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The relaxation of the components of the multiple-quantum NMR spectrum of a solid under the effect of the
dipole–dipole interactions during the evolution period is considered. It is taken into account that clusters of
dynamically correlated spins of different sizes are formed in the preparatory period, and their degradation
depends on their size and coherence order. To calculate the size distribution function of clusters and their
degradation function, a physical model including relaxation processes is developed. Using this model, an
analytical result for a multiple-quantum spectrum is obtained. Agreement is obtained between the theoretical
and experimental dependences of the coherence degradation rates in adamantane scaled by the square root
of the average cluster size. The parameters of the above functions are found from the comparison of these
dependences.
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The emergence and growth of dynamic correla-
tions between particles and their relaxation caused by
various degradation mechanisms play a fundamental
role in many-body physics. Previously, this kind of
research was carried out in order to develop nonequi-
librium statistical mechanics [1]. However, at present,
their study has become necessary for the practical
implementation of quantum devices and technologies
[2–4], including the design and usage of the so-called
noisy intermediate-scale quantum computers [5, 6],
the size of which is limited by decoherence processes.
For example, in [7], a noisy intermediate-scale quan-
tum computer was implemented using dynamically
correlated spins of 1H nuclei in polycrystalline ada-
mantane. The spin system is controlled by nuclear
magnetic resonance (NMR) methods using a
sequence of coherent radio-frequency pulses. Under
the experimental conditions, the achieved register size
was 25 spins.

Multiple-quantum NMR spectroscopy of solids
stands out among the methods for studying multipar-
ticle dynamical correlations [8, 9]. In multiple-quan-
tum experiments, by irradiating a spin system with a
sequence of coherent radio-frequency pulses,
researchers convert the Hamiltonian of internuclear
spin–spin interactions (usually the dipole–dipole
interaction) into a “preplanned” internuclear spin–
spin Hamiltonian called the effective Hamiltonian.

Then, using it, one observes the development of mul-
tispin correlations (among several thousand spins)
[10–13] and controls the growth of these correlations
and their degradation [8, 14–16]. Despite a large
number of published works, there are still many
unsolved problems in this field [15, 16]. One of the
central (but also most difficult) problems in the field
of multiple-quantum spin dynamics is the description
of the degradation of large multiple-quantum clusters
depending on the size and quantum number (coher-
ence order).

In pioneering work [10], the relaxation of the com-
ponents of the multiple-quantum spectrum in poly-
crystalline adamantine was measured at an increase in
the duration of the interval of the evolution with a
dipole–dipole interaction Hamiltonian between the
preparatory period and the mixing period. The depen-
dence of the decoherence rate on the coherence order
and on the size of the average cluster of dynamically
correlated spins, which is formed as a result of two-
quantum-two-spin interaction in the preparatory
period and is determined by its duration, is revealed.

The first theoretical analysis of these results was
given in [17]. The authors proposed to divide the field
from the dipole–dipole interaction among cluster
spins into correlated and uncorrelated parts. Proceed-
ing from this, the signal from the multiple-quantum
component of the spectrum is represented as the sum
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of two terms from the spins, the dynamics of which is
determined by the correlated and uncorrelated fields.
The first term is a function of the coherence order, and
the second term is a function of the number of spins in
the cluster. The degree of correlation is determined by
the ratio of the amplitudes of the two terms.

Although the theoretical dependences are similar
to the experimental results, the assumed heterophase
nature of the complex desired time correlation func-
tion needs to be substantiated in the homogeneous
spin system of adamantane under consideration at
high temperatures. The assumption that the local field
consists of two parts on each spin rather than on dif-
ferent spins is more natural and has long been used to
explain the dynamics of the nuclear spin system of a
solid body. For example, the division of the local field
on any selected spin into two components, from the
nearest neighbors (cells) and from more distant spins
(far environment), made it possible to explain the
characteristic features of the free precession signal
(Fourier transform of the NMR absorption spectrum)
in a solid [18] and to correctly describe them for the
first time.

Dividing the local field of the dipole–dipole inter-
action on each of the spins of the cluster of dynami-
cally correlated spins into two components [19], we
obtained a function describing the degradation of the
cluster in the form of a product of two factors from two
contributions to the local field:

(1)

where  is the duration of the evolution interval,  is
the number of spins in a cluster,  is the coherence
order,  is the parameter characterizing the uncor-
related contribution to the local field on each of the
cluster spins independent of the local field on other
spins, and  is the parameter characterizing the field
averaged over the cluster, which acts on all spins of the
cluster in a correlated manner. The order of magnitude
of the parameters  and  is determined by the sec-
ond moment of the spectrum of the autocorrelation
function of one spin , but their exact calculation is
almost impossible [19]. Therefore, we assume them fur-
ther as some phenomenological constants determined
from experimental data. Using representation (1), we
analyzed in [19] experimental dependences from [10,
11]. Since the experimental error increases rapidly
with M (see Fig. 5 in [10]), approaching 100% at large
M values, and the presented curves have an unusual
shape, we used only the central part of experimental
results when processing the experiment to extract data
[19].

In the formulas obtained in the theoretical
approaches described above, the cluster degradation
rate on the coherence order M appears only in the
contribution from the correlated field, while the con-
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tribution from uncorrelated fields on the cluster spins
is independent of M but depends only on the number
of spins in the cluster. The reason is that degradation
over the evolutionary period under the action of the
dipole–dipole interaction of a single cluster of cor-
related spins of the average size  formed during the
preparatory period is considered in both theories. In
fact, the density matrix at the end of the preparatory
period is the sum of contributions from clusters of dif-
ferent sizes K, each degrading at its own rate during the
evolutionary period.

In this work, we calculate the M dependence of the
decoherence rate of the components of the multiple-
quantum spectrum, taking into account the formation
of clusters of different sizes during the preparatory
period. To set the weights for clusters of different sizes,
we use the distribution function proposed in our works
[20–24] within a simple model that corresponds to
experiment and leads to an exponential increase in the
average size of a cluster of correlated spins with the
duration of the preparatory period.

Now we represent the observed multiple-quantum
spectrum  as the following sum of multiple-
quantum spectra  of clusters of different sizes K
formed in the preparatory period of the duration T and
degraded then during the evolutionary period of the
duration :

(2)

where  is the degradation function (1) and
 is the distribution over the number of clusters

with K spins. Following the combinatorial theory [8],
the multiple-quantum spectrum of an individual clus-
ter is described by the Gaussian function

(3)

The size distribution function of clusters is taken in
the form

(4)

which is obtained in [22–24] within a simple cluster
growth model and satisfies the normalization condi-

tion  = 1. The corresponding average
cluster size

(5)

increases exponentially with T as  ~ 
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second moment  of the autocorrelation func-
tion.)

It is quite obvious that the main contribution to the
multiple-quantum spectrum determined by the sum (2)
at large times T comes from large clusters ( ).
Using Eq. (5), which makes it possible to express
hyperbolic functions in Eq. (4) in terms of , the
formulas for transforming hyperbolic functions, and
the second remarkable limit, it is easy to obtain for
large  values

(6)

Substituting Eqs. (1) and (6) into Eq. (2), replacing
summation by integration with a zero lower limit,
which is true at least for large clusters, and taking the
contribution from the correlated field out of the inte-
grand, we calculate the integral [25]

(7)

Here, .
Because of degradation, the total intensity of the

multiple-quantum spectrum

(8)

decreases with increasing . The shape of the multi-
ple-quantum spectrum is described by the function
obtained from Eq. (7) after normalization to .
In particular, without the correlated contribution to
the local field (i.e., at ), we obtain the universal
form of the multiple-quantum spectrum

(9)

scalable to the average cluster size of correlated spins,
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obtained with allowance for degradation only from the
independent contribution to the local field and equal
to twice the second moment of the multiple-quantum
spectrum. Although the ratio of the average cluster
size to the second moment of the spectrum  is the
same as that for the Gaussian function given by
Eq. (3), the spectrum shape given by Eq. (9) differs
significantly from the Gaussian one. The resulting
dependence of the spectrum on M is exponential in M
in contrast to the Gaussian dependence exponential in

. In addition, the found spectrum decreases by a

factor of e at , while such a decrease

for the Gaussian function occurs at .
Thus, the model developed in this work made it possi-
ble to explain the exponential shape of the multiple-
quantum spectra observed in experiments [14, 26].

Expression (7) obtained for the multiple-quantum
spectrum allows one to calculate the relaxation rate of
the spectral component with the coherence order M
determined in terms of time , at which its ampli-
tude decreases by a factor of e. This relaxation rate was
measured for the first time in experiments reported
in [10] in order to study the dependence of the cluster
degradation rate on the coherence order. Thus,
according to Eq. (7),

(11)

where . To solve Eq. (11), it is expedient to
pass to new variables that “scale” the coordinate axes:

(12)

In new variables  (where α =
), Eq. (11) takes the form at 

(13)
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 values can be found analytically. At , we find
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Fig. 1. Scaled relaxation (decoherence) rate of the compo-

nent of the multiple-quantum spectrum 

versus the scaled coherence order  at differ-

ent parameters  indicated by numbers near the
lines according to (lines) approximate formula (15) and
(symbols) the numerical solution of Eq. (13).
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If , the solution of Eq. (13) has the form
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where  is the solution providing the equality of the
exponent in Eq. (13) to 1. In particular, at  and

,
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and at  and ,
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The numerically found solution of Eq. (13) for dif-
ferent  values is shown in Fig. 1 in scaled coordi-
nates:
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The approximate dependences shown in Fig. 1 and
those calculated by Eq. (15) describe well the results of
exact calculations at large . The appearance of an
additional contribution to the spin relaxation of clus-
ters arising from the action of a “correlated field” (i.e.,
at ) leads to the acceleration of the growth rate of

 as a function of .

�
2 1m

δ ≈ + − + αδ  
0

0

1 1( ) 1 ,
2 (1 2 ) 42 2

R m
m m

δ =
+ α + + α + α

0 2

1/ ,
1 2 (1 2 ) 2

m

m m

δ0

�
2 1m

α = 0

( )= = +
τ0

1 3( ) 1 ,
2 8
mR m

mK B

�
2 1m α � 1m

( )α  ≈ ≈ + + + α α α 2
1 1 2.5( ) 1 1 .

42 16
mR m

m m

α

= =
τ

2
0

0

where1( ) , 2 / .R m m M K
K B

m

≠ 0A
R M
JETP LETTERS  Vol. 117  No. 12  2023
The dependences obtained for the relaxation rates
 of the components of the multiple-quantum spec-

trum on the coherence order demonstrate the tran-
sition from the quadratic dependence  in
Eq. (14) to the square root one  in Eq. (17)
with increasing . A similar slowdown in the growth
of the relaxation rate was observed experimentally (see
Fig. 5 in [10]). To explain this effect, a formula with
the sum of two contributions to relaxation was pro-
posed in [17]. For a more thorough comparison of our
proposed theory with experiment, the data (part of
them at ) given in Fig. 5 in [10] were digitized
and rebuilt in Fig. 2 in coordinates scaled by . The
vertical axis shows the experimental relaxation rates
divided by , and the horizontal axis shows

. We note that the proportionality of
the relaxation rate to the quantity  was found
experimentally in [10]. From the same work, we took
the  values at different durations , which were cal-
culated in terms of the FWHMs of multiple-quantum
spectra . The authors assumed that the spectrum had
a Gaussian shape given by Eq. (3), and, consequently,

(20)

However, Eq. (9) for the shape of the spectrum
implies a different relation between  and this
width:

(21)

Here,  is the solution of the equation
. Thus, we arrive at the relation

(22)

In addition to the experimental dependences,
Fig. 2 shows the theoretical dependences of the relax-
ation rate of coherent states obtained by numerically
solving Eq. (13) for  = (dotted line) 0, (dashed line)
0.1, and (solid line) 0.5. Taking into account Eq. (22)
and the parameter  μs–1 taken from the
experiment, these dependences are represented by the
function  13/ms. Let us explain its form:
first, the theoretical velocity  (Fig. 1) is a function

of , while the experimental velocity in

Fig. 2 is a function of . The ratio of
arguments is  = . Second,
we want the theoretical relaxation rate (14)  =

 = 0.5136 to coincide with the experimental
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Fig. 2. Experimental relaxation (decoherence) rate [10]

divided by  versus the coherence order  taken in the

form . Results obtained at different average
cluster sizes  (column of numbers in the figure)
are shown by different symbols. Theoretical results found
by the numerical solution of Eq. (13) are shown by lines as
functions /ms at the parameters  = (dot-
ted line) 0, (dashed line) 0.1, and (solid line) 0.5.

K M
2= 2 /gm M K

0= gK K

13 (0.7134 )gR m α
  at . From here, we find the

values of the coefficient 13  ≈  and parameter

B ≈ 0.7134 × 13 ms–1 = 9.2742 ms–1.
When scaling the data in Fig. 2, we used Eq. (7).

Previously, data scaling in multiple-quantum spec-
troscopy was performed in [15, 26, 27]. In [26], each
multiple-quantum spectrum obtained by increasing
the preparation time was scaled by its width (albeit
with some reservations). The authors of [15, 27] stud-
ied the effect of a perturbation added during the pre-
paratory period and performed scaling of the growth of
the average cluster size [27] and the damping of the
total intensity of the multiple-quantum spectrum [15].
For scaling, power functions are taken with selected
exponents.

It can be seen in Fig. 2 that the dependence with
 somewhat better agrees with the experimental

results [10] than for the other  values we used. How-
ever, good agreement with experiment is observed in
the range of  values on the order of unity, while the
theoretical dependence on  at large  is stronger
than the experimental one. Apparently, this indicates
that the representation of the contribution to degrada-
tion from the correlated field in Eq. (1) by the Gauss-
ian function on  is inaccurate for large  values,
i.e., for large clusters. The topology of clusters should
be taken into account, which leads to the replacement

≈
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of one relaxation function by the sum of functions
depending on the cluster size and the ratio of its sur-
face to the volume [28]. A non-Gaussian dependence
of the relaxation rate on  was considered in, e.g.,
[29], where the relaxation of the multiple-quantum
spectrum components for a system with a large num-
ber of equivalent spins was numerically calculated.
Since the dipole–dipole coupling constants between
all spins are the same, only the correlated contribution
to the local field remains. The authors of [29] show
that the relaxation time decreases with an increase in
the number of spins and the order of multiple-quan-
tum coherence M. In this case, the rate of change
decreases at large  values.

Thus, the physical model developed in this work
has made it possible for the first time to take into
account the size distribution of clusters of dynamically
correlated spins and to study their degradation under
the action of a perturbation. Previously, we analyzed
the dependence of the relaxation rate on the coher-
ence order M in the model of a single cluster with a
certain average size [19]. In particular, we found the
value A2 = 205 ms–2 (at T = 660 μs) for the magnitude
of the correlated contribution, which is solely respon-
sible for the dependence on  in this approach. In
this work, we have calculated the contribution of the
uncorrelated field from Eq. (1) to the dependence of
the relaxation rate on the quantity  taking into
account the size distribution of clusters given by
Eq. (2). The separation of this contribution reduces
the contribution of the second factor in Eq. (1) to the
value A2 ≈ 43 ms–2. Thus, the hypothesis of the authors
of [10] about a possible connection between the
observed dependence of the relaxation rate on order M
and the presence of clusters of different sizes is con-
firmed. Finally, we have shown that a comparison of
the proposed theory with experiment allows the
“numerical” separation of the correlated and uncor-
related contributions to the local field on the nuclei of
a multispin cluster and to the decoherence rate.
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