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Thermo-optic hysteresis induced by a high-quality defect mode
in a two-dimensional photonic crystal
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We consider thermo-optic bistability induced by a high-quality defect mode in the square array of dielectric
rods. It is demonstrated that the scattering problem with an account of the variation of the dielectric constant
by heating can be solved with the T -matrix method by introducing an explicit dependence of the permittivity
of the defect rod on temperature. We found that the bistability occurs at low intensities of the incident wave ≈
0.01mW/µm2 in a square array of 7 × 7 silicon rods with a defect rod in the middle.
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I. INTRODUCTION

Thermophotonics is an important branch of nano-optics
dealing with various temperature effects induced by heating
the system by the absorbed light [1–6]. One such temperature
effect emerging in thermophotonic systems is nonlinear-
ity due to thermorefractive phenomena [7–12]. Recently,
we have seen a surge of interest in all-dielectric nanopho-
tonics [13,14]. In comparison with plasmonic systems the
all-dielectic structure exhibits low material absorption which
seemingly prohibits effective light-to-heat conversion. This,
however, can be circumvented by engineering the effect
of critical coupling [15–17] which leads to highly efficient
light absorbers [18–22] to be used for enhanced light-to-heat
conversion. Lately, it has been pointed out that thermo-
optical effects can be dominant nonlinear effects in resonant
nanophotonic structures subject to high-intensity incident
fields due to heating by absorbed radiation [23].

The key element for strong thermo-optical effects in
all-dielectric systems is setting up a nanophotonic struc-
ture supporting high-quality resonances which have become
an important tool for enhanced light-matter interactions
[13,14,22]. One of the possible approaches is to employ
optical bound states in the continuum (BICs) [24–26], i.e.,
nonradiating modes embedded in the continuous spectrum of
scattering solutions above the line of light. In the presence
of material absorption the BICs still have a finite lifetime
but nonetheless remain localized and decoupled from the
outgoing channels [27]. Once the system’s symmetry is bro-
ken, either by design [28] or by the incident light [29], the
BICs are transformed to high-quality resonances known as
quasi-BICs.

Another route is the application of isolated dielectric res-
onators, which have been shown to support high-quality
resonance similar to quasi-BICs [30]. Thermo-optical effects
have been widely studied in various single resonator setups,
including plasmonic [1,31,32], all-dielectric [33–36], and
graphene-based [37] structures. In this paper we shall employ
the high-quality resonant defect mode [38,39] supported by a

two-dimensional (2D) all-dielectric photonic crystal made of
SiO2 subwavelength rods of circular cross section. We shall
demonstrate that such a platform can be used as an efficient
alternative tool observing optical bistability with an intensity
threshold lower than that reported for a single rod (cylinder).

II. SCATTERING BY THE ARRAY OF RODS

We consider the system shown in Fig. 1(a). The system is a
rectangular array of dielectric rods made of Si with radius R0

packed in a square N × N lattice with period a. The central
rod, highlighted in blue in Fig. 1(a), has a different radius Rd .
This rod plays the role of a defect in the photonic-crystalline
lattice. In what follows, we consider transverse-magnetic
(TM) waves in 2D in which case the electric field is aligned
with the z axis and the problem is reduced to finding the z
component Ez. In the case of infinite N the system is a 2D
photonic crystal that supports a microcavity mode localized at
the defect rod. We take R0 = 0.18a, Rd = 0.08a. If the array
is finite, the quality factor is limited by tunneling across the
Bragg mirrors. For an array of N × N = 49 we obtained Q ≈
4 × 103 [40]. The band structure of an infinite crystal without
defects is shown in Fig. 1(b). The vacuum wave number of
the defect mode ak0 = 0.352 17 is shown by a dashed line
in the middle of the band gap. The mode profile is shown in
Fig. 1(c).

Before analyzing the thermo-optic effect we would like
to outline the method of solving the scattering problem. The
method applied in this work is known as the T -matrix method
and is thoroughly described in Ref. [41]. Here, we restrict our-
selves to a brief overview necessary for further consideration
of the thermo-optic effects. First, the field inside the jth rod is
written as

Ez =
∞∑

m=−∞
c j,mJm(

√
ε jk0r j )e

imφ j , (1)

where Jm is the Bessel function of the first kind, ε j is the
jth rod permittivity, k0 is the vacuum wave number of the
incident wave, r j, φ j are the local cylindrical coordinates with
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FIG. 1. Defect mode in a rectangular array of dielectric rods.
(a) Setup of the array of Si dielectric rods. (b) The band structure
of the rectangular array of rods with the vacuum wave number of the
defect mode shown in the middle of the band gap by a dashed line.
(c) The defect mode profile.

the origin in the centerline of the jth rod, and, finally, c j,m are
unknown expansion coefficients. At the same time outside the
rods we have

Ez =
∞∑

m=−∞

[
a j,mJ (k0r j ) + b j,mH (1)

m (k0r j )
]
eimφ j , (2)

where H (1)
m is the outgoing Hankel function, a j,m are the in-

cident amplitudes, and b j,m are the reflected amplitudes. The

incident amplitudes are further decomposed as follows,

a j,m = a(in)
j,m + a(rods)

j,m , (3)

where a(in)
j,m describes the incident wave, and a(rods)

j,m is the con-
tribution from scattering by the other than the jth rod. In the
case of the plane wave we have

a(in)
j,m = (−1)meik0Rj sin(θin−θ j )−imθin , (4)

where Rj and θ j are the coordinates of the jth rod in the global
cylindrical coordinate system. The amplitudes a(rods)

j,m can be
related to the outgoing amplitudes bj,m via Graf’s addition
theorem which states that

a(rods)
j,m =

∑
q

∑
� �= j

b�,qei(m−q)θ j,�H (1)
m−q(k0r j,�), (5)

where r j,� is the distance between the jth and �th rods while
θ j,� = θ j − θ� is the difference of their azimuthal coordinates
in the global coordinate system (see Fig. 1). As a result one
obtains the following system of equations,

a j = a(in)
j +

∑
� �= j

T̂j,�b�, (6)

where a(in)
j and b j are the vectors assembled from amplitudes

a(in)
j,m and b j,m, correspondingly, while the elements of T̂j,� are

defined as follows,

{T̂j,�}m,q = ei(q−m)θ j,�H (1)
m−q(k0r j,�). (7)

Equation (6) can be rewritten as a closed set of equations by
using diagonal matrices t̂ j which solve the scattering problem
for individual rods,

b j = t̂ ja j . (8)

The elements of the matrices t̂ j have the following form,

{t̂ j}m,m = −
√

ε jJm(k0Rj )J ′
m(k0

√
ε jR j ) − k0Jm(k0

√
ε jR j )J ′

m(k0Rj )
√

ε jH
(1)
m (k0Rj )J ′

m(k0
√

ε jR j ) − k0Jm(k0
√

ε jR j )H
(1)
m

′
(k0Rj )

. (9)

As the final result we have

b j −
∑
� �= j

t̂ j T̂j,�b� = t̂ ja
(in)
j . (10)

III. HEAT TRANSFER

Before proceeding to the thermo-optical effect, we have
to address the heat transfer in the system under scrutiny. In
our analyses we assume that the power of the incident light is
only absorbed in the defect rod since we are only interested in
the resonant effects due to excitation of the mode depicted in
Fig. 1(c). Here, we have to solve the heat equation

−∇ · [κ(r)∇�(r)] = 1

S
P f (r), (11)

where κ(r) is the heat transfer coefficient, P is the absorbed
power, f (r) is the function equal to unity within the defect
rod being zero everywhere else, and S is the area of the
cross section of the defect rod. We apply the Dirichlet bound-
ary conditions outside of the array with room temperature
�r = 300 K. The heat transfer coefficient κ(r) is coordinate
dependent. We use κS = 156 W/(m K) within the silicon rods
and κ0 = 0.02 W/(m K) in air. For numerical simulations we
shall use the nondimensionalized form of Eq. (11),

∇̄ ·
[

κ(r)

κ0
∇̄�(r̄)

]
= a2P

κ0S
f (r̄), (12)

where ∇̄ uses differentiation with respect to the new variable,

r̄ = 1

a
r. (13)
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Let �̄(r̄) be the solution of

∇̄ ·
[

κ(r)

κ0
∇̄�̄(r̄)

]
= f (r̄). (14)

Assuming that the defect rod is uniformly heated since the
Biot number is small [17] we can take f (r̄) equal to identity
within the rod and zero everywhere else. After finding f (r̄)
we can write for the temperature increment within the defect
rod

�� = a2�̄0P

κ0S
, (15)

where �̄0 is the value of �̄(r̄) in the center of the defect rod.
Then the effective heat transfer coefficient at the boundary of
the defect rod is given by

κ̄ = a2

κ0πR2
d

�̄0. (16)

IV. THERMO-OPTICAL EFFECTS

The thermo-optical effect under consideration is due to the
change of the dielectric permittivity

ε = ε′ + iε′′ (17)

by heating. We assume that the refractive index is dependent
on the temperature

n = n0 + n1��, (18)

where n1 = 2 × 10−4 1
K . Thus, we have

ε′ = ε0 + 2
√

ε0n1��. (19)

The heat power at the defect rod can be found as

P = ck0

8π
ε′′

∫
S
|Ez|2dS, (20)

where c is the speed of light. The temperature difference and
the absorbed power are proportional to one another,

�� = κ̄P, (21)

with κ̄ being the contact heat transfer coefficient explained
in the previous section. Therefore for the increment of ε′ we
have

�ε = 2
√

ε0n1κ̄ε′′ ck0

8π

∫
S
|Ez|2dS. (22)

At the resonance the dominating term in the field expansion
Eq. (1) is m = 0 [see Fig. 1(c)]. Thus, in the defect rod we
have

Ez(r) = c0J0(
√

ε′k0r), (23)

where c0 is an unknown coefficient. Therefore∫
S
|Ez|2dS = |c0|2

∫
S

J2
0 (

√
ε′k0r)dS. (24)

Notice that ε′ is dependent on temperature according to
Eq. (19). By matching the fields at the boundary of the defect
rod one finds

c0J0(
√

ε′k0Rd ) = a0J0(k0Rd ) + b0H (1)
0 (k0Rd ). (25)

Finally, after using the scattering matrix we have

c0 = 1

J0(
√

ε′k0Rd )

[
H (1)

0 (k0Rd ) + 1

t0(ε′)
J0(k0Rd )

]
b0, (26)

where t0(ε′) = {t̂d}0,0 [see Eq. (9)]. By plugging Eq. (26) into
Eq. (24) and then into Eq. (22), one obtains

�ε = 2
√

ε0n1κ̄ε′′ ck0

8π

∫
S

J2
0 (

√
ε′k0r)dS

× 1

J2
0 (

√
ε′k0Rd )

[
H (1)

0 (k0Rd ) + 1

t0(ε′)
J0(k0Rd )

]2

|b0|2.
(27)

The relationship Eq. (8) between the incident and the outgoing
amplitudes can be Taylor expanded in the powers of �ε as

t0(ε0)a0 =
(

1 − 1

t0(ε0)

dt0(ε0)

dε
�ε

)
b0. (28)

Using Eq. (27) after retaining the terms up to O(|b0|4) one
obtains

t0(ε0)a0 = (1 − 	|b0|2)b0, (29)

where

	 = 2
√

ε0n1κ̄ε′′ ck0

8π

1

t0(ε0)

dt0(ε0)

dε

∫
S

J2
0 (

√
ε0k0r)dS

× 1

J2
0 (

√
ε0k0Rd )

[
H (1)

0 (k0Rd ) + 1

t0(ε0)
J0(k0Rd )

]2

.

(30)

One can see that Eq. (29) accounts for the thermo-optic effect
via a Kerr-like nonlinear term. Equation (29) is a complement
to the linear equations (8). Together, Eqs. (8) and (30) can be
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FIG. 2. Optical response from the N × N = 49 array of di-
electric rods. R0 = 0.18a, Rd = 0.08a. (a), (c) The intensity of
the electromagnetic field in the defect rod. (b), (d) The scatter-
ing cross section. The intensity of the incident plane wave 1.8 ×
10−2 mW/µm2 in all panels, ε ′′ = 10−3 in (c) and (d). The orientation
of the incident k vector corresponds θ = 0 in Fig. 1(a).
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FIG. 3. Thermo-optic hysteresis in the N × N = 49 array of
dielectric rods. (a) Temperature of the defect rod against the inci-
dent wave number. (b) The solution of the heat equation, Eq. (14).
The incident intensity 1.8 × 10−2 mW/µm2, ε ′′ = 10−3. The other
paremeters are the same as in Fig. 2.

substituted into Eq. (6) to produce a closed set of nonlinear
equations describing light scattering in the system.

V. NUMERICAL RESULTS

Here, we apply the numerical procedure described in the
previous section with �̄0 found by solving the heat equa-
tion using the finite-element method. The picture of the optical
response against the incident wave number is shown in Fig. 2.
In Fig. 2 we compare the solutions with and without the
account of the thermorefractive effect. The orientation of the
incident k vector is given by angle θ [see Fig. 1(a)]. When
the thermorefractiove effect is neglected we observed a typical
single-resonance response in both the near field [Fig. 2(a)] and
the scattering cross section [Fig. 2(b)]. When the change of
the permittivity by heating is accounted for, the solution bi-
furcates and a nonlinear resonance is observed [see Figs. 2(d)
and 2(c)]. The obtained picture of thermo-optic hysteresis
can be also observed in the temperature of the defect rod.
In Fig. 3(a) we demonstrate the temperature increment as a
function of the incident wave number. The dependence shown
in Fig. 3(a) closely follows the intensity of the electromagnetic
field depicted in Fig. 2(c). Notice that the temperature incre-
ment reaches ≈90 ◦C at the top of the resonance. In Fig. 3(b)
we show the function �̄(r̄) obtained by solving the heat equa-
tion by the finite-element method. One can see that the effect
of heating is mostly observed in the unit cell containing the
defect rod.

The central question to be addressed in studies on thermo-
optic hysteresis is the value of the threshold intensity as
dependent on the optical and geometric parameters of the
system. In Fig. 4 we show the magnitude of the electric field
in the defect rod that can be obtained under illumination by
a plane wave at different angles of incidence and different
imaginary parts of the dielectric permittivity ε′′. The mag-
nitudes are normalized to the maximum at a given incident
intensity. The magnitude is plotted as a function of both in-
cident intensity and detuning �ω = ω − ω0, ω and ω0 being
the incident and resonant frequencies, correspondingly. The
high magnitude spots correspond to strong resonances leading
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FIG. 4. The normalized magnitudes of the electric field as de-
pended on the frequency and the intensity of the incident plane
wave. The thick black lines show the boundaries of the domains with
thermo-optic hysteresis. The angle of incidence and the imaginary
part of the dielectric permittivity are specified in the insets. The other
parameters are the same as in Fig. 2.

to heating the structure. The domains enclosed between thick
black lines show the boundaries in the parameter space where
the hysteresis occurs. Noticeably, the positions of the bista-
bility domains are strongly dependent on the imaginary part
of the dielectric permittivity [compare Figs. 4(b) and 4(c)]. At
the same time the threshold does not depend on the orientation
of the incident k vector although the shape of the bistability
domains varies significantly [see Figs. 4(b) and 4(d)].

VI. CONCLUSION

We considered thermo-optic bistability induced by a high-
quality defect mode in the square array of dielectric cylinders.
It is demonstrated that the scattering problem with an account
of the variation of the dielectric constant by heating can be
solved with the T -matrix method by introducing an explicit
dependence of the permittivity of the defect rod on temper-
ature. The bistability can be observed both in the near field,
i.e., in the amplitude of the defect mode, as well as in the
far field, i.e., in the scattering cross section. We found that
the bistability occurs at low intensities of the incident wave ≈
0.01mW/µm2 (see Fig. 4). This is two orders of magnitude
lower than what was recently reported in Ref. [36] for a single
dielectric cylinder and one order of magnitude lower than the
experimental results for a silicon cantilever [35]. We believe
that our results can be of used in controlling thermo-optical ef-
fects in photonic nanodevices, including engineering efficient
light-to-heat conversion with the incident wavelength detuned
from the wavelength of a high-quality resonance.
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