMS do not arise in both cases.

Moreover, one can verify that under the conditions Jn �
Knβ+1 w

β−1
∗ , Hw

β+1
∗ solutions of Eq. (42) make it possible to

semiquantitatively describe the dependence of the energy and
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size of the HOMS for various topological charges n, and the
magnetic field profile degree β. For large w∗ and n the above
qualitative description is invalid. In particular, one cannot
predict in this way the absence HOMS for β = 1, n > n∗ if
we neglect the Zeeman splitting.

To demonstrate the validity of the above qualitative con-
clusions, let us consider the question of implementation of
HOMS for some particular cases:

(1) β = 0–the uniform field. In this case

E (0)
Z = H

(
1

2
ρ2w2 + π2

24
w2

)
; E (0)

K = −Kn.

Such functional describes magnetic skyrmions in the systems
without chiral interactions (see Ref. [56]). So, HOMS do not
arise.

(2) β = 1. The skyrmions in “linear increased” field

E (1)
Z = H

(
1

3
ρ3w3 + π2

12
ρw3

)
; E (1)

K = −Knρw.

The implementation of the HOMS for such a field has been
demonstrated analytically in Secs. III and in IV.

(3) β = 2. The case of a skyrmion in “quadratic” inhomo-
geneous magnetic field. Thus,

E (2)
Z = H

4
w4

[
ρ4 + π2

2
ρ2 + 7

15

(π

2

)4
]

;

E (2)
K = −Knρ2 w2.

(4) β = 1
2 . The case of a skyrmion in “square-root” inho-

mogeneous magnetic field. For it

E (1/2)
Z = H w2 ρ1/2 w1/2

(
2

5
ρ2 + π2

16

)
;

E (1/2)
K = −Kn ρ1/2 w1/2.

(5) β = −1. The case of a “linear decreased” magnetic
field with the functional

E (−1)
Z = Hρ w ; E (−1)

K = −Kn ρ−1 w−1.

Cases 2–5 are visualized in Fig. 7. Minima of energy
functionals with β = 2, 1

2 , −1 were fined numerically by
the gradient approach. The results of such study are shown
in Fig. 8. It can be seen that for all considered β there are
local minima corresponding to HOMS solutions.

Moreover, it can be shown that the HOMS states with
large topological charges n � 1 can be have E∗ < 0 and be
stable if β � 2 (see Fig. 8). However, it should be noted that
the creation of such HOMS requires magnetic fields with a
very high intensity at the skyrmion boundary, and therefore
has physical limitations. Some of these limitations are briefly
discussed in Sec. VI.

Let us now consider the case of linear decreased magnetic
fields β = −1 in more detail since the physical systems which
could correspond to this case have been recently studied. It
has been shown in Refs. [24–29] that an axially symmetric
bound state of a magnetic skyrmion–Pearl vortex can be real-
ized in superconductor-chiral magnet heterostructures. If the
vortex size significantly exceeds the skyrmion radius λ � R,
the skyrmion can be considered in the main approximation
as placed in a magnetic field B = B ez + Br er , with linearly

FIG. 7. Visualization of the spatial profiles of HOMS in inho-
mogeneous “linear increased” (β = 1), “quadratic” (β = 2), “square
root” (β = 1/2), and “linear decreased” (β = −1) axially symmetric
magnetic fields. The spatial profiles of the last ones are depicted in
blue, orange, pink, and gray colors, respectively. In the latter case, the
HOMS stabilization requires negative applied fields [see Eq. (43) and
discussion below Eq. (48)]. For clarity, the modulus of the applied
fields is limited in the plots.
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FIG. 8. Dependencies of the HOMS parameters on the topolog-
ical charge n in (a) “square root” (β = 1

2 ), (b) “quadratic” (β = 2),
and (c) “linear decreased” nonuniform magnetic fields. In (a) and
(b) all parameters and symbols are the same as in Fig. 5. In (c) the
energy parameters in eV are J = 17, K = −1, H = −0.012, A =
0.001.

FIG. 9. Left: field dependencies of radius, R∗ the solid curve,
and domain wall width, w∗ the dashed curve, of HOMS with n = 3.
Right: the ratios of the Zeeman contributions on the interaction of
HOMS with the transverse EZ and radial E (r)

Z components of the
magnetic field. The solid and dashed lines correspond to the calcu-
lation of the Zeeman contributions by Eqs. (32) and (46) using the
skyrmion angle functions � and �̃, described by the ansatz (18)
and (44), respectively. In both panels, the external magnetic field
is negative; it is directed opposite to the magnetization outside the
HOMS boundary. The last one is marked as −B0(T).

decreased longitudinal and radial components: B ∼ Br ∼ 1 / r
[27–29]. It has been shown in Ref. [29] that the radial field
components lead to a distortion of the skyrmion texture with
n = 1, which is well described by the ansatz (18) with modi-
fied skyrmion angle

�(r) → �̃(r) = �(r) + δ�γ (r) cos �(r), (44)

δ�γ = φ0 μB gS

8 π
√

J A λ

[
K1

(
r√
J/A

)
−

√
J/A

r

]
, (45)

where K1(x) is the modified Bessel function of the second
kind. Let us assume that an axially symmetric structure with
a skyrmion angle �̃(r) is realized in the case of HOMS with
n > 1. Then, assuming the system parameters corresponding
to Fig. 8(c) and Eq. (52) it can be shown that δ� ∼ 10−3

in a wide range of variables R and w. Thus, in our case we
can use an ansatz (18) as appropriate for our calculations:
�(r) ∼= �̃(r).

Moreover, if we take into account the contribution to the
energy functionals [Eqs. (21)–(24) and (32)], the Zeeman
term describing the interaction of magnetic system with radial
magnetic field component

E (r)
Z = H

2

∫ ∞

0
h(r) sin � r dr (46)

we obtain that in a wide range of variable parameters R and w

the ratio of the Zeeman contributions is almost constant (see
the right panel of Fig. 9):

EZ

E (r)
Z

∼= const.

This ratio depends significantly only on the material parame-
ters J , D, K , A, and H . This means that in the case of β = −1
and the considered energy hierarchy (8), description of the
HOMS excitation energy by the function

E (−1) = J (ρ + n2ρ−1) − K n ρ−1w−1 + A ρ w2 + H ρ w

(47)
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can be considered as a suitable zero-order approximation in
the problem of HOMS in the field of a Pearl vortex, even
when the radial components of the field are taken into account.
The radial components in this approximation lead to a renor-
malization of the parameter H in Eq. (47). Refinement of this
approach will be the subject of further study.

Interestingly, in the case under consideration, the depen-
dence of the optimal sizes of HOMS on the system parameters
is also found analytically by minimizing the function in
Eq. (47):

R∗ = w∗ n√
1 − A w2∗ / J

; w∗ = 3 u1/3

3 u1/3 − Hn / K + A / J
;

u = −A n

K
+

√(
A n

K

)2

+
(

Hn

3K
− A

3J

)3

. (48)

The dependencies of the HOMS sizes with n = 3 on the
induction of the external magnetic field are shown in Fig. 9.
It can be seen that with an increase in the field strength, both
the HOMS radius R∗ and the domain wall width w∗ increase.
At the same time, the ratio ρ∗ = R∗ /w∗ also rises with an
increase in both the induction amplitude |B0| and the vortic-
ity n, which corresponds to the assumption of the analytical
theory. It is important to note that the applied magnetic field
should be negative, B0 < 0, in order to stabilize HOMS, if
the inhomogeneous fields are decreased: β < 0 [see Eq. (43)].
In this case, the growing of R∗, w∗ vs |B0| dependencies in
Fig. 9 correspond to rise |EZ | since inside the HOMS core the
magnetic field amplitude is maximum and directed along the
magnetic moments. In the case of growing magnetic fields,
the magnetic field strength is maximum beyond the skyrmion
boundary, and to minimize the Zeeman contribution to the
HOMS excitation energy, the field should be applied along
the magnetic moments outside the boundary. This seems to
be the main reason for the differences in the conditions of
HOMS stabilization at β > 0 and β < 0, concerning the sign
of applied magnetic field.

Note that the numerical analysis of the functionals (20)–
(24) and (32) showed the absence of metastable HOMS states
in the cases β = −1 and n = 2. Therefore, in Fig. 8(c), the
dependencies start from the values n = 3.

VII. SPECULATIONS ABOUT PRACTICAL
REALIZATIONS

As already mentioned, the HOMS stabilization models
proposed above are idealized since they consider nonuniform
magnetic fields of cylindrical symmetry with a power-law de-
pendence of their intensity on the radius h(r) ∼ rβ . However,
even within the framework of such models, there are physical
limitations associated with HOMS morphology, the hierarchy
of energy parameters, and the limiting strengths of magnetic
fields. Let us consider these limitations, as well as promising
physical systems in which HOMS could be observed.

Morphological limitations are related to the fact that we
use the continuum description of HOMS with a sharp domain
wall. Such a description assumes that the optimal sizes of
structures satisfy the inequalities

R∗ � w∗ � a; 2 π R∗ � n a. (49)

Restrictions on the magnetic field profiles are related to the
fact that the maximum values of the applied field induc-
tion should not exceed the experimentally achievable values
Bexpt ∼ 10 T. In the case of fields with the profiles h(r) = rβ ,
such conditions differ for the cases of increased and decreased
fields:

B0 � Bexpt, β < 0

B0 Rβ
∗ � Bexpt, β > 0. (50)

The connection between B0 and H is defined in Eq. (25).
Thus, the magnetic field strength must have an upper limit,
at the core or the radius of the skyrmion. It can be seen from
Eqs. (39) and (40) that the condition

Kn ∼ D � H (51)

can serve as a criterion for the constraint discussed. This ex-
pression implies that the scalar chiral interaction should have
the same order of amplitude as the Dzyaloshinskii-Moriya
interaction. On the other hand, the amplitude of the scalar
chiral interaction is itself proportional to the magnetic field
strength in the skyrmion core: K ∝ H . This condition together
with Eq. (51) gives restrictions on the parameters of the micro-
scopic Hubbard model U , t , α. So, the described constraints
restrict the class of candidate materials for the implementation
of HOMS in nonuniform magnetic fields. Nevertheless we
stress that such parameter range still exists and corresponds
to the regime of strong electron correlations. For instance, it
is easy to verify that for the parameters

t = 0.7 eV; U = 5 eV; α = 0.01 eV;

a = 10 Å; B0 = 5(22) T; S = 2; g = 1, (52)

the higher-order magnetic skyrmions exist within all the con-
sidered energy functionals. Herein, B0 = 5 T corresponds to
the case of increasing field β > 0, and B0 = 22 T describes
the case of decreasing field β = −1. The values of t and U in
(52) satisfy the conditions at which the effective interactions
were obtained in Appendix B and are very close to that usually
used, for example, when describing the properties of high-
Tc cuprates within the Hamiltonian of the Hubbard model
[59,60]. However, the variation range of these parameters
is not too wide if we focus on the low-energy Hamiltonian
described in Appendix B.

It can also be seen from Eqs. (25) and (51) that the layered
systems having a larger magnetic cell and a smaller Lande
g factor of magnetoactive ions are more preferable. To pre-
serve the effect of scalar chiral interactions, the bandwidth of
the Hubbard model should not be very small provided that the
t 
 U constraint is hold. From what has been said, it follows
that the implementation of stable states of the HOMS type
with n � 1 and E∗ < 0 [see Fig. 8(b)] may be problematic in
practice. Indeed, such states imply a sufficiently strong scalar
chiral interaction K , which, in turn, requires a sufficiently
strong magnetic field B0. Thus, such states would contradict
the restrictions (49) and (50). It is worth to stress that the
conditions (49)–(51) take place when the orbital and Zeeman
effects of the magnetic field are jointly taken into account. If
we consider only orbital effects of the magnetic field, then
only the constraint (50) remains. In this case, the limitation
on magnetic field strengths is less severe, however, there is
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FIG. 10. Scheme (adopted from work [61]) of a Néel skyrmion
with the radius rsk = R creating an antivortex with the flux 
0 =
ch/2e antiparallel to the external magnetic field. The antivortex cur-
rents js flow at radii up to λ. The superconducting order parameter
| � | is suppressed over a length ξ ∼ Rv in the vortex core.

a stronger limitation on the magnetic field profiles (i.e., on
the degree β), as noted in Sec. VI. Let us briefly consider
the question of the sources of an axially symmetric inhomo-
geneous magnetic field. As already mentioned at the end of
Sec. III, for the profiles with β > 0 we consider magnetic
fields that do not depend on the Cartesian z component. In
practice, such a situation can be realized when a magnetic
film is placed in a cylinder of anisotropic magnetic material.
However, at present it is not clear how such a system can be
used in spintronics and quantum computing devices. In this
regard, it seems more promising to use a bound state of a
magnetic skyrmion–superconducting vortex that corresponds
to the profile with β = −1. Recall that such bound states
can arise due to spin-orbit interaction and proximity effects
[62,63], as well as stray fields [24–28]. Moreover, it has been
shown in recent Refs. [27,28] that taking into account suffi-
ciently strong stray fields can lead to the stabilization of an
axially symmetric configuration of MS and superconducting
vortices (see Fig. 10). Practically, the bound state of magnetic
and SC vortices can arise when a magnetic thin field/thin
dielectric layer (for example, MnO)/and type II SC (for ex-
ample, Nb) heterostructure is created. It is now claimed that
such a state has been experimentally observed in the structure
[Ir1Fe0.5Co0.5Pt1]10 / MgO / Nb [61]. Thus, if a vortex state is
realized in the superconductor with the vortex center at the
point r0 and the coherence length ξ (see Fig. 10), then in
the spatial region | r − r0| 
 ξ the “power-law” profile of the
external magnetic field h(r) ∼ a + b r−γ is realized and the
HOMS could arise. However, the solution of such a problem
requires prior determination of the spatial profile of the stray
magnetic field near the vortex and further application of the
approach developed in this work. This problem will be the
subject of further research. In concluding this section, we note
that bound states of a magnetic skyrmion–superconducting
vortex are currently being studied in the context of the search
for Majorana bound states localized on the MS. The rea-
son for such a search was that the Majorana modes can be
localized either on the HOMS with n > 1 in homogeneous
superconductors [22], or on the MS with n = 1, but near the
superconducting vortex [23]. In this work, we have seen that
nonuniform axially symmetric magnetic field by itself can be

a source of HOMS with n � 2. This case is close to the field
profile in the SC vortex. Since there exist today technologies
for controlling the position of both superconducting vortices
and skyrmions, another possible application of HOMS seems
to be the creation and manipulation of the Majorana modes,
their braiding, and quantum computations [20,21].

VIII. SUMMARY

The mechanism of stabilizing higher-order magnetic
skyrmions (HOMS) in 2D systems due to orbital effects of
the nonuniform magnetic field is demonstrated. To estimate
the characteristic energies of orbital contributions, we derive
effective spin-spin interactions in the framework of the 2D
Hubbard model in an external magnetic field and with ac-
count for the Rashba spin-orbit coupling. It turned out that
in the regime of strong electron correlations and relatively
weak spin-orbit coupling, effective spin interactions include
scalar and vector chiral contributions, which can be of the
same order of magnitude. The vector chiral interaction, or
the Dzyaloshinskii-Moriya interaction, is determined by the
spin-orbit coupling constant and depends on the material char-
acteristics. The contribution of the scalar chiral interaction
depends on the spatial profile of the external magnetic field.
For homogeneous fields, it just shifts the reference energy
by a value proportional to the topological charge of the spin
configuration. In the case of nonuniform field, the scalar and
vector chiral terms can either compete or complement each
other. We consider in details the question of the competition
of chiral interactions for the case of an axially symmetric
“linear” magnetic field in the context of the formation and
stabilization of HOMS. We assume the field strength takes a
minimum (maximum) value at the center of the skyrmion and
linearly increases (decreases) with distance from its center.
It turned out that for magnetic skyrmions with topological
charge |Q| = 1, scalar and vector chiral interactions and either
complement or compete with each other. More interesting was
the problem of stabilization of axially symmetric higher-order
skyrmions with Q > 1. It turned out that their realization in
an inhomogeneous field is possible, even if only orbital field
effects are taken into account. Moreover, the dependence of
the characteristic parameters of HOMS on the topological
charge or the strength of the applied magnetic field is non-
trivial. To describe it we have developed analytical theory
of HOMS for linear magnetic field. Further, within adopted
hierarchy of effective parameters, we drew conclusions that
qualitatively generalize the results for “linear in r” magnetic
field to the case of power degree fields, B(r) ∼ rβ with β ∈ R.
Specifically, it is concluded that consideration of the Zeeman
effect of the magnetic field in addition to the orbital one
significantly expands the possibilities of HOMS stabilization.
Moreover, it is shown that with β > 1 the HOMS could be
both metastable and stable. The found features can serve as
a platform for the theoretical and experimental search for
higher-order magnetic skyrmions in layered strongly corre-
lated materials by placing them in inhomogeneous magnetic
field. In this respect a promising system is the bound state of
a magnetic skyrmion–superconducting vortex. Recently, such
states have been experimentally discovered in hybrid struc-
tures [Ir1Fe0.5Co0.5Pt1]10/MgO / Nb [61]. Moreover, recent
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theoretical works have shown that the stray magnetic fields
induced by Pearl vortices can serve as a source of coaxial
configuration of superconducting and magnetic vortices on
top of each other in hybrid structure: superconductor/thin di-
electric layer/chiral ferromagnet. With this in mind, as well as
the results of this work, it seems interesting to consider stabi-
lization of the HOMS in the stray fields of a superconducting
vortex, taking into account the orbital and Zeeman effects
of the magnetic field. The higher-order magnetic skyrmions
themselves may be of practical interest for searching for Ma-
jorana bound states [22] on them. So, it is known that the
Majorana modes can be localized either on the HOMS with
n > 1 in homogeneous superconductors, or on the MS with
n = 1, but near the superconducting vortex. In this work, we
have seen that a superconducting vortex by itself can serve
as a source of HOMS with n � 2. In the latter case, HOMS,
which could be carriers of Majorana modes, may have high
prospects for creation of quantum computing devices since
such skyrmions can be quite simply moved in two dimensions,
realizing the braiding operations. In conclusion, we note that
in a recent paper [64] a close problem on the influence of
the scalar chiral interaction on the features of the spin Hall
effect was considered. The spin Hall effect is usually due to
the existence of magnetic skyrmions in the system. However,
the theoretical description of Ref. [64] was carried out at the
phenomenological level without analyzing the details of chiral
magnetic structures, such as magnetic skyrmions.
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APPENDIX A: PERTURBATION THEORY
FOR DEGENERATE SPECTRUM

Let us write the original Hamiltonian H, as a sum of
terms of zero, first, and second order of smallness, and denote
corresponding terms by the lower indices 0, 1, and 2:

H = H0 + V1 + V2. (A1)

Here H0 is unperturbed Hamiltonian and V j ( j = 1, 2) the
operators describing weak interactions. As a basis in the
Hilbert space of the operator H it is convenient to choose
many-body eigenstates | m 〉 of the Hamiltonian H0: H0| m 〉 =
Em| m 〉. An important assumption for the development of the
perturbation theory is the existence of a large energy gap in
the spectrum of eigenvalues Em. The subspace of states with
eigenvalues below the gap (the, so-called, “low-energy” sector
of the Hilbert space) will be denoted further as M and cor-

responding eigenstates and eigenvalues will be numbered by
the symbol m. For numbering states with eigenenergies above
the gap (the “high-energy” sector) we will use the symbol l ,
and the subspace of such states will be denoted as L. Note
that both the states |m〉 ∈ M and the states |l〉 ∈ L can be
degenerate but not all the eigenvalues Em (and as well El ) must
necessarily be equal to each other. Using the many-body states
|m〉 we can define projection operator P onto the low-energy
sector M as P = ∑

m∈M X mm, with X mm = |m〉〈m| being the
Hubbard operators. The projection operator allows to divide
interactions V j ( j = 1, 2) in the Hamiltonian (A1) into two
parts: V j = V̄ j + ¯̄V j . The first part V̄ j , consisting of two terms

V̄ j = P V j P + (1 − P)V j (1 − P),

P V j P =
∑

m,m′∈M
(V j )m,m′ X mm′

,

(1 − P)V j (1 − P) =
∑

l,l ′∈L
(V j )l,l ′ X ll ′ , (A2)

does not mix the low- and high-energy sectors of the Hilbert
space and hence is called the diagonal part. The second part
¯̄V j , also consisting of two terms

¯̄V j = (1 − P)V j P + P V j (1 − P),

(1 − P)V j P =
∑

m∈M
l∈L

(V j )l,m X lm,

P V j (1 − P) =
∑

m∈M
l∈L

(V j )m,l X ml , (A3)

is nondiagonal since it does mix the sectors M and L. In
Eqs. (A2) and (A3) the matrix elements 〈m|V j |l〉 of the opera-
tors V j are denoted as (V j )m,l . Consider the following unitary
transformation of the Hamiltonian H:

H → H̃ = e−S H eS = H + [H, S ] + 1
2 [ [H, S ], S ]

+ 1
6 [[ [H, S ], S], S] + · · · . (A4)

We will assume that the operator S in the formula (A4) is
nondiagonal,

S =
∑

m∈M
l∈L

[(S)m,l X ml + (S)l,m X lm], (A5)

and its decomposition starts with terms of the first order of
smallness:

S = S1 + S2 + S3 + · · · . (A6)

Substitute expressions (A1) and (A6) into the series (A4)
and retain only those terms, whose order of smallness is not
higher than three. In the, obtained in this way, expression for
H̃ we want to get rid of nondiagonal terms by imposing the
following conditions on the operators S1 and S2:

¯̄V1 + [H0, S1 ] = 0, (A7)

¯̄V2 + [H0, S2 ] + [ V̄1, S1 ] = 0. (A8)

As a result, in the Hamiltonian H̃ up to the third order only the
diagonal terms remain. Projecting out, at last, the high-energy
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processes we are left with operators acting only within the
low-energy sector M of the Hilbert space and thus forming
the required effective Hamiltonian

Heff = P HP + 1
2 P([ ¯̄V1, S1 + S2] + [ ¯̄V2, S1])P. (A9)

From the operator equation (A7) follow the equations for the
matrix elements of the operator S1:

(S1)m,l = (V1)m,l

El − Em
, (S1)l,m = − (V1)l,m

El − Em
. (A10)

Here we took advantage of the equalities H0| m 〉 = Em| m 〉
and H0| l 〉 = El | l 〉. Let us represent Eq. (A10) again in the
operator form by introducing operators O and Ō, acting on
the Hubbard operators as follows:

O X lm = X lm

El − Em
; X mlŌ = X ml

El − Em
. (A11)

It can be easily verified that both these operators may be
represented as (H0 − KH0K )−1, where K is the Hermitian
conjugation operator. The difference in notations of the opera-
tors O and Ō is to emphasize that their action is directed to the
right and left, respectively. Taking into account the definitions
(A11), from the expression (A10) one can write

S1 = −O (1 − P)V1 P + P V1 (1 − P) Ō. (A12)

Note also that the property (OH2)+ = H2 Ō implies the anti-
Hermiticity of S1, as it should be. Similarly, from the condition
(A9) for S2, and definitions (A11) for operators O and Ō, it is
easy to get

S2 = O{(1 − P)V1(O[(1 − P)V1P)]}
− O({O[(1 − P)V1P]}V1P)

− O[(1 − P)V2P] − H.c. (A13)

Substituting the expressions (A13) and (A13) into formula
(A9), we obtain the final expression for the effective Hamilto-
nian acting in the low-energy subspace M:

Heff = PHP − 1
2 P[V1(1 − P)O(1 − P)V1

+ V1(1 − P)O(1 − P)V2 + V2(1 − P)O(1 − P)V1

+ H.c.]P + 1
2 PV1O[(1 − P)V1(O[(1 − P)V1P])

− (O[(1 − P)V1P])V1P] + H.c. (A14)

Consider the expression (A14) in the case of a degenerate (in
the absence of perturbation) lower sector M with energy E0.
In this case, the structure of the effective Hamiltonian (A14)
makes it possible to simplify the representation for the oper-
ators O and Ō by writing them both as (H0 − E0)−1 which
allows to omit any prescriptions about their action direction.
Moreover, assuming that in the first order of perturbation
theory the degenerate level E0 remains degenerate, shifting by
the value E1,

E1 = PV1P,

it is easy to show that the effective Hamiltonian up to the third
order is written as

Heff = P[H − V1(1 − P)O(1 − P)V1

− V1(1 − P)O(1 − P)V2 − V2(1 − P)O(1 − P)V1

+ V1(1 − P)O(V1 − PV1 − E1)O(1 − P)V1]P.

This expression was obtained in [65,66] within a different
formalism, which is correct only if the ground state of the
system is degenerate.

APPENDIX B: EFFECTIVE SPIN INTERACTIONS IN THE
2D HUBBARD MODEL WITH SPIN-ORBIT COUPLING

We apply the general formalism developed above to study
effective interactions in the 2D Hubbard model with a Rashba
SOI in the external magnetic field. The Hamiltonian of this
model we write in the form H = H0 + V1, where

H0 =
∑

f

ψ+
f [(ε0 − μ)τ 0 − hτ z]ψ f + HU , (B1)

V1 =
∑
〈 f ,g〉

ψ+
f t̂ f gψg; t̂ f g = t f gτ

0 + iαεμνzτ
μ dν

f g. (B2)

Here the two-component operator ψ f is defined as ψ f =
(c f ↑, c f ↓)T , where c f σ (c+

f σ ) is the annihilation (creation)
operator of an electron on the site f with spin projection
σ (= ± 1

2 ), ε0 the bare onsite energy, μ the chemical potential,
h = μBH with μB being Bohr magneton and H magnetic
field. Pauli matrices are defined in the usual way

τ x =
(

0 1
1 0

)
, τ y =

(
0 −i
i 0

)
, τ z =

(
1 0
0 −1

)
, (B3)

and τ 0 is the unit matrix. The tunneling integral t̂ f g is sup-
posed to be zero only for nearest sites f and g. Therefore,
summation in the formula (B2) is constrained only by the
nearest neighbors, as indicated by the angle brackets. The
diagonal part t f g of the matrix tunneling integral t̂ f g describes
direct electron hoppings, and the nondiagonal part hoppings
due to the spin-orbit interaction with α being intensity of
SOI. In the definition of t̂ f g the symbol εμνz (μ, ν = {x, y, z})
denotes antisymmetric Levi-Civita tensor and d f g the unit vec-
tor, connecting the sites f and g. The operator HU takes into
account the local Coulomb interaction (with energy U ) of two
electrons with opposite spin projections. Consider the system
at half-filling and in the regime of strong electron correlations
U � t, α, h. As a low-energy sector M, we will consider the
space of homeopolar states with one electron at each site. The
high-energy sector L will be formed out of states for which at
least one site has two or no electrons. The projection operator
on the sector M can be written in the form

P =
∏

f

∑
σ

X σσ
f . (B4)

Here Hubbard operators are defined as X nm
f = | f , n〉〈 f , m|

[30,31,67,68] and describe transitions from the many-body
state | f , m〉 to the state | f , n〉 on the site f with quantum
numbers m and n, respectively. Hubbard operators X mn

f and
X pq

g on different sites anticommute if in the result of both
transitions |n〉 → |m〉 and |p〉 → |q〉 the change in the number
of fermions is odd, otherwise they commute. An important
difference between the operators X nm, introduced in Ap-
pendix A, and the operators X nm

f should be noted. While
operators X nm are defined using many-body statesof the entire
system, operators X nm

f are constructed with many-body states
related to only one site f . In our case the basis of states
on the site f includes four states: the state | f , 0〉 with no
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electrons, two states | f , σ 〉 describing one electron with spin
σ , and the state | f , 2〉 with two electrons with opposite spin
projections. The electron annihilation operator on the site f
with spin projection σ can be expressed in terms of Hubbard
operators

c f σ = X 0σ
f + 2σX σ̄2

f . (B5)

In this representation the operator of Coulomb repulsion HU

takes a particularly simple form:

HU = U
∑

f

X 22
f . (B6)

According to the general formula (A14) we can write

Heff = PHP + δH2 + δH3, (B7)

where operators of the effective interactions δH2 and δH3, in
the second and third orders of perturbation theory accordingly,
have the form

δH2 = − 1
2 PV1(1 − P)O(1 − P)V1P + H.c.,

δH3 = 1
2 PV1O[(1 − P)V1(O[(1 − P)V1P])] + H.c. (B8)

Note that the second term in the square brackets of the last two
lines in Eq. (A14) identically equals to zero due to the home-
opolarity condition. Taking into account the expressions (B4)
and (B5) and representing the operator O as (H0 − KH0K )−1,
we come to the following expression for the effective interac-
tion δH2:

δH2 = −1

2

∑
〈 f ,g 〉

Sp[X̂ f t̂ f g Ŷg t̃g f ] + H.c., (B9)

written in terms of the matrices

X̂ f =
(

X ↑↑
f X ↓↑

f

X ↑↓
f X ↓↓

f

)
, Ŷg =

(
X ↓↓

g −X ↓↑
g

−X ↑↓
g X ↑↑

g

)
,

t̃g f =
(

(t̂g f )11/U (t̂g f )12/(U − 2h)

(t̂g f )21/(U + 2h) (t̂g f )22/U

)
. (B10)

These matrices can be expressed via Pauli matrices

X̂ f = τ 0

2
+ S f τ, Ŷg = τ 0

2
− Sg τ, (B11)

t̃g f = 1

U

[
tgf τ0 + i α

1 − x2
εμνz τμ dν

gf − α x

1 − x2
(dgf · τ )

]
,

where x = 2h/U and S f is the 1
2 -spin operator on the site f .

In Eq. (B11) the homeopolarity condition was used. Using
(B10) and (B11) in Eq. (B9) we obtain expression for δH2 for
effective spin interactions in the Hubbard model in thesecond
order of perturbation theory:

δH2 =
∑
〈 f g〉

[
−

(
t2

2U
+ α2

2U (1 − x2)

)

+
(

2t2

U
− 2α2

U (1 − x2)

)
S f Sg

+ 2tα

U

2 − x2

1 − x2
cos(χ f g)([dz × d f g] · [S f × Sg])

+ 4α2

U

1

1 − x2
([S f × d f g]z · [Sg × d f g]z )

]
, (B12)

where dz is the unit vector in the z direction (normal to the
lattice direction), χ f g = e

ch̄

∫ r=g
r= f A · dr is the Peierls phase

with A being the vector potential, and t is the value of t f g

for nearest sites f and g. From expression (B12) (second line)
it is seen the competition between AFM and FM exchange
interactions with amplitudes ∼t2/U and ∼α2/U , respectively.
Besides, due to the spin-orbit interaction two types of chiral
interactions emerge: DM type interactions [third line in (B12)]
and anisotropic exchange interaction depending on the of
exchange bond direction [last line in (B12)]. In Sec. II, we
considered the limit of α 
 t and hence the chiral interactions
∼α2/U were discarded. However, analysis of its effect on the
magnetic properties of the model (2) may be of interest. Of
particular relevance to it is the observation that in the regime
t ≈ α, the isotropic exchange interaction is significantly sup-
pressed and, thus, in this case, it is the chiral interaction that
determines the properties of magnetic subsystem.

Performing similar calculations one obtains the expression
for δH3 in (B8) in terms of the matrices (B10):

δH3 = 1

2U 2

∑
[ f gl]

Sp[X̂ f t̂ f gŶgt̂gl
(
Ŷl − X̂l

)
t̂l f + H.c.],

where by means of [ f gl] a triple of nonequivalent site indices
is denoted. Taking, at last, into account formulas (B11) and
leaving only the terms proportional to t3/U 2 (discarding in-
teractions ∼tα2/U 2, ∼t2α/U 2, and ∼α3/U 2 in the regime
t � α) one comes to the desired expression for the chiral
three-spin interaction:

δH3 ≈ 24t3

U 2

∑
[ f gl]

sin (π
	)(S f · [Sg × Sl ]), (B13)

where 
	 is the magnetic field flux through a triangular
plaquette (formed by three sites f , g, and l) written in units
of the magnetic flux quantum φ0 = ch/2e. Note that in (B13)
the magnetic flux arose due to the Peierls substitution for the
hopping integrals t f g. This approximation assumes 
	 
 1.
In this case the value of δH3 is determined by the factor
24πt3
	/U 2 which for competitiveness should be compara-
ble to the DM interaction ∼4tα/U (see Sec. II), that is,

(
t

U

)
(6π
	) ≈

(α

t

)
.

It means that in the regime under consideration (t/U ∼ α/t 

1) the value of the three-spin interaction (B13) can be con-
sidered of the same order as DM interaction [third line in
(B12) proportional to tα/U ] if the magnetic flux 
	 larger
than 1/6π . Thus, the relevant interval for the flux 
	 is
1/6π � 
	 
 1.
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APPENDIX C: MAGNETIC FUNCTIONALS OF HOMS
IN AN INHOMOGENEOUS MAGNETIC FIELD

Following [56] consider the problem of calculating energy
functionals of the form

E = EJ + ED + EK + EZ + EA, (C1)

where

EJ = J

2

∫ ∞

0

[(
d�

dr

)2

+ n2

r2
sin2 �

]
r dr, (C2)

ED = δn,1
D

π

∫ ∞

0

[
d�

dr
+ sin 2�

2r

]
r dr, (C3)

EK = K n

2

∫ ∞

0
h(r) sin �

d�

dr
dr, (C4)

EZ = H

2

∫ ∞

0
h(r) (1 − cos � ) r dr, (C5)

EA = A

2

∫ ∞

0
sin2 � r dr (C6)

with a parametrizing function �(r, R, w) defined in (18). In
the case of a skyrmion with a narrow domain wall R � w,
the integrands in (C2)–(C6) are noticeably different from zero
only in the range 0 < r < R + 2w of the variable r. In this
range the parametrizing function can be approximated by a
function of the form

�(r, R,w) = 2 arctan( eρ−t ), ρ = R/w, t = r/w.

In this case the functions in the integrals (C2)–(C6) ) can be
represented as

d �

d r
= −

(
1

w

)
1

cosh (t − ρ)
, sin � = 1

cosh (t − ρ)
,

sin 2� = 2
tanh(t − ρ)

cosh(t − ρ)
, 1 − cos � = eρ−t

cosh(t − ρ)
. (C7)

Moreover, some of integrands in Eq. (C2)–(C6)) can be ap-
proximated by delta functions since the functions

sin2 � = 1

cosh2 (t − ρ)
→ 2 w δ( R − r ),

(
d�

dr

)2

→ 2

w
δ( R − r );

(
d�

dr

)
sin � → −2 δ( R − r )

(C8)

localized around r ≈ R � 1 and have finite value for r = R.
So, we can use the mean value theorem for integrals over r
and consider these integrands as delta function. The function
sin 2� in (C7) significantly differs from zero for t ≈ ρ, at the
point t = ρ is equal zero and has the different signs in the
left and right neighborhoods of this point. The integral of this
function can be neglected in the leading approximation. So,
without Zeeman splitting the skyrmion energycan be approx-
imated as

EJ + ED + EK + EA

= J

(
R

w
+ w

R

)
− δn,1 D R + A R w − Knh(R)

and can be estimated for an arbitrary profile h(r) of axially
symmetric magnetic field. For homogeneous fields the scalar
chiral interaction shifts the energy of skyrmions by a value
proportional to their topological charge. When taking into ac-
count the Zeeman contribution (C5) to the energy functional,
we have to take into consideration that the function 1 − cos �

has finite values at r 
 R. Therefore, when considering the
power-law profiles of the magnetic field, we should artificially
set the field strength equal to zero in a small neighborhood of
the origin

h(r) =
{

0, r < δr 
 1
rβ, r � δr, β ∈ R.

(C9)

This will allow us to regularize the integral (C5) for β < −1.
Moreover, such a choice of profile allows us to express such an
integral using the incomplete polylogarithm special function

EZ = H wβ+2
∫ ∞

δr

tβ+1dt

1 + e2(t−ρ)

= −H
(w

2

)β+2
�β+2Liβ+2(−e2R/w, δr),

where �β+2 is the gamma function of argument β + 2. Hence,
the energy of HOMS with topological charge |Q| = n can be
estimated as

E = J (ρ + n2ρ−1) − D ρ w δn,1 + A ρ w2

+ (
E (β )

K + E (β )
Z

)
,

E (β )
Z = −H

(w

2

)β+2
�β+2 Liβ+2(−e2ρ, δr),

E (β )
K = −Knρβ wβ.

For the profiles with β > −1 it is convenient to set δr = 0.
Then the incomplete polylogarithm becomes the polyloga-
rithm function with a well-known asymptotic expansion for
ρ � 1:

Liβ+2(−e2ρ )

=
∑

2k�β+2

(−1)k (1 − 21−2k )
(2π )2k

2k !

B2k

�β+3−2k
(2ρ)β+2−2k,

(C10)

where B2k are Bernoulli numbers.

APPENDIX D: ANALYTICAL MINIMIZATION
OF ENERGY FUNCTIONAL

Consider the question of solving Eq. (38) in the case A = 0.
It is convenient to find the solution w(z) as an expansion in the
free coefficient z of modified Eq. (38) with the use the formula
of Ref. [69],

a = f , (D1)

where it is assumed that

wk �(w) = z ; �(0) = 1, (D2)
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and Dα denotes the α-order derivative by w. For Eq. (38) we
have

k = 2, �(w) = 1 + B w + A w3,

z = Kn

H (n2 + c2)
, A = −2Hc4

3J (n2 + c2)
, B = 2Knc2

3J (n2 + c2)
.

(D3)

Then, making calculations according to (D1), we obtain

w = √
z − B

2
(
√

z)2 + 5B2

8
(
√

z)3 + 1

2

∞∑
α=4

(−√
z)α

×
{

− 2
[ α−1

3 ]∑
i=0

Bα−1−3iAi

(α − 1 − 3i)! i!

(α
2

+ 1
)

. . .

(
3α

2
− 1 − 2i

)

+ 3B
[ α−2

3 ]∑
i=0

Bα−2−3iAi

(α − 2 − 3i)! i!

(α

2
+ 1

)
. . .

(
3α

2
− 2 − 2i

)

+ 5A
[ α−4

3 ]∑
i=0

Bα−4−3iAi

(α − 4 − 3i)! i!

(α
2

+ 1
)

. . .

(
3α

2
− 4 − 2i

)}
,

(D4)

where [ c ] is the rounding c. The first three terms on the
right-hand side of Eq. (D4) fulfill an approximate solution
(40) for a higher-order magnetic skyrmion size Let us note
the key steps for obtaining (D4). The derivative Dα (F · Gα )
has been calculated with the use the Newton’s binomial

Dα

α!
(F · Gα )

∣∣∣∣
w=0

=
α∑

k=0

1

k!(α − k)!
F (k)(0) · G(α−k)

α (0),

where functions

F (w) = 2w + 3Bw2 + 5Aw4; Gα (w) = (1 + Bz + Az3)−
α+2

2

arose naturally from (D1) and (D3). Calculation of the n-order
derivative of the function G(n)

β = g−β , where g = 1 + Bz +
Az3 and β = (α + 2)/2, was carried out using the Faà di

Bruno’s formula [70]

G(n)
β (w) =

n∑
k=1

∑
{ k=α1+···+αn

n=1α1+···+nαn}

× n !

α1! . . . αn!
( g−β )(k)

(
g(1)

1 !

)α1

. . .

(
g(n)

n !

)αn

.

(D5)

Since we find G(n)
β (0) and g(w) have the property

g(0)(0) = 1, g(1)(0) = B, g(3)(0) = 6A,

thus, the summation over combinatorial sets in Eq. (D5)
is bounded by two conditions: k = α1 + α3, n = α1 + 3α3.

With these conditions taken into account, the triple summation
over k, α1, and α3 was reduced to a single one, resulting in the
answer (D4).

Note that the above formula (D1) can be generally used
to solve a system of N × N algebraic equations of type (D2).
Then the variables wi and free terms zi become component de-
pendent. For magnetic skyrmions such systems can arise when
describing the complex nontrivial magnetic structures, such
as magnetic skyrmionium, skyrmion bags, etc., characterized
by several radii Ri and domain wall widths wi. Wherein, it is
important to note that the generalization of Eq. (D1) is valid if
the condition (D2) is satisfied.

In general, for systems of n algebraic equations∑
λ∈A(i)

a(i)
λ yλ, i = 1, . . . , n (D6)

with variables y = (y1, . . . , yn) and coefficients a(i)
λ , where

A(i) ∈ Zn are fixed finite subsets of an integer lattice yλ =
yλ1

1 . . . yλn
n , there is a formula for the solution (D6) in the form

of hypergeometric series [71]. However, in the case of small
n, it may be more practical to eliminate multiple variables by
the method described in Refs. [72,73] to obtain one equation.
The latter can be solved by the methods of Refs. [74,75].
Such approaches assume the presence of a pair of terms with
coefficients that are an order of magnitude greater than the co-
efficients for the other terms. If there is one largest coefficient,
(D1) can be applied.
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