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Abstract—The effective the two-band Hamiltonian is obtained for iridium oxides with account for strong
electron correlations (SEC) and the spin–orbit interaction. The intraatomic electron correlations in iridium
ions induce the formation of Hubbard fermions (HF) filling the states in the valence band. Another conse-
quence of SEC is associated with the emergence of the antiferromagnetic (AFM) exchange interaction
between HF in accordance with the Anderson mechanism. As a result, a long-range antiferromagnetic order
is established in the system, and in the conditions of band overlapping, the intersite Coulomb interaction
induces a phase transition to the excitonic insulator (EI) state with a long-range AFM order. The system of
integral self-consistent equations, the solution to which determines the excitonic order parameter compo-
nents Δi, j(k), sublattice magnetization M, Hubbard fermion concentration nd, and chemical potential μ, is
obtained using the atomic representation, the method of two-time temperature Green’s functions, and the
Zwanzig–Mori projection technique. The symmetry classification of AFM EI phases is performed, and it is
shown that in the nearest neighbor approximation, state Δi, j(k) with the s-type symmetry corresponds to the
ground state, while the phases with the d- and p-symmetries are metastable.
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1. INTRODUCTION
The study of materials in which a phase transition

(PT) to the state with the long-range antiferromag-
netic order occurs upon cooling [1] led to the formu-
lation of a number of fundamental problems associ-
ated with manifestation of quantum effects on the
macroscopic level. This concerns above all the prob-
lem of the ground state of the spin subsystem with the
AFM ordering, analysis of the effect of quantum fluc-
tuations on the stabilization of the equilibrium value of
the sublattice magnetization [2], as well as the investi-
gation of the behavior of AFM materials in a magnetic
bonds [3–5].

The quantum nature of magnetic ordering mani-
fests itself much more strongly in low-dimensional
materials [6] as well as in compounds with a triangular
lattice of magnetically active ions. In this case, the
effect of quantum fluctuations [7, 8] determining
qualitatively new features of antiferromagnets
increases significantly because of frustrated bonds.

Apart from analysis of traditional insulators with
the AFM ordering, the possibility of realization of the
same magnetic order in materials in which the insula-
tor state is induced from the semimetal state in accor-
dance with the excitonic mechanism of electron–hole
paring has been studied since the middle of 1960s.

It should be noted that the spin–singlet mecha-
nism of the electron–hole coupling, which was pro-
posed in [9–11], induced the excitonic insulator (EI)

phase without a magnetic order. The realization of this
mechanism requires the fulfillment of conditions
associated with topological features of constant-
energy surfaces of electrons and holes. This limited the
class of materials in which the EI phase could exist and
could be reliably identified. Nevertheless, the experi-
mental data on optical and thermal properties of com-
pounds such as Ta2NiSe5, which have been obtained
and investigated in recent years [12], indicate the real-
ization of the spin–singlet EI phase.

One of possible scenarios for the emergence of EIs
with a long-range magnetic order is based on the
spin-triplet electron–hole pairing accompanied with
the emergence of a spin density wave (SDW).
Detailed analysis of this interesting issue can be
found in review [13].

The report [14] on the detection of features of the
formation of the AFM order in Sr3Ir2O7 in accordance
with the excitonic mechanism stimulated investiga-
tions of the conditions for the realization of the anti-
ferromagnetic excitonic insulator (AFM EI) phase.

Compound Sr3Ir2O7 belongs to the class of iridium
oxides characterized by general formula Srn+1IrnO3n+1
with n = 1, 2, …. These compounds are of considerable
interest since their physical properties are formed
under the simultaneous effect of the crystal field, the
substantial spin–orbit interaction (SOI), and strong
Hubbard correlations.
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In view of the large spatial length of 5d electron
states forming the iridium ion term, its octahedron
surroundings (oxygen ions) leads to such a strong
decrease in the energy of the split t2g state, that it can
become commensurate with the highest energy of
filled oxygen orbitals. This ensures the overlapping of
energy bands and creates favorable conditions of EI
realization.

It is well known that SOI can play a significant role
in the formation of nontrivial properties of the elec-
tronic energy structure. For example, we can mention
topological insulators [15, 16], quantum spin liquids
[17], as well as excitonic insulators with the s + d type
of the order parameter symmetry [18]. The latter case
is distinguished by the fact that in spite of the trivial
topology of the energy structure of Fermi states, edge
states are realized in such dielectrics.

In compounds Srn+1IrnO3n+1, the strong SOI and
modifies the single-ion electron basis of iridium ion
states leads to the formation of the lower fully occu-
pied quartet and the split-off half-filled doublet with
Jeff = 1/2 [19]. As a result, the quartet states stop
affecting the characteristics of the system, and only the
doublet states remain effective. This considerably sim-
plifies the model of the electron structure of materials
in question because of reduction of dimension of the
Hilbert space basis.

It is important that such a reduction is accompa-
nied with a decrease in the effective band width [20],
leading to a relative increase in the intraatomic Hub-
bard repulsion. These factors ensure the regime in
which SOI and SEC effects are manifested simultane-
ously [21, 22].

The above factors allows one to formulate the min-
imal two-band model of the electron energy structure
of iridium oxide. In this model, SECs induce the
exchange interaction of the antiferromagnetic type
and ensure the possibility of realization of the antifer-
romagnetic excitonic insulator phase. Such a model
allows one to consider basic characteristics of the
ground state of the electron subsystem of Sr3Ir2O7 in
the AFM EI phase and to calculate the energy spec-
trum.

The article is organized as follows. In Section 2, the
possibility of description of basic features of the AFM
EI phase formation in iridium oxides is substantiated
using the minimal two-band model. In Section 3, a
transition is made to the atomic representation and the
effective Hamiltonian, which allows one to take into
account strong electron correlations and to describe
the exchange AFM interaction in the Hubbard fer-
mion subsystems. Section 4 is devoted to the deriva-
tion of the expression for the sublattice magnetization
with account for the contributions associated with the
motion of the Hubbard fermions over the lattice.
In Section 5, the equations for the fermionic Green’s
functions (GF) are considered and the excitonic order
parameter (EOP) components are introduced. The
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derivation of the self-consistent equations for these
components is described in Section 6. In Section 7,
the results of symmetry classification of solutions to
the system of self-consistent integral equations are
considered, which allows one to pass from the integral
equations to the transcendental equations for EOP
amplitudes. In Section 8, the solution with the s-type
order parameter symmetry is considered and the fea-
tures of the fermionic excitation spectrum in the AFM
EI phase are analyzed. The quasi-momentum depen-
dences of the weight contributions to the spectral
intensity of the fermionic GF are also considered.
These dependences explain the features of the forma-
tion of EOP components leading to the emergence of
a dielectric gap with a transition of the system to the
AFM EI state. In Section 9, the results of investigation
are summarized.

2. TWO-BAND MODEL OF INTERACTING 
FERMIONS

In analysis of the energy structure and the possibil-
ity of formation of an excitonic insulator state with the
long-range magnetic order, it is convenient to pass to
the hole description analogous to that employed in the
Emery model [23] that is used in the theory of cuprate
superconductors. With account for the aforemen-
tioned features of the 5d states of the four-valent irid-
ium ions in the octahedral surrounding of oxygen ions,
we write the minimal model of Sr3Ir2O7 in the hole
representation in the following form:

(1)

where operator

(2)

describes the subsystem of holes occupying the states
on iridium ions. The summation over indices f is per-
formed over the lattice sites at which these ions are
located. Fermi operators (dfσ) ref lect the creation
(annihilation) processes for holes at sites f with spin
projection σ = ±1/2, and  = dfσ is the operator
of the number of holes at site f with spin projection σ.
Quantity ξd = εd – μ denotes the hole energy on the
iridium ion, which is measured from chemical poten-
tial μ. The initial energy of such a hole is denoted by εd;
U is the Hubbard repulsion energy, and tff '  is the inte-
gral of hole hopping between iridium ions locates at
sites f and f '. It can easily be seen that operator  is
the Hamiltonian of the Hubbard model [24]. Accord-
ingly, the features of the Fermi states of this subsystem
are the same as in the Hubbard model.
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The second term of Hamiltonian (1),

(3)

takes into account the possibility of filling with holes
of the subsystem of states appearing as a result of col-
lectivization of oxygen ion orbitals. Each such state
characterized by quasi-momentum k and spin projec-
tion σ corresponds to energy εk. Operator  (akσ) act-
ing on the vector of state leads to the creation (annihi-
lation) of a hole with quasi-momentum k and spin
projection σ.

The intersite Coulomb interaction of holes is taken
into account by the third term

(4)

in which the number-of-hole operators

(5)

correspond to the sites of iridium and oxygen ions,
respectively. Operators af + δ, σ are connected with
operators akσ by the conventional Fourier transform.
Vector δ connects the site on which an iridium ion is
located with the site containing the nearest oxygen
ion. Parameter V determines the energy of the intersite
Coulomb repulsion of holes locates at such ions.

Considering the experimental data on the realiza-
tion of the antiferromagnetic ordering in Sr3Ir2O7 at low
temperatures, as well as the conclusion drawn in [20]
concerning the relative decrease in the intensity of fer-
mion hopping between iridium ions under the effect of
SOI, we will hereafter consider the minimal model in
the regime of strong correlations, when U  |tff '|.

It is well known that the use of operators dfσ in this
case becomes ineffective because it is necessary to take
into account the strong interaction rigorously, the
operator structure of which is reflected by the product
of four operators. This difficulty can be overcome by
passing to the atomic representation, in which the
Hubbard repulsion operator for fermions on one site
acquires the diagonal form. In this case, the hopping
operator plays the role of operator of the interaction.

3. EFFECTIVE HAMILTONIAN 
OF THE MINIMAL MODEL 

IN THE STRONG CORRELATION REGIME

Going to the atomic representation for the hole
subsystem of iridium ions, we note that in the case
considered here, the number of such holes per iridium
ion does not exceed unity. Since operator  corre-
sponds to the Hubbard Hamiltonian, we can use the
well-known statement that in the Hubbard model cor-
responds to the t–J model [25–27] in the regime of

+
σ σ

σ
= ε − μˆ ( )a k k k

k

H a a

+
σka
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SEC, in which the Fermi states are described by the
lower Hubbard subband.

The effective Hamiltonian obtained using the
operator form of perturbation theory [28, 30] can be
written in the form

(6)
where operator

(7)

describes noninteracting Hubbard fermions and the
aforementioned collectivized fermions that can prop-
agate over the states of oxygen ions.

Here and below, we use the Hubbard operators [31]

(8)
acting in the Hilbert subspace of states of the site f.
Nondiagonal Fermi-type operator  describes a
transition of the ion on site f from the one-hole state
with spin projection σ to the state without a hole. The
inverse process is described by the Hermitian conju-
gate operator .

Diagonal Hubbard operator  projects on the
one-hole state with spin projection σ at site f, while

 projects onto a state free of hole at the same site.

For these operators, the completeness criterion  +

 +  = 1 is satisfied.
Operator

(9)

corresponds to the inclusion of Hubbard fermion hop-
ping between iridium ions. It should be noted that in
view of complicated commutation relations between
the Hubbard operators in the subsystem of fermions
occupying the electron states on iridium ions, the
kinematic interaction is realized [32–34].

The additional interaction appearing between
Hubbard fermions located on different iridium ions,
which appears in the second order in smallness
parameter tff '/U, is described by operator

(10)

where the exchange interaction intensity is defined by
conventional expression

It can easily be seen from the structure of operator
 that it initiates a transition of the system to the phase

with the long-range AFM ordering.
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The term of effective Hamiltonian  is determined
by the same expression (4) with the only difference
that the operator of the number of fermions on an irid-
ium ion in the atomic representation has a different
form,

(11)

4. QUASI-SPIN GREEN’S FUNCTIONS, 
MAGNON SPECTRUM, AND SUBLATTICE 

MAGNETIZATION
A distinguishing feature in the model considered

here is associated with the fact that the exchange inter-
action is realized in the subsystem of strongly cor-
related Hubbard fermions that participate in charge
transport as well as in the dynamics of the spin subsys-
tem. It should be expected due to interrelation
between the charge and spin degrees of freedom that
the details of the electron structure of the two bands
affect the characteristics of the magnetic subsystem
(e.g., the sublattice magnetization). The inverse effect
due to the influence of the AFM ordering on the
Fermi excitation spectrum also exists. This means that
the problem of the sublattice magnetization must be
solved simultaneously with the determination of the
characteristics of the fermionic subsystems. The cor-
responding equations will be considered in the next
section.

Before passing to the direct derivation of the equa-
tion for the sublattice magnetization, which appears in
the complete system of integral self-consistence equa-
tions, it should be noted that the spin dynamics is
mainly determined by low-energy excitations such as
antiferromagnetic magnons. Accordingly, for describ-
ing the magnetic subsystem, it is necessary to use the
Hubbard operators corresponding to spin degrees of
freedom.

For calculating the magnetic excitation spectrum
and the sublattice magnetization in the AFM phase,
we can use the method of two-time temperature
Green’s functions [28–30]. The dynamic variables in
these GFs are the Hubbard operators corresponding
to single-ion transitions without a change in the num-
ber of fermions, but with a change in the spin state.
This specific feature manifests itself in kinematic rela-
tions in the derivation of the motion equations for GFs
as well as in the dynamics.

With account for the above arguments, we analyze
the dynamic, spectral, and thermodynamic character-
istics of the subsystem of the spin degrees of freedom
of an exciton antiferromagnet using quasi-spin GFs,
which can be written in the quasi-momentum repre-
sentation in form

(12)

V̂
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Operator  is connected with the Hubbard opera-
tor  by the Fourier transform:

(13)

In this case,  = ( )+.

Operator  acting on the state at a site with num-
ber f and a spin projection of –1/2 transforms it into a
state with a spin projection of +1/2.

The equations of motion for the FGs introduced
above, which have been obtained using the Zwanzig–
Mori projection technique [35, 36] can be written as

(14)

where superscript M in mass operator components
(k) is used to distinguish them from the mass

operator components for fermion GFs that will be
used in further analysis. The calculation of these com-
ponents leads to expressions

(15)

in which (k) are determined by the contributions
associated with the hopping of Hubbard fermions over
the lattice sites,

(16)

The thermodynamic averages appearing in these
expressions have the form

(17)

From system (14), we obtain the sought GFs:
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(19)

where

(20)

In this expression, the dependence of the mass
operator component on the quasi-momentum is not
indicated for brevity.

Using the spectral theorem, we can obtain from the
resulting expressions the equation for calculating sub-
lattice magnetization

(21)

in which it is convenient to write quantity β(T) in the
form

(22)

The first term

(23)

in which

(24)

defines the decrease in the sublattice magnetization at
zero temperature due to the quantum fluctuations.
The second term is associated with the influence of
temperature has the form

The two branches of the antiferromagnetic mag-
non spectrum, which appear in this expression, are
defined as

(25)

(26)

while

is the Bose–Einstein distribution function.
In the limiting case of the conventional dielectric

state, when the conduction band and the valence band
do not overlap, the contributions associated with hop-
ping vanish. Then  = 0,  = 0, and  and
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 are determined by the exchange interaction
alone:

(27)

where Jq is expressed conventionally in terms of con-
stants J(h) determining the intensities of exchange
interactions between the spins at the sites associated
with vector h,

(28)

In this case, we have

(29)

In the approximation of z nearest neighbors, we
obtain

(30)

In particular, for the square lattice, we obtain the
familiar result β0 = 1.32. The value of the magnetiza-
tion reduced by quantum fluctuations is M = 0.33.

Equation (21) for the sublattice magnetization
appears in the system of self-consistent equations
determining the phase of the antiferromagnetic exci-
tonic insulator.

5. GREEN FUNCTIONS OF THE FERMION 
SUBSYSTEM AND ORDER PARAMETER 

COMPONENTS OF AN EXCITONIC 
INSULATOR WITH ANTIFERROMAGNETIC 

ORDERING

We derive the self-consistent equations describing
the phase with the antiferromagnetic ordering with a
nonzero EOP using the Green functions constructed
on the Hubbard operators of the quasifermionic type.

Taking into account the two-band nature of the
system and the existence of the AFM order, we intro-
duce the four-component operator of the Fermi type:

(31)

Here, Xkσ corresponds to operators  and is con-
nected with them via the Fourier transform:

(32)

An analogous relation is also observed for operator
Xk – Q, σ if we perform in it the obvious renormalization
for quasi-momentum, k → k – Q.
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The introduction of vector Q is required because of
the necessity of taking into account the aforemen-
tioned antiferromagnetic ordering in the Hubbard fer-
mion subsystem:

(33)

where amplitude M corresponds to the magnetization
of the antiferromagnetic sublattice. In the 2D case, we
have Q = (π, π), while for the 3D structure, we assume
that Q = (π, π, π).

Using four-component operators (31), we define
the matrix Green function

(34)

which will allow us to describe the spectral and ther-
modynamic characteristics of the subsystem of Fermi
degrees of freedom of the antiferromagnetic ED.

As usual, (t) in expression (34) is an operator in
the Heisenberg representation, taken at instant t, and

(t') is the Hermitian conjugate operator at instant
t'; θ(t – t') is the unit Heaviside function. The angle
brackets indicate that anticommutator { (t),

(t')}+ contained in them is subjected to statistical
averaging.

Using the Zwanzig–Mori projection technique
[35, 36] for operators appearing after the commutation
[ , ]–, we find that the system of equations for
the Fourier transform of the GF is defined by integral
transformation

(35)

can be written in concise form as matrix equation

(36)

Here,  is the 4 × 4 unit matrix and  is the matrix,
the elements of which are the mean values of the anti-
commutators of the components of operators  and

:

(37)

It should be emphasized that in the phase with
AFM ordering, matrix  contains nonzero nondiago-
nal elements and has the form

where

↑↑ ↓↓
  =  −  =1 exp( ),

2
z
f f fS X X M iQf

σ +
σ σ +− = − θ −  Ψ Ψ ˆ ˆ ˆ( , ') ( ') { ( ), ( ')} ,k kG k t t i t t t t

σΨ̂k

+
σΨ̂k

σΨ̂k
+

σΨ̂k

σΨ̂k Ĥ
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(38)

denotes the average number of the Hubbard fermions
per unit cell and M is the sublattice magnetization
defined in expression (33). Function ησ depending on
the spin projection is defined as

(39)

The nondiagonal form of matrix , which is a con-
sequence of the nonorthogonality of the system of
basis operators (31), substantially affects the form of
the coefficients in the equations of motion for GFs.
The account for this circumstance ensures the
required analytical properties of these functions.

Matrix (k) appearing in expression (36) is deter-
mined from the expression

(40)

in which the elements of dynamical matrix (k) are
calculated in terms of the average value of anticommu-
tator [ , ]– with operators appearing in ,

(41)
Subscripts i and j run through the values from 1

to 4, and  is the operator Hermitian conjugate to
the jth operator in expression (31).

Without dwelling onto details of simple but cum-
bersome calculations, we write the final result:

where the following notation is used for energy quan-
tities:
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The EOPs are defined as
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These expressions show that the EOP components
can be represented as superpositions of mean values of
the product of Hubbard fermions with traditional fer-
mions. This determines the specific feature of the for-
mation of the exciton phase in a strongly correlated
system because the on-site Coulomb interaction leads
to the splitting of the upper Hubbard subband. As a
result, the charge carrier dynamics is determined only
by fermions of the lower Hubbard subband. This
means that the exciton pairing occurs between
strongly correlated fermions and conventional fermi-
ons, and the pairing intensity is proportional to the
intersite Coulomb interaction. The EOP definition
implies that (k) = ( (k))*.

The matrix elements can be expressed in terms of
the EOP components introduced above:

(46)

where quantity L is the determinant of matrix :

(47)

6. SELF-CONSISTENT EQUATIONS FOR AN 
EXCITON ANTIFERROMAGNET

Definitions (45) show that the derivation of the self-
consistent equation for EOP components in explicit
form involves the calculation of the mean values of the
product of the Fermi operators as well as the operators
corresponding to the Hubbard fermions. These mean
values are determined using the spectral theorem [28,
29] with corresponding GFs. In particular,

(48)

(49)

where β = 1/T, T being the temperature of the system,
and δ → +0.

Analogously, mean values  Xqσ and  Xq– Qσ

are calculated, the only difference being that subscripts
“12” and “32” on the matrix elements of the GF must
be replaced by “14” and “34,” respectively.

The substitution of the resulting mean values into
expressions (45) leads to the integral self-consistent
equations for the EOP components. Analysis shows
that the AFM phase of EI is realized for nonzero com-
ponents (k) and (k), while the two other com-
ponents (k) and (k) are equal to zero. This is
due to the fact that the singularities in the denomina-
tors in the integrands for these components, which are
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σŜ

= − −2 2(1 /2) .dL n M

+ σ
σ σ βω

ω    = − ω + δ  π+ 12
1 Im ( , ) ,

1
q q

da X G q i
e

+ σ
σ − σ βω

ω    = − ω + δ  π+ 32
1 Im ( , ) ,

1
q q Q

da X G q i
e

+
− σq Qa +

− σq Qa

σΔ21
σΔ23

σΔ41
σΔ43
JOURNAL OF EXPERIMENTAL AN
due to the closeness of the energies of the second and
third branches of the Fermi excitation spectrum at the
center and edges of the Brillouin zone, are compen-
sated by the factors appearing in the numerators of
these expressions. For this reason, the fermion pairing
condition ensuring the finiteness of parameters Δ41

and (k) becomes unsatisfiable.

On account for these arguments, we find that

matrix (k) takes a simpler form, and the GFs
required for the derivation of the self-consistent equa-
tions are defined as

(50)

(51)

where det3(k, ω) is the third-order determinant com-

posed of the elements of matrix (k), which has form

(52)

In this expression, the indication of the depen-

dence of quantities (k) and (k) on the quasi-
momentum has been omitted for brevity.

The application of the spectral theorem leads to
two self-consistent integral equations:

(53)

In these equations, three functions are used, in
terms of which the temperature dependences of the
EOP components and other thermodynamic quanti-
ties are manifested.

First function Fq is defined in terms of the sum of
three addends,

(54)

each of which is connected with the Fermi–Dirac dis-
tribution function and the combinations of the energy
differences for three branches of the Fermi spectrum:
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(55)

Energies E1q, E2q, and E3q can be determined by
solving dispersion equation

(56)

and can be written in the form

(57)

The functions of the quasi-momentum appearing
in these expressions,

(58)

are connected with the initial energy quantities by
relations
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The other two functions appearing in expression
(53) can also be represented as the sum of three terms,
each of which contains an additional energy factor:
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These equations imply that the expressions appear-
ing in them depend, apart from the components of
EOP and the sublattice magnetization, on concentra-
tion nd of the Hubbard fermions. To derive the equa-
tion defining these quantity, we note that the total
number of holes per unit-cell in the system considered
here is equal to 1. This means that the additional equa-
tion determining the position of the chemical poten-
tial has the form
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The derivation of the explicit expressions for the
quantities appearing in this equation involves the
application of the fermionic GFs:

(63)

(64)

where

(65)

The application of the spectral theorem leads to the
sought expressions for nd and na:

(66)

(67)

Here, we used the following notation:

(68)

(69)

(70)

Two self-consistent integral equations (53)
together with Eqs. (21), (66), and (67) form a closed
system describing the domain of realization of the
exciton phase with a long-range AFM ordering, as well
as the relations between the characteristics of the AFM
EI phase and the initial parameters of the model. The
specific dependence of the EOP components on the
quasi-momentum (symmetry type) is determined by
the kernel of the integral equation and the condition of
the lowest value of energy of the resulting phase.

7. SYMMETRY CLASSIFICATION OF PHASES
The further analysis of admissible solutions to the

aforementioned system of equations will be confined
to a 2D lattice. In this case, the point symmetry group
has two 1D and two 2D complex-conjugate irreduc-
ible representations (IR).

In the nearest neighbor approximation, the basis
functions of 1D IRs have form
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For a 2D IR, basis function of the p-type symmetry
is characterized by a more intricate quasi-momentum
dependence [18]:

Its important property is due to the fact that upon
substitution σ → –σ, we obtain ϕpσ(k) → (k).

The possibility of realization of the solution with
such a symmetry type of the order parameter is of spe-
cial importance because the AFM EI phase is charac-
terized by a nontrivial topology of the energy structure
(i.e., corresponds to a topological insulator with a
long-range AFM order). The interest in such states has
increased significantly after the publications [37–39]
indicating the realization of the antiferromagnetic
topological insulator state in MnBi2Te4.

Let us expand the Coulomb interaction potential

(72)

appearing in the kernel of the integral equation for the
Fourier transform in the IR functions:

(73)

Since the IR basis functions are orthogonal to one
another, we can perform the classification of solutions
to system (53) in accordance with the three aforemen-
tioned symmetry types. In this case, the quasi-
momentum dependences of EOP for each symmetry
type can be written in unified form:

(74)

where subscript ν takes one of three values s, d, or p.

We pay attention to the fact that (k) for the s-
and d-symmetry types is independent of the spin pro-
jection, while (k) reverses its sign upon a change in
the value of σ to the opposite value. The situation for
the p-symmetry type is more complicated because, as
noted above, the basis function itself for this symmetry
type depends on the spin. Nevertheless, after the
parameterization of amplitudes, the dependence of
these quantities on the spin projection disappears. It
should be emphasized that this had become possible
owing to the inclusion of the explicit dependence of
quantities uσk = ησM(JQ + tdk) and uσk = ησM(JQ + tdkQ)
on the spin projection leading to the sign reversal upon
the substitution σ → –σ.

Substituting these expressions into (53), we obtain
a system of two transcendental equations for order
parameter amplitudes Δν1 and Δν2:
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(75)

Here, the following notation are used:

(76)

(77)

(78)

Depending on the type of representation, function
Γνq can be written as

(79)

It follows from system (75) that the existence of the
long-range AFM ordering leads to binding of ampli-
tudes  and . For M = 0, the condition of the
realization of the excitonic insulator phase is expressed
by equation

(80)

which describes the phase when the excitonic pairing
occurs between the Hubbard fermions of the lower
band and conventional fermions of the upper band.

8. ANTIFERROMAGNETIC EI WITH s-TYPE 
ORDER PARAMETER SYMMETRY

The state with the highest value of the condensa-
tion energy corresponds to the solution to the system
of equations with the s-type EOP symmetry. Figure 1
shows a typical energy spectrum of the Fermi states in
the AFM phase of EI.

The existence of the AFM ordering without taking
into account exciton pairing leads to the emergence of
two branches of the Hubbard fermion spectrum. The
quasi-momentum dependences of these branches are
connected genetically with the quasi-momentum
dependences described by functions εdk and εdkQ. Since
εdkQ can be obtained from εdk by shifting through anti-
ferromagnetism vector Q, there exist the values of
quasi-momenta, at which these functions have identi-
cal values. At these points, the effect of the long-range
magnetic order via the mechanism of exchange inter-
action between the Hubbard fermions is the strongest.
As a result, “repulsion” of the branches occurs, and
the two-band structure of the Hubbard fermion spec-
trum, which is initiated by the AFM ordering, appears
in the subsystem of the same fermions.
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Fig. 1. Fermi excitation spectrum of an antiferromagnetic
excitonic insulator. The quasi-momentum along the prin-
cipal diagonal of the Brillouin zone is laid along the
abscissa axis. The energy in electronvolts is laid along the
ordinate axis. The lower blue curve corresponds to energy
E1k; the middle red curve corresponds to E2k, and the
upper green curve, to E3k. Calculations are performed in
the nearest neighbor approximation for parameters tb1 =
0.5, ta1 = –0,5, Δ0 = 0.3, V = 1, and U = 5. The solution of
the system of self-consistent equations has led to the fol-
lowing values of quantities: Hubbard fermion concentra-
tion nd = 0.994; the exciton order parameter components

are  = –0.145,  = –0.043,  = 0, and  = 0.
Dashed line shows the position of chemical potential μ =
–0.022.

−4 −2 0 2 4
−2

−1

0

1

2

3

4

k

Energy

Δ0
12 Δ0

23 Δ0
34 Δ0

14

Fig. 2. Behavior of functions (k, Eνk) along the direc-
tion of the principal diagonal of the Brillouin zone. All
energy parameters are the same as in Fig. 1. The blue curve

describes the behavior of (k, E1k); the red curve corre-

sponds to quasi-momentum dependence (k, E2k); the

green curve shows dependence (k, E3k).

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Rj (k, E�k)

k

σ
jR

σ
1R

σ
2R

σ
3R
To clarify the reason for zero values of (k) and
(k) in the AFM phase of EI, we consider the spec-

tral intensity (SI) Aσ(k, ω) associated with the correla-
tion function of the Hubbard fermions  (t')Xkσ(t)
in terms of the Fourier transform:

(81)

Using the well-known expression [28, 29]

(82)

we write SI in the form

(83)

Quantities (k, Eνk) appearing in this representa-
tion and determining the weight contribution to SI
associated with the fermion branch with number ν at
each point of the Brillouin zone are defined as
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(84)

where

(85)

Functions a11(k, ω) and a31(k, ω) appearing in
these expressions are defined in (65), while quantities
λk and Wk have been introduced in writing the solu-
tions to the cubic equation.

Figure 2 shows the quasi-momentum dependences
(k, Eνk) in the direction of the principal diagonal. It

can be seen that near the Brillouin zone center, there
exists a large region in which all functions (k, Eνk)
differ from zero. In the conditions when all the initial
bands overlap, this circumstance is responsible for the
existence of a solution with (k) ≠ 0 and (k) ≠ 0.

Let us consider in greater detail the quantitative
analysis of the reason for zero values of components

(k) and (k) in the AFM EI in question. It should
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be noted above all that the emergence of correlations
ensuring nonzero values of these components is asso-
ciated with the fermions of the upper branch that is
genetically initiated in initial spectrum εakQ and is
modified self-consistently. However, this requires the
fulfillment of two conditions. First, the energy differ-
ence between the branches, for which the formation of
a relation between fermions is expected, must be
small. Second, the system must contain fermions that
participate in the formation of the bond. Analytically,
this is expressed in the condition for the existence of a
region in the Brillouin zone, in which two quantities

(k, ) and (k, ) (subscripts ν1 and ν2
denote the numbers of the fermion branches, for
which the possibility of bond formation is analyzed)
differ from zero. The curves in Fig. 2 show that the
above conditions cannot be satisfied. This explains the
equality to zero of components (k) and (k) in
the AFM phase of EI considered here.

9. CONCLUSIONS

Let us formulate the main conclusion drawn from
analysis of the joint effect of the spin–orbit interaction
and strong electron correlations on the conditions for
the existence of an excitonic insulator with the AFM
order.

1. The fundamental problem of the realization of
AFM EI in iridium oxides can be solved using the
minimal two-band model taking into account the
peculiarities of the electron structure of these oxides
and the strong spin–orbit interaction in ions with the
5d electron configuration. The use of the electron–
hole symmetry in the system of strongly correlated fer-
mions and taking into account the type of filling of
electrons states of oxygen ions has made it possible to
pass to the hole description of the two-band model
like it is done in the theory of cuprate superconduc-
tors.

2. The inclusion of strong electron correlations in
the iridium ion subsystem leads to the emergence (in
accordance with the Anderson mechanism) of the
exchange interaction of the AFM type in the subsys-
tem of the Hubbard fermions filling the states of the
lower band. In this case, the intersite Coulomb inter-
action ensuring spontaneous hybridization of mixing
of fermions from different bands plays the role of the
mechanism of formation of the excitonic insulator
phase with a long-range antiferromagnetic ordering.

3. The AFM ordering is responsible for the emer-
gence of two branches in the Hubbard fermion spec-
trum. For this reason, the AFM phase of EI is charac-
terized by exciton components (k) and (k)
appearing as a result of hybridization of free fermions
of the upper band with the Hubbard fermions
described by operators Xkσ and Xk – Q, σ, respectively.

σ
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R ν1kE σ
ν2

R ν2kE
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4. For the solutions to the system of self-consistent
integral equations, symmetry classification has been
performed, in accordance with which the quasi-
momentum dependences of the exciton order param-
eter components can be of the s, p, or d types. The
ground state corresponds to the solution with the s-
type symmetry.

5. Fermi excitations in the AFM phase of EI near
the center of the Brillouin zone are formed under the
strong influence of the emerging hybridization of the
Hubbard fermions with free fermions in the upper
band. This hybridization induces a dielectric gap,
transforming the system from the semimetal state to
the dielectric state with a long-range AFM order.

6. The model formulated here makes it possible to
interpret qualitatively the properties of the antiferro-
magnetic phase of an excitonic insulator, which
(as stated in some publications) is realized in com-
pound Sr3Ir2O7.
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