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Features of the formation of the magnetic structure and the exciton Bose–Einstein condensate phase of mag-
netic excitons in strongly correlated systems near the spin crossover have been considered with the effective
Hamiltonian obtained from the two-band Hubbard–Kanamori model. The coexistence of antiferromag-
netism and exciton condensate, as well as the appearance of the long-range excitonic antiferromagnetic order
even in the absence of the interatomic exchange interaction, has been revealed. The role of the electron–pho-
non coupling has been considered.
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1. INTRODUCTION
Exciton condensation and excitonic insulator state

have long been studied beginning with theoretical
works [1–3]. Keldysh and Kopaev [3] showed that the
modified Bardeen–Cooper–Schrieffer theory of
superconductivity can be efficiently used to describe
metal–insulator phase transitions in semimetals. A
phase transition in a model appears at an arbitrarily
weak electron–electron interaction and, by analogy
with the superconducting phase transition, can be
interpreted as the Bose–Einstein condensation of
loosely bound electron–hole pairs (excitons with a
large radius). The Keldysh–Kopaev model of exci-
tonic insulators becomes a standard scheme of the
description of electron–electron correlations in the
weak interaction limit. Conditions for the formation of
the excitonic ferromagnetism phase [4] in semimetals
were determined within this model. The condensation
of excitons in strongly correlated systems was actively
discussed later (see, e.g., [5–13]). A new line of
research is currently developed in excitonic magne-
tism associated with relatively close energies of the sin-
glet and excited triplet ion states in Mott–Hubbard
insulators [14] (some recent interesting results on exci-
tonic magnetism can be found, e.g., in [15–17]). In
this work, we consider features of the formation of the
exciton condensate, which is a condensate of local (at
a site of a crystal lattice) magnetic excitons (excitons
with a small radius) in strongly correlated systems near
spin crossover. The results obtained in this work are
obtained using the Hubbard X operator formalism for
the two-band Hubbard–Kanamori model. The
appearance of a long-range antiferromagnetic order

because of excitonic ordering even in the absence of
the interatomic exchange interaction is revealed. The
role of the electron–phonon coupling is examined. It
is shown that the off-diagonal electron–phonon cou-
pling, unlike the diagonal one, changes the symmetry
of the excitonic order parameter and leads to its com-
petition with antiferromagnetism.

2. EFFECTIVE HAMILTONIAN
The Hamiltonian of the two-band Hubbard–

Kanamori model, which is the minimal model of
strongly correlated systems with spin crossover, can be
represented in the form

(1)
Here,

(2)

includes the single-ion energy of electrons in single-
particle states with energy levels  and ,
where Δ is the energy of electrons in the crystal field
(  can be set for convenience),  enumerates the
sites of the lattice, and  is the projection of
the electron spin. The second term in Eq. (1) is given
by the expression
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where  are the hopping parameters (  are
the orbital indices) describing hop of electrons
between the nearest neighbor sites of the crystal lattice
with the energy levels  and . The third term in
Eq. (1) has the form

(4)

and contains the single-site energy of the Coulomb
interaction between electrons (the electron–electron
interaction is considered in the Kanamori approxima-
tion with diagonal, U, and off-diagonal, V, matrix ele-
ments in orbital indices and with the Hund exchange
interaction parameters JH and  [18]).

An important feature of such two-orbital model is
that various localized multielectron (two-particle)
states (terms), which are characterized by the spins

, and the crossover between them with
increasing Δ can appear in the case of the half filling
(the average number of electrons per site of the crystal
lattice is ) and in the zeroth approximation in
the intersite hopping parameters . In the

region , the ground
state is the triplet ( ) HS state  with the energy
EHS, which is triply degenerate in spin projection

:

At , the ground state is the singlet ( ) LS
state  with the

energy ELS, where  and
 are the normalization

coefficients ( ).
To derive the effective Hamiltonian, it is conve-

nient to use the Hubbard X operators 
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[19], which are expressed in terms of the eigenstate of
the Hamiltonian 

(5)

with the numbers of electrons . Since
the Hubbard operators form a linearly independent
basis, any local operator can be expressed in terms of a
linear combination of the X operators. In particular,
the single-electron annihilation (creation) operator is
represented in the form

(6)

Since the number of different root vectors  intro-
duced by Zaitsev [20] is finite, they can be enumerated,
and the number m of the mth vector has the meaning of
the band index of local Fermi quasiparticles. Then,

, . Using

Eq. (6), the anomalous averages  (without

spin f lip) and  (with spin f lip, ) can be
represented in the form

(7)

(8)

Here, the angle brackets  stand for a thermody-
namic mean and the means of the X operators built on
one- and three-electron states are omitted because
their contribution is negligibly small in the considered
case of half filling (two-particle states) with a fixed
number of electrons per site of the crystal lattice (the
homopolar model of solid).

As seen in Eqs. (7) and (8), excitonic pairing is
described by nonzero means of singlet excitations. The
Hamiltonian (1) in the representation of Hubbard
X operators has the form

(9)

Here,  is the energy of multielectron terms and

 are the renormalized
hopping parameters.

Using the projection operator method developed in
[21] for the Hubbard model and in [22] for the –
model (see also [5, 6]) to exclude interband hops from
the Hamiltonian (9), we can obtain the effective Ham-
iltonian in the form
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Here, the first term is the Heisenberg Hamiltonian
containing the interatomic exchange interaction

(11)

where Ŝi is the spin-1 operator, which can be specified

by the components , 

, and  [23];

 is the magnitude of the inter-
atomic exchange interaction;  is the energy of
charge transfer between the centers of the upper and
lower Hubbard subbands [21, 22]; and 

 is the operator of

the number of particles at the ith site (  is the occu-
pation number operator of the LS (HS) state). Using the
condition of completeness , one can

show that  =  = 2,
where nLS(HS) is the average number of particles in the
LS (HS) state (nLS + nHS = 1).

The second term in Eq. (10) is given by the formula

(12)

where , and
describes the density–density interaction between
low-spin states.

The third term in Eq. (10) has the form

(13)

where εS = EHS – ELS is the spin gap and , and
includes interatomic hops of excitons with the ampli-
tude  and the cre-
ation/annihilation of biexcitons at neighboring sites
with the amplitude  taking into
account the energy of electronic configurations of the
LS and HS states. In the absence of cooperative inter-
actions, the ground state in the cases of negative and
positive spin gap is the HS and LS states, respectively.
The Hubbard operators  and  in Eq. (13)
describe Bose excitations (excitons) at the ith site from
the low-spin singlet state  to the high-spin triplet
one  with the spin projection  and back,
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respectively. The first term in square brackets in
Eq. (13) describes the dispersion of excitons caused by
interatomic hops; this dispersion was considered in
[24]. The second term in square brackets in Eq. (13)
involves the creation and annihilation of biexciton at
the neighboring ith and jth sites of the lattice, which
complicates the dispersion of excitons compared to
the conventional dispersion in the tight binding
method [24]. Near the spin crossover,  and

; consequently, . Under these condi-
tions, biexcitons make the main contribution to the
formation of dispersion of excitons. The Hamilto-
nian (13) describes the kinetic exciton–exciton interac-
tion [25] in the representation of Hubbard X operators.

The expression in square brackets in Eq. (13) can be
represented in the form

(14)

Here, , , and

 [11], where , , and
. The vector  corresponds to

the so-called d vector in the triplet superconductivity
theory.

3. PHASE DIAGRAMS IN THE MEAN FIELD 
APPROXIMATION

In the mean field (MF) approximation for two sub-
lattices A and B, Eq. (11) becomes

(15)

where z is the number of the nearest neighbors and

 is the magnetization of the sublattice
A(B); Eq. (12) takes the form

(16)

≈1 1C
≈2 0C ≈' 0exJ

( )
( )

⋅ + ⋅

− ⋅ + ⋅





d d d d

d d d d

† †

,

† †

,

1 ˆ ˆ ˆ ˆ'
2
1 ˆ ˆ ˆ ˆ'' .
2

ex i j i j
i j

ex i j i j
i j

J

J

( )+ −− +1ˆ ˆ ˆ=
2xd d d ( )+ −+1ˆ ˆ ˆ=

2yd d d
i

0
ˆ ˆ=zd d +

+
,ˆ = sd X −

−
,ˆ = sd X

,0
0̂ = sd X ( )d̂ ˆ ˆ ˆ= , ,x y zd d d

+ 
MF ˆ ˆˆ = z z
S B i A iA B

i iA B

H zJm S zJm S

− − 
1 1ˆ ˆ
4 4B i A iA B

i iA B

zJ n n zJ n n

− +1 1 ,
2 2A BzJNm m zJN

( ) ( )
ˆ= z

A B iA B
m S

+

−

 � �

�

LS LS

MF LS LS
LS, LS,

LS, LS,

ˆ ˆ ˆ=

,
2

n n B i A iA B
i iA B

A B

H zJn n zJn n

NzJ n n
JETP LETTERS  Vol. 117  No. 9  2023



EXCITONIC ORDER IN STRONGLY CORRELATED SYSTEMS 711
where the interaction  leads to an additional cooper-
ativity mechanism and stabilizes the HS state; and
Eq. (13) is modified to the form

(17)

where  (  and B if  and A,
respectively, and  are the compo-
nents of the excitonic order parameter, which satisfy

the equality  in the thermody-
namically equilibrium state. Unlike zero mean values,

 means the quantum-mechanical mixing of the
LS and HS states but in the absence of the spin–orbit
coupling.

Using the solutions of the eigenvalue problem
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determining the eigenstates and eigenvalues of the
effective Hamiltonian in the mean field approxima-
tion.
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the population of the HS state nHS, (c, d) the magneti-
zation m, and (е, f) the components of the excitonic
order parameter  for two sublattices A and B with
calculated the parameters at J = J0 = 28 K [26]. The
results near the crossover on a magnified scale are
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the spin gap εS are given in units of the Néel tempera-
ture TN = zJ0S(S + 1)/3 (S = 1) and the exchange inte-
gral J0, respectively. The long-range antiferromagnetic
order occurs in the system (see Figs. 1c, 1d), and

. It is seen that the antiferromagnetic HS

ground state AFM(HS) holds up to 
because of the cooperative exchange interaction J in
the system (see Figs. 1c, 1d), although the ground
state in the single-ion picture at  is the
LS state. Cooperative effects obviously increase the
critical spin gap  because the exchange interaction J
and the interaction  stabilize the HS state, reducing
its energy. The antiferromagnetic HS ground state

changes at  to the diamagnetic LS state,
DM(LS) (see Figs. 1c, 1d).

The diagram in Fig. 1b demonstrates the tricritical
point ( , ), where the line of a second-order phase
transition is continuously transformed to the line of a
first-order phase transition, and the bicritical point
( , ), where the line of the first-order phase
transition is separated into two lines of the second-
order phase transition according to the Gibbs phase
rule.

The exciton condensate region appears at

 (see Fig. 1f) and coexists with the long-
range antiferromagnetic order (see Fig. 1d). Further-
more, the formation of the exciton condensate pro-
motes antiferromagnetic ordering and the appearance

of the magnetization in the region ,
where the long-range magnetic order is absent at

. The black solid and dashed lines in Fig. 1d are
the lines of the second- and first-order phase transi-
tions at , respectively. In this case, the
AFM(HS) ground state holds up to εS =

, and the phase diagram demonstrates
only one tricritical point marked by a triangle (see
Fig. 1d).

A nonzero population of the HS state (see Figs. 1a,
1b) and the magnetization (see Figs. 1c, 1d) appear at

 because of the formation of the exciton
condensate (see Figs. 1e, 1f). This is physically
explained by the structure of the excitonic order
parameter. This structure at  and  is such
that , , and  if , and

, , and  if . The
parameters  and  are zero. Nonzero correspond-
ing averages  on different sublattices promote the
formation of antiferromagnetism and allow its coexis-
tence with the exciton condensate.
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Fig. 1. (Color online) Phase diagrams of (a, b) the population of the HS state nHS, (c, d) the magnetization m, and (е, f) the com-

ponents of the excitonic order parameter  for two sublattices A and B calculated with the parameters , , ,

and . The results near the crossover on a magnified scale are given in panels (b, d, f).

N
N

N

σΔex = 4z 0=J J � 0= 0.5J J

0= 0.5''exJ J
According to the aforesaid, the case with J = 0 and
 is of interest. Figure 2 shows the (T, εS) phase

diagrams of the components of the excitonic order
parameter , the population of the HS state nHS, and
the magnetization m for two sublattices A and B. The
calculations involved the interatomic exchange inter-
action at J = 0, but the temperature T and the spin gap
εS here and below are also given in units of the Néel
temperature TN and the exchange integral J0, respec-
tively, for convenient comparison with the case 
considered above. It is seen that nHS, A = nHS, B (see
Fig. 2d); ; i.e., the long-range antiferro-
magnetic order exists in the system (see Fig. 2e) even
at J = 0 because  (see Figs. 2a, 2b),

whereas  (see Fig. 2c), and  and 
are opposite in sign and are equal in absolute value
(see Figs. 2a, 2b).

The phase diagrams (see Fig. 2) clearly demon-
strate the tricritical point ( , ), where the line of
second-order phase transitions is continuously trans-
formed to the line of a first-order phase transitions. An

≠'' 0exJ

σΔex

≠ 0J

−=A Bm m

( ) ( )
+ −Δ ≠ Δ, ,ex A B ex A B

Δ Δ0 0
, ,=ex A ex B

+ −Δ /
,ex A

+ −Δ /
,ex B

ε*
S *T
increase in the temperature is accompanied by a sec-
ond-order phase transition of the system from the
AFM(HS) state to the paramagnetic state in the region

 (see Fig. 2e) and by a first-order phase transi-
tion in the region . The asymmetry of all phase
diagrams (see Fig. 2) with respect to the change in the
sign of the spin gap is due to different orders of degen-
eracy of the HS and LS states.

To conclude this section, we discuss our results in
comparison with the results on “excitonic ferromag-
netism” obtained in [4], where the electron–phonon
coupling is considered in addition to the electron–
electron interaction and the corresponding situation
can be briefly described as follows. The magnetic
structure of a spin density wave type occurs as known
in metals, where the topology of the multiconnected
Fermi surface is characterized by the existence of the
electron and hole regions superimposed at the parallel
translation at a certain vector q. The spin density wave
is due to the triplet pairing of single-particle exci-
tations of superimposed electron and hole regions of
the Fermi surface. The picture is complicated if the
spin density wave is imposed on a charge density wave

ε ε*>S S

ε ε*<S S
JETP LETTERS  Vol. 117  No. 9  2023
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Fig. 2. (Color online) Phase diagrams of (a–c) the components of the excitonic order parameter , (d) the population of the
HS state nHS, and (e) the magnetization m for two sublattices A and B calculated with the parameters , , and

. At the point ( , T/TN = 0.04) marked by the black square,  values are given.

N

N

N
σΔex

= 4z �= = 0J J

0= 0.5''exJ J ε 0/ = 0.1S J σΔ ,ex A
existing in the system because of the singlet pairing of
electron and hole states. Coexisting single-phase com-
mensurate spin and charge density waves induce an
additional magnetic splitting of the spectrum of sin-
gle-particle excitations. As a result, the magnetic
moment of the unit volume of the crystal appears
under doping; this is the so-called excitonic ferromag-
netism. By analogy with [4], the appearance of the
long-range antiferromagnetic order caused by the for-
mation of the exciton phase can be called “excitonic
antiferromagnetism.”

4. ROLE OF THE ELECTRON–PHONON 
COUPLING

As seen, the structure and symmetry of the exci-
tonic order parameter determine the possibility of the
appearance of antiferromagnetism and its coexistence
with the exciton condensate (see Figs. 1, 2). In the
absence of the interatomic exchange interaction, the
magnetization is an improper order parameter because
it is due to exciton ordering (see Fig. 2). The electron–
phonon coupling is one of the factors that can change
the structure (symmetry) of the excitonic order
parameter. Taking into account the electron–phonon
coupling, instead of Eq. (18), we have

(19)ψ ψˆ = ,k k kH E
JETP LETTERS  Vol. 117  No. 9  2023
where  are the eigenstates of the Hamiltonian

. Here,

(20)

includes the diagonal electron–phonon coupling, and

(21)

describes off-diagonal electron–phonon processes of
the transition from the singlet  to triplet state 
and back. In Eqs. (20) and (21), g1 and g2 are the elec-
tron–phonon coupling constants and ω0(1) and ω0(2)
are the frequencies of a- and b-type phonons, respec-
tively.

The diagonal electron–phonon coupling (20)
does not lead to qualitative changes. The symmetry of
the excitonic order parameter does not change, but
the region of the exciton condensate decreases with
increasing g1; i.e., the diagonal electron–phonon
coupling suppresses the exciton condensate phase.
On the contrary, the off-diagonal electron–phonon
coupling (21) changes the symmetry of the excitonic
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Fig. 3. (Color online) Phase diagrams of (a, b) the components of the excitonic order parameter , (c) the population of the
HS state nHS, and (d) the magnetization m for two sublattices A and B calculated including the off-diagonal electron–phonon

coupling and with the parameters , , , , , and . At the point ( ,

T/TN = 0.06) marked by the black square, values  and  are given in panels (a) and (b), respectively.

N
N

σΔex

= 4z 0=J J � = 0.0J 0= 0.6''exJ J 1 = 0.0g 2 0= 5.8g J ε 0/ = 0.08S J
+Δ , = 0.32ex A Δ0

, = 0.21ex A
order parameter. In this case, ,
, and , which excludes the

coexistence of antiferromagnetism and exciton con-
densate. Figure 3 presents the phase diagrams calcu-
lated taking into account only the off-diagonal elec-
tron–phonon coupling (21). It is seen that the antifer-
romagnetism region decreases (see Fig. 3d) and differs
from the exciton condensate region (see Figs. 3a, 3b).
An increase in g2 results in the expansion of the exciton
condensate region and in the suppression of antiferro-
magnetism.

5. DISCUSSION AND CONCLUSIONS

Two cases can be separated using Eq. (1). In the first
(weakly correlated) case, where ,
we have a two-band semiconductor or a semimetal
(depending on the relation between Δ and t), where
the exciton condensate can be formed through the
Bose–Einstein condensation or Bardeen–Cooper–
Schrieffer scenario. In the second (strongly cor-
related) case, where the Coulomb energy of electrons
becomes comparable with the energy of the crystal
field  and higher than their kinetic
energy , the spin crossover becomes
possible and localized magnetic excitons can be
formed. In this work, we have shown within the two-
band Hubbard model that the condensation of such
excitons occurs near the spin crossover, which in turn

σ σΔ −Δ=A B

( ) ( )
+ −Δ Δ=A B A B ( ) ( )

+ −Δ ≠ Δ/ 0
A B A B

Δ +!Coulomb
ˆ ˆ ˆ

tH H H

Δ∼Coulomb
ˆ ˆH H

Coulomb
ˆ ˆ> tH H
results in the antiferromagnetic order even in the
absence of the interatomic exchange interaction. We
have detected the appearance of antiferromagnetism
caused by the Bose–Einstein condensate of excitons.
It is worth noting that the formation of the exciton
condensate in the excitonic insulator model at a weak
electron–electron interaction can also lead to the
appearance of the magnetic order in the absence of the
exchange interaction [4].

Studies of systems with the spin crossover, where
the LS state is the ground state and the HS state is sep-
arated from it by the spin gap εS, in strong magnetic
fields are of particular interest [27–31] because the
critical magnetic field B = Bc leads to the crossing of
terms (magnetically induced spin crossover). One
example is a new magnetic transition in LaCoO3
recently detected in a strong magnetic field [28]; it
can be attributed to the condensation of magnetic
excitons [12, 13]. The model considered in this work
and the results obtained can be used to explain the
unconventional behavior of LaCoO3 [28] and
(Pr1 ‒ yYy)0.7Ca0.3CoO3 [32] in strong magnetic fields.
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