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In this Letter, we consider optical bound states in the
continuum (BICs) in the infrared range supported by an
all-dielectric metasurface in the form of subwavelength
dielectric grating. We apply the random forest machine
learning method to predict the frequency of the BICs as
dependent on the optical and geometric parameters of the
metasurface. It is found that the machine learning approach
outperforms the standard least square method at the size of
the dataset of ≈4000 specimens. It is shown that the random
forest approach can be applied for predicting the subband in
the infrared spectrum into which the BIC falls. The impor-
tant feature parameters that affect the BIC wavelength are
identified. © 2023 Optica Publishing Group

https://doi.org/10.1364/OL.494629

Introduction. Optical bound states in the continuum (BICs) are
localized eigenmodes of Maxwell’s equations embedded in the
continuum of scattering states [1]. In the last decade, optical
BICs [2,3] have become an important instrument for designing
nanophotonic devices with enhanced light–matter interaction.
The optical BIC can be applied whenever one requires a pro-
nounced resonant response [4–6] accompanied by critical field
enhancement [7,8] in the near zone. In particular, the BICs have
already found applications in such fields as second harmonic
generation [9–12], light absorbers [13–17], sensors [18,19], and
lasers [20–23].

The optical BICs are typically engineered by numerically
solving Maxwell’s equations with application of various numer-
ical techniques such as the finite-element method (FEM) and
finite-difference time-domain (FDTD) method. Once an optical
BIC is predicted in a certain nanophotonic structure, its fre-
quency can be tuned to any desirable wavelength using the scale
invariance of electrodynamics. This approach, however, neglects
the dispersion of material parameters and, most importantly, can
be limited by nanofabrication capabilities which could dictate
the geometry and sizes of building blocks of the nanodevice.

In this Letter, we examine the performance of the random
forest (RF) machine learning (ML) method for predicting the
frequencies of optical BICs supported by an all-dielectric meta-
surface. Recently, we have seen a surge of interest in the

application of ML techniques to various problems of nanopho-
tonics [24–26]. The ML algorithms have been proved useful in
topological photonics [27] and for design of integrated photonic
circuits [28]. So far, for analyzing optical BICs, researchers have
mostly applied neural networks (NNs) [29–33]. Here we take a
different route by using the RF supervised learning algorithm.
The RF is a method that constructs an ensemble of decision
trees which are used to return the prediction either via majority
voting for classification problems or average values for regres-
sion problems. In comparison with NNs, the RF features a small
number of hyperparameters and allows to estimate the impor-
tance of the parameters, which can pave a way to useful physical
insights [34,35].

BIC in a dielectric grating and dataset description. We
consider optical BICs in dielectric grating, as shown in Fig. 1.
The grating consists of a lossless dielectric substrate with dielec-
tric bars periodically placed on top. The refractive index of the
substrate is denoted by ns while the refractive index of the bars
by nb. The refractive index in the upper half-space is taken
as n0 = 1. All geometric parameters are defined in Fig. 1. We
keep the structure period p = 693.3 nm. All other geometric
parameters, namely bar width w and bar height h, are normal-
ized to the period of the grating p. To generate the dataset,
we solved the eigenvalue problem for Maxwell’s equation with
application of the FEM implemented in COMSOL. The opti-
cal and geometric parameters were randomly equidistributed
as w ∈ [0.2, 0.8], h ∈ [0.2, 0.8], nb ∈ [1.5, 5], ns ∈ [1, 4] with the
goal to obtain an optical BIC in the IR spectral range (1.1–2.0
µm). In this work, we focus on symmetry protected dipole BICs
[36], as shown in the inset of Fig. 1.

We obtained the dataset of 21,090 samples of the four feature
parameters (w, h, nb, ns) resulting in the property parameter (BIC
wavelength) sitting in the IR range. The descriptive statistics and
the plot of the dataset are summarized in Table S1 and Fig. S1 in
Supplement 1, respectively. Our aim is to build a model that can
predict the BIC wavelength and find the most important feature
parameters to influence it. Preliminary data analysis revealed
that all feature parameters and wavelength values showed almost
uniform distributions, see Fig. S1, which means that all repre-
sentative cases were selected. The correlation matrix shown in
Fig. 2 proves the absence of linear relationships between the
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Fig. 1. Schematic of the metasurface with the electric field of the
TE BIC mode shown in the inset.

Fig. 2. Correlation matrix of the feature and property parameters.

features and the property, which justifies application of ML
methods.

Nonlinear lest squares method. Before proceeding to the
RF method, we introduce a benchmark approach based on the
nonlinear least squares method (LSM). We have seen that there
are no linear correlations among d, n1, h, n0 and the wavelength.
Thus, we apply the following LSM formula for predicting the
wavelength of BIC:

λBIC = a +
4∑︂

j=1

ajxj +

4∑︂
j=1, j′≥j

aj,j′xjxj′ , (1)

where xj is any of the four feature parameters w, h, nb, ns and
a, aj, aj,j′ are the coefficients fit by minimizing the sum

∑︁
(λBIC −

λn)
2 with λn being the BIC wavelength obtained from solving

the eigenvalue problem.
Regression random forest method. The regression trees are

built by recursive binary partitioning of the multidimensional
predictor space into domains by constructing a multitude of
decision trees at a time and outputting mean/average prediction
of the individual trees [35]. Predictions are done by passing new
data parameters from the root through the internal nodes until
a terminal node is reached. In accordance with the nonlinear
model in Eq. (1), we extended the set of feature parameters by
complementing the set of w, h, nb, ns with all possible products of
its elements. Thus, the size of the extended feature parameter set
is 14 (see Dataset 1, Ref. [37]). We used a self-written python
script for Python 3.6 [38] which is available in Code 1, Ref.
[39]. The libraries invoked in the script are numpy, pandas,
sklearn, matplotlib, and mpl_toolkits. Since the RF algorithm
is stochastic, we used it with averaging performance across ten
repeats of cross-validation. Each time the data were split into
the two random data sets: a set for training procedure (70%

Fig. 3. (a) Prediction error calculated for 30% randomly selected
test dataset for the LSM (blue triangles) and RF (red circles). Start-
ing from N ∼ 4000, the RF model has smaller prediction error
than the LSM. (b) Comparative plot of the observed wavelength
values against the calculated wavelengths obtained from RF model.
For training dataset MAE= 3.01 nm, test dataset MAE= 7.71 nm,
cross-validation MAE= 7.35± 3.14 nm.

of total data) and another set for test (30% of total data). The
mean absolute error (MAE) of the training set and the test set
of wavelength values are 3.01 nm and 7.71 nm, respectively.
We performed a comparison between the RF model and the
benchmark LSM models for different sizes of the dataset. The
results are shown in Fig. 3(a). The numerical values plotted in
Fig. 3(a) are collected in Table S2 in Supplement 1. Figure 3(a)
clearly shows the advantage of the RF over the LSM as the
size of the training dataset is increased. We performed a 5-
fold cross-validation test on the whole dataset, which showed
MAE= 7.35±0.14 nm. The previously obtained MAE values
are within three estimated standard deviations from the mean of
this value. Thus we can conclude that the correlations between
experimental features and the wavelength are captured by the
RF method. The RF predicted wavelength values are plotted in
Fig. 3(b) against the calculated ones. In total, the RF provides a
good fit with 0.6% average relative error.

The RF is notorious for allowing to rank the feature param-
eters according their importance after training. The selected
value is permuted among the training data and the error is
computed on this perturbed data set. The importance score
for the selected feature is computed by averaging the differ-
ence in error before and after the permutation over all trees
[40]. The score is normalized by the standard deviation of these
differences. The features which produce large values for this
score are ranked as more important than features which pro-
duce small values. In our case, the w · nb, h · ns, and n2

b are the
three most important parameters, see Fig. 4(a). Now we can
plot the BIC wavelengths in space of the three most important
parameters which is presented in Fig. 4(b). One can see from
Fig. 4(a) that the ranks of the two most important parameters,
w · nb and h · ns, add up to 90%. These parameters are noth-
ing but the optical path lengths across the dielectric bars, see
Fig. 1.

Classification random forest method. The BIC wavelengths
calculated in our work are in the simulation range of 1100–2000
nm. The simulation range embraces the telecommunication
1260–1675-nm wavelength range which is conventionally sub-
divided into six subbands, see Table 1. Here we address the
question whether it is possible to predict into which subband
the BIC wavelength falls. To solve the classification problem,
we additionally designated six subbands X1, . . . , X6 at the edges
of the simulation range. The auxiliary designations are also
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Fig. 4. (a) Importance of all feature parameters on BIC wave-
length values in the RF model. The w · nb parameter has the major
influence. (b) Samples with low wavelength values (blue points)
to the highest wavelengths (red points) are segregated into telecom
bands (Table 1) in the 3D space spanned on the three most important
parameters w · nb, n2

b, and h · nb .

Table 1. Infrared Band Designations

Band Description Wavelength Range

X1 band 1100–1160 nm
X2 band 1160–1260 nm
O band original 1260–1360 nm
E band extended 1360–1460 nm
S band short wavelengths 1460–1530 nm
C band conventional (“erbium window”) 1530–1565 nm
L band long wavelengths 1565–1625 nm
U band ultralong wavelengths 1625–1675 nm
X3 band 1675–1750 nm
X4 band 1750–1850 nm
X5 band 1850–1950 nm
X6 band 1950–2000 nm

explained in Table 1. The Python script for classification is
available in Code 2, Ref. [41].

Thus, the simulation range is down to 12 classes (see Dataset
2, Ref. [42]). An RF containing ten decision trees was used
to build the model for the classification problem. The five-fold

Fig. 5. Confusion matrix plotted for predicted and actual classes:
(a) training dataset (70% randomly chosen); (b) test dataset (30%
randomly chosen from all dataset).

cross-validation test on the whole dataset showed an accuracy of
83.1%. The confusion matrices for the training dataset (14,763
samples) and the test dataset (6327 cases) are presented in
Figs. 5(a) and 5(b), respectively, which show good classification
prediction of all classes.

Conclusion. The data analysis revealed the absence of linear
relationships between the features (w, h, nb, ns) and the BIC
wavelength, and the error of the RF model prediction is twice as
small as the error of the nonlinear LSM model, which justifies the
use of supervised ML methods for the problem under scrutiny.
The regression RF model was able to predict the wavelength with
a small error of 7.35 nm which is enough to classify such narrow
bands as C-band (1530–1565 nm). The cross-validation accu-
racy of class prediction is 83.1% which means that only 16.9%
of cases were wrongly classified. It should be noted that the
confusion matrix of the test dataset showed that only the closest
adjacent classes were chosen in the wrong classification cases.
Therefore, the error in classification is minor. Meanwhile, the
speed of predicting calculation is much higher than direct calcu-
lation using COMSOL, which opens an opportunity to quickly
screen the geometry of the bars and the indices of dielectric
materials to obtain a BIC in the desired telecom window. The
importance ranks of the feature parameters indicated that the
optical path lengths across the dielectric bars are the most impor-
tant parameters affecting the BIC wavelengths. This allows for a
certain freedom in the design of dielectric metasurfaces as, for
instance, a variation of parameters under the constraint that the
two features are constant does not significantly affect the BIC
wavelength. In summary, we believe that the RF method may
prove instrumental for engineering optical BICs at a given wave-
length in the telecom band. The RF can be potentially applied
for the reverse design by using the BIC frequency as one of the
feature parameters whereas one of the geometric parameters,
say the thickness of the bars, is used as one of the property
parameters. It could also be interesting to test the RF method
for predicting the wavelengths and quality factors of the high-
quality resonances which occur in the BIC metasurfaces subject
to the breaking of symmetry as suggested in [33]. The above
problems are to be the subject of future studies.
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