Научная статья

УДК: 535.31:535.343.2:535.555:539.22:539.216.2

ЭФФЕКТИВНЫЕ ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ И ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ КВАЗИДВУМЕРНОЙ ПОЛИДОМЕННОЙ ПЛЕНКИ СОПРЯЖЕННОГО ПОЛИМЕРА В ОБЛАСТИ ПОГЛОЩЕНИЯ СВЕТА

Евгений Михайлович Аверьянов*

Институт физики им. Л. В. Киренского Сибирского отделения РАН, обособленное подразделение ФИЦ КНЦ СО РАН, Красноярск, Россия

ИНФОРМАЦИЯ

АННОТАЦИЯ

История статьи: Поступила 20.04.2023 Одобрена 18.05.2023 Принята 25.05.2023

Ключевые слова: полидоменные пленки, сопряженные полимеры, F8BT, эффективная диэлектрическая проницаемость, эффективный показатель преломления Рассматривается одноосная пленка сопряженного полимера в плоскости ХУ с оптической осью Z, состоящая из статистически эквивалентных одноосных доменов среднего размера a. Оптические оси доменов n_d хаотично ориентированы в плоскости ХУ. В области поглощения света домены характеризуются диэлектрическими проницаемостями $\varepsilon_j = \varepsilon_{1j} + i\varepsilon_{2j}$ и показателями преломления $N_j = n_j + ik_j$ для обыкновенной (j = o) и необыкновенной (j = e) световых волн. Для волн с длиной $\lambda >> a$, волновым вектором $\mathbf{k}^* \perp Z$ и поляризацией $\mathbf{E} \perp Z$ такая пленка является двумерной композитной средой с эффективной диэлектрической проницаемостью $\varepsilon^* = \varepsilon_1^* + i\varepsilon_2^*$ и эффективным показателем преломления $N^* = n^* + ik^*$. В данной работе получены соотношения, связывающие компоненты ε_1^* , ε_2^* , n^* , k^* с компонентами n_j , k_j . Для проверки этих соотношений и расчета компонент ε_1^* , ε_2^* , n^* , k^* вместо величин n_o , k_o (n_e , k_e) использовались экспериментальные значения n_{oA} , k_{oA} (n_{eA} , k_{eA}) в областях прозрачности и электронного поглощения для одноосных монодоменных пленок сопряженного полимера F8BT с аксиальной ориентацией (O_A) макромолекул относительно оптической оси **n**_A в плоскости XY. ε1*, ϵ_2^*, n^*, k^* Рассчитанные компоненты сравнивались экспериментальными значениями компонент ε_{1oP} , ε_{2oP} , n_{oP} , k_{oP} в тех же спектральных областях для обыкновенной световой волны с $\lambda >> a$, $\mathbf{k}^* \perp Z$, Е⊥Z в одноосных полидоменных пленках F8BT с плоскостной ориентацией (O_P) макромолекул. Соотношения $\varepsilon_1^* \approx \varepsilon_{1oP}$, $\varepsilon_2^* \approx \varepsilon_{2oP}$, $n^* \approx n_{oP}$, $k^* \approx k_{oP}$, установленные здесь с хорошей точностью, показывают близость полидоменных пленок F8BT к идеальному двумерному поликристаллу.

DOI: 10.18083/LCAppl.2023.2.81

Для цитирования:

Аверьянов Е. М. Эффективные диэлектрическая проницаемость и показатель преломления квазидвумерной полидоменной пленки сопряженного полимера в области поглощения света // Жидк. крист. и их практич. использ. 2023. Т. 23, № 2. С. 81–89.

^{*}Автор для переписки: aver@iph.krasn.ru

[©] Аверьянов Е. М., 2023

Research Article

EFFECTIVE DIELECTRIC CONSTANT AND REFRACTIVE INDEX OF QUASI-TWO-DIMENSIONAL POLYDOMAIN FILM OF CONJUGATED POLYMER IN ABSORPTION REGION

Evgeniy M. Aver'yanov*

Kirensky Institute of Physics, Federal Research Center KSC Siberian Branch RAS, Krasnoyarsk, Russia

ARTICLE INFO: ABSTRACT

Article history: Received 20 April 2023 Approved 18 May 2023 Accepted 25 May 2023

Key words: polydomain films, conjugated polymers, F8BT, effective dielectric constant, effective refractive index An uniaxial film of a conjugated polymer consisting of statistically equivalent uniaxial domains of the average dimension a is considered in the plane XY with the optical axis Z. The optical axes \mathbf{n}_d of domains are randomly oriented in the plane XY. In the region of light absorption, the domains are characterized by the dielectric constants $\varepsilon_i = \varepsilon_{1i} + i\varepsilon_{2i}$ and the refractive indices $N_i = n_i + ik_i$ for an ordinary (j = o) and extraordinary (j = e) light waves. For the waves with wavelength $\lambda >> a$, wave vector $\mathbf{k}^* \perp Z$ and polarization $\mathbf{E} \perp Z$, such polydomain film is two-dimensional composite medium with effective dielectric constant $\varepsilon^* = \varepsilon_1^* + \varepsilon_1^*$ $i\varepsilon_2^*$ and effective refractive index $N^* = n^* + ik^*$. In this work, the relations which connect the components ε_1^* , ε_2^* , n^* , k^* with the components n_j , k_j were established. For testing the relations and calculating the components ε_1^* , ε_2^* , n^* , k^* , the experimental values n_{oA} , k_{oA} (n_{eA} , k_{eA}) were used instead of values n_o , k_o (n_e , k_e) in the transparency and electronic absorption regions for the uniaxial monodomain films of the conjugated polymer F8BT with axial orientation (O_A) of macromolecules with respect to the optical axis \mathbf{n}_A in the XY plane. The calculated components ε_1^* , ε_2^* , n^* , k^* were compared with the experimental components ε_{10P} , ε_{20P} , n_{oP} , k_{oP} in the same spectral regions for an ordinary light wave with $\lambda >> a$, $\mathbf{k}^* \perp Z$, $\mathbf{E} \perp Z$ in the uniaxial polydomain F8BT films with in-plane orientation (O_P) of macromolecules. The relations $\varepsilon_1^* \approx \varepsilon_{1oP}$, $\varepsilon_2^* \approx \varepsilon_{2oP}$, $n^* \approx n_{oP}$, $k^* \approx k_{oP}$ established here with good precision show that the polydomain F8BT films are close to the ideal two-dimensional polycrystal.

DOI: 10.18083/LCAppl.2023.2.81

For citation:

Aver'yanov E. M. Effective dielectric constant and refractive index of quasi-twodimensional polydomain film of conjugated polymer in absorption region. *Liq. Cryst. and their Appl.*, 2023, **23** (2), 81–89 (in Russ.).

^{*}Corresponding author: aver@iph.krasn.ru

[©] Aver'yanov E. M., 2023

Введение

В оптоэлектронике используются сопряженных одноосные тонкие пленки полимеров с ориентацией оптической оси в плоскости пленки XYили вдоль Ζ. Жесткоцепные макромолекулы сопряженных полимеров состоят из совокупности линейных фрагментов – конформационных субъединиц [1], пространственной которые отличаются ориентацией своих продольных осей l_i и числом входящих в них мономерных звеньев, связанных π-электронным сопряжением. Монодоменные пленки сопряженных полимеров с аксиальной ориентацией (O_A) осей I_i конформационных субъединиц относительно оптической оси **n**_A в XY получают плоскости на одноосноориентирующих подложках в высокотемпературной нематической фазе с последующим переводом в стеклообразное нематическое состояние при быстром охлаждении [2, 3]. В области поглощения света такая пленка характеризуется диэлектрическими проницаемостями $\varepsilon_{jA} = \varepsilon_{1jA} + i\varepsilon_{2jA}$ и показателями преломления $N_{jA} = n_{jA} + ik_{jA}$ для обыкновенной (i = o) и необыкновенной (i = e) световых волн с поляризацией электрического вектора **Е**⊥**n**_{*A*} и $\mathbf{E} \| \mathbf{n}_A$.

Полидоменные пленки сопряженных полимеров изотропных на подложках с плоскостной ориентацией (О_Р) осей l_i конформационных субъединиц и оптической осью **n**_P||Z обычно получают методом центрифугирования (spin-coating) [4-7]. Такие пленки состоят из совокупности застеклованных нематических доменов, у которых оптические оси \mathbf{n}_d хаотично ориентированы в плоскости ХҮ. В зависимости от технологии получения пленок средний размер доменов а варьируется от десятков нанометров до долей микрометра. В области поглощения домен характеризуется показателями света преломления $N_i = n_i + ik_i$ для обыкновенной (j = $o, \mathbf{E} \perp \mathbf{n}_d$) и необыкновенной ($j = e, \mathbf{E} || \mathbf{n}_d$) световых волн внутри домена. Полидоменной пленке соответствуют диэлектрические проницаемости $\varepsilon_{iP} = \varepsilon_{1iP} + i\varepsilon_{2iP}$ и показатели преломления $N_{iP} =$ n_{iP} + ik_{iP} для обыкновенной ($j = o, \mathbf{E} \perp \mathbf{n}_P$) и необыкновенной ($j = e, E || \mathbf{n}_P$) световых волн. Для моно- и полидоменных пленок компоненты комплексных величин $\varepsilon_{j(A,P)}$ и $N_{j(A,P)}$ измеряются методами эллипсометрии [2-7].

В научном и практическом отношениях представляет интерес связь компонент ε_{1oP} , ε_{2oP} , n_{oP} , k_{oP} с компонентами ϵ_{1jA} , ϵ_{2jA} , n_{jA} , k_{jA} . Предпосылками установления такой связи являются следующие факты. Во-первых, при доминирующем влиянии анизотропных взаимодействий между конформационными субъединицами на локальную структуру и оптические свойства одноосных нематических доменов по сравнению с влиянием ориентирующей подложки можно предполагать тождественность компонент $n_{iA},$ k_{iA} для монодоменной пленки с компонентами n_i, k_i для доменов в полидоменной пленке. Это предположение поддерживается тем. что в термотропных нематиках тепловые локальные (поперечные) флуктуации директора пренебрежимо слабо влияют на измеряемые показатели преломления одноосного монодоменного для образца с планарной или гомеотропной ориентацией оптической оси образца [8]. Во-вторых, в области поглощения световых волн с длиной $\lambda >> a$, волновым вектором $\mathbf{k}^* \perp \mathbf{n}_P$ и поляризацией $\mathbf{E} \perp \mathbf{n}_P$ полидоменная пленка толщиной $d \ll \lambda$ является композитной средой с эффективной диэлектрической проницаемостью $\varepsilon^* = \varepsilon_1^* + i\varepsilon_2^*$ и эффективным показателем преломления $N^* = n^* + ik^*$. В-третьих, при выполнении указанных условий для полидоменных пленок с одноосными доменами в области их прозрачности были установлены равенство $n_{eP} = n_{oA}$ и следующая связь [9]

$$n^* = (n_{oA}n_{eA})^{1/2} = n_{oP},$$
 (1)

подтвержденная для сопряженных полимеров с малым [9], средним [10] и большим двупреломлением $\Delta n = n_{eA} - n_{oA}$ [11]. Развитием исследований взаимосвязи между оптическими свойствами моно- и полидоменных пленок [9–12] является переход к области поглощения света.

Цели работы: данной установление соотношений, связывающих компоненты $\varepsilon_1^*, \varepsilon_2^*, n^*,$ k^* для полидоменной пленки с компонентами n_i, k_i для образующих ее доменов; расчет зависимостей $\varepsilon_1^*(\lambda), \quad \varepsilon_2^*(\lambda), \quad n^*(\lambda), \quad k^*(\lambda) \quad c$ использованием экспериментальных зависимостей $n_{iA}(\lambda),$ $k_{iA}(\lambda)$ вместо $n_i(\lambda)$, $k_i(\lambda)$; сравнение зависимостей $\varepsilon_1^*(\lambda)$, $\varepsilon_2^*(\lambda),$ $n^*(\lambda),$ $k^*(\lambda)$ с экспериментальными зависимостями $\varepsilon_{1oP}(\lambda),$ $\varepsilon_{2oP}(\lambda),$ $n_{oP}(\lambda)$, $k_{oP}(\lambda)$. Подходящими объектами реализации этих целей являются пленки сопряженного полимера poly(9,9'*dioctylfluorene-co-benzothiadiazole*) (F8BT):

с известными зависимостями $n_{j,A}(\lambda)$, $k_{j,A}(\lambda)$ [2, 3] и $n_{oP}(\lambda)$, $k_{oP}(\lambda)$ [4–6] в областях видимого диапазона прозрачности и электронного поглощения. По молекулярно-оптическим свойствам в видимой области и ориентационной упорядоченности доменов [10, 12] полидоменные пленки F8BT наиболее близки к идеальному двумерному поликристаллу среди исследованных сопряженных полимеров [9–12].

Связь компонент $\varepsilon_1^*, \varepsilon_2^*, n^*, k^*$ и n_i, k_i

Рассмотрим полидоменную пленку в плоскости *XY*, состоящую из статистически эквивалентных доменов со средним размером *a* и одинаковой в среднем площадью. Ориентация домена в этой плоскости фиксируется углом θ между оптической осью домена \mathbf{n}_d и направлением волнового вектора $\mathbf{k}^* \perp Z$ поперечной световой волны с длиной $\lambda >> a$ и поляризацией $\mathbf{E} \perp Z$. При изотропной функции распределения $\rho(\theta)$ доменов в рамках подхода [9] для эффективной

диэлектрической проницаемости пленки $\varepsilon^* = \varepsilon_1^* + i\varepsilon_2^*$ в области поглощения света можно получить соотношение

$$\varepsilon^* = \langle \varepsilon_e(\theta) \rangle \equiv (2/\pi) \int_0^{\pi/2} \varepsilon_e(\theta) d\theta \,. \tag{2}$$

Здесь $\varepsilon_e(\theta) = \varepsilon_{1e}(\theta) + i\varepsilon_{2e}(\theta) - диэлектрическая проницаемость домена для необыкновенной световой волны с волновым вектором <math>\mathbf{k}_d || \mathbf{k}^*$ внутри домена, а скобки $\langle ... \rangle$ означают усреднение по площади пленки, или по ориентационному распределению осей \mathbf{n}_d доменов. Для компонент $\varepsilon_{1,2}^*$ из (2) следует

$$\varepsilon_1^* = \langle \varepsilon_{1e}(\theta) \rangle, \quad \varepsilon_2^* = \langle \varepsilon_{2e}(\theta) \rangle.$$
 (3)

Выражение для $\varepsilon_e(\theta)$ имеет вид [13]

$$\varepsilon_e(\theta) = \varepsilon_o \varepsilon_e (\varepsilon_o \sin^2 \theta + \varepsilon_e \cos^2 \theta)^{-1} \tag{4}$$

с комплексными величинами

$$\varepsilon_o = \varepsilon_{1o} + i\varepsilon_{2o}, \quad \varepsilon_e = \varepsilon_{1e} + i\varepsilon_{2e}.$$
 (5)

Их компоненты связаны с компонентами главных показателей преломления $N_j = n_j + ik_j$ домена следующим образом:

$$\varepsilon_{1o} = n_o^2 - k_o^2, \quad \varepsilon_{2o} = 2n_o k_o,
\varepsilon_{1e} = n_e^2 - k_e^2, \quad \varepsilon_{2e} = 2n_e k_e.$$
(6)

Подстановка (5) в (4) дает соотношения

$$\varepsilon_{1e}(\theta) = \frac{\varepsilon_{1o}(\varepsilon_{1e}^2 + \varepsilon_{2e}^2)\cos^2\theta + \varepsilon_{1e}(\varepsilon_{1o}^2 + \varepsilon_{2o}^2)\sin^2\theta}{(\varepsilon_{1e}\cos^2\theta + \varepsilon_{1o}\sin^2\theta)^2 + (\varepsilon_{2e}\cos^2\theta + \varepsilon_{2o}\sin^2\theta)^2},\tag{7}$$

$$\varepsilon_{2e}(\theta) = \frac{\varepsilon_{2o}(\varepsilon_{1e}^2 + \varepsilon_{2e}^2)\cos^2\theta + \varepsilon_{2e}(\varepsilon_{1o}^2 + \varepsilon_{2o}^2)\sin^2\theta}{(\varepsilon_{1e}\cos^2\theta + \varepsilon_{1o}\sin^2\theta)^2 + (\varepsilon_{2e}\cos^2\theta + \varepsilon_{2o}\sin^2\theta)^2}.$$
(8)

Здесь $\varepsilon_{1e}(\theta) = [n_e(\theta)]^2 - [k_e(\theta)]^2$, $\varepsilon_{2e}(\theta) = 2n_e(\theta)k_e(\theta)$. При слабом поглощении света и выполнении соотношений $k_j/n_j = \xi_j \ll 1$, $k_e(\theta)/n_e(\theta) = \xi_e(\theta) \ll 1$ для показателей затухания ξ_j , $\xi_e(\theta)$ световых волн можно в (6) – (8) ограничиться линейными по k_j и $k_e(\theta)$ членами. Тогда из (7), (8) следуют известные выражения для функций $n_e(\theta)$ и $\xi_e(\theta)$ [13]. Для электронного поглощения пленок сопряженных полимеров такого приближения недостаточно и необходимо использовать полные соотношения (7), (8). Их подстановка в (3) и учет (6) дают выражения

$$\varepsilon_1^* = n_o n_e - k_o k_e, \quad \varepsilon_2^* = n_o k_e + n_e k_o.$$
 (9)

К этому же результату приводит подстановка комплексных величин ε_i (5) или N_j в формулу

$$\varepsilon^* = (\varepsilon_o \varepsilon_e)^{1/2} = N_o N_e. \tag{10}$$

Из равенства $\varepsilon^* = (N^*)^2$ следуют соотношения

$$\varepsilon_1^* = (n^*)^2 - (k^*)^2, \quad \varepsilon_2^* = 2n^*k^*, \quad (11)$$

подобные (6). Отсюда получаем

$$2(n^*)^2 = [(\varepsilon_1^*)^2 + (\varepsilon_2^*)^2]^{1/2} + \varepsilon_1^*, \qquad (12)$$

$$2(k^*)^2 = [(\varepsilon_1^*)^2 + (\varepsilon_2^*)^2]^{1/2} - \varepsilon_1^*.$$
(13)

Подстановка сюда выражений (9) дает связь компонент n^* , k^* с компонентами n_j , k_j :

$$2(n^*)^2 = [(n_o^2 + k_o^2)(n_e^2 + k_e^2)]^{1/2} + n_o n_e - k_o k_e, \quad (14)$$

$$2(k^*)^2 = [(n_o^2 + k_o^2)(n_e^2 + k_e^2)]^{1/2} - n_o n_e + k_o k_e.$$
(15)

Рассмотрим области сильного и слабого поглощения, используя переменные n_j , ξ_j и следующие выражения

$${\epsilon_1}^* = n_o n_e (1 - \xi_o \xi_e), \quad {\epsilon_2}^* = n_o n_e (\xi_o + \xi_e).$$
 (16)

В области сильного поглощения домена при $\xi_j > 1$ имеется спектральный интервал с $\varepsilon_{1j} < 0$. Для полидоменной пленки наличие интервала с $\varepsilon_1^* < 0$ возможно при более сильном условии $\xi_o \xi_e > 1$. В области слабого поглощения при $\xi_j << 1$ значение ε_1^* отличается от $n_o n_e$ поправкой второго порядка малости относительно ξ_j . В квадратичном по ξ_j приближении из (14) следует выражение

$$n^* \approx (n_o n_e)^{1/2} [1 + (\xi_o - \xi_e)^2/8],$$
 (17)

и отличие n^* от $(n_o n_e)^{1/2}$ пренебрежимо мало. Учитывая это в формулах (11) и (16), получаем

$$k^* = \varepsilon_2^* / (2n^*) \approx (n_o n_e)^{1/2} (\xi_o + \xi_e) / 2.$$
 (18)

Перейдем к экспериментальной проверке полученных соотношений.

Сравнение с экспериментом

Для полидоменных пленок с ориентацией O_P конформационных субъелиниц главные показатели преломления n_i показатели И поглощения k_i доменов неизвестны, но можно учесть совокупность следующих фактов. Для моно- и полидоменных пленок полимера F8BT в области прозрачности с высокой видимой точностью выполняются равенство $n_{oA} = n_{eP}$ и связь Причем совпадают между (1) [10]. собой зависимости *n_iA*(λ) для монодоменных пленок толщиной d = 100 нм, полученных на натертой полиимидной подложке [2] и на натертой poly(3,4-ethylene полимера подложке dioxy-

thiophene): poly(styrenesulphonate) (PEDOT:PSS) [3]. Совпадают также зависимости $n_{iP}(\lambda)$ для полидоменных пленок близкой толщины (d = 150 [4], 133 [5] и 90 нм [6]), полученных методом центрифугирования на изотропных кварцевых (spectrosil B) подложках. Отдельные образцы подвергались отжигу в вакууме в течение полутора десятков часов при температуре 115 °C [4] ниже температуры стеклования T_g ≈ 140 °C либо двухчасовому отжигу в атмосфере азота при температуре 150 °C [5] с последующим быстрым охлаждением до комнатной температуры в обоих случаях. Первой (второй) процедурам отвечают средние размеры нематических доменов a < 100 нм (a≈ 100-150 нм) [14]. С учетом всех этих фактов равенство $n_{oA} = n_{eP}$ и связь (1) в видимой области прозрачности [10] показывают определяющее влияние межмолекулярных взаимодействий на ориентационную упорядоченность осей li конформационных субъединиц относительно локальных направлений оптических осей **n**_d(**r**) доменов в монодоменном образце. Роль анизотропной подложки сводится к монодоменизации пленки в результате выстраивания локальных направлений $\mathbf{n}_d(\mathbf{r})$ вдоль оси натирания подложки \mathbf{n}_A . Таким образом, вместо зависимостей $n_i(\lambda)$, $k_i(\lambda)$ для доменов в полидоменных пленках F8BT [4] можно в соотношениях (9), (14), (15) использовать зависимости $n_{iA}(\lambda), k_{iA}(\lambda)$ для монодоменных пленок [2]. Для проверки соотношений (9), (14), (15) рассчитанные зависимости $n^*(\lambda)$, $k^*(\lambda)$ и $\varepsilon_1^*(\lambda)$, $\varepsilon_2^*(\lambda)$ в областях видимого диапазона прозрачности и электронного сравнивать поглощения следует с экспериментальными зависимостями $n_{oP}(\lambda)$, $k_{oP}(\lambda)$ для полидоменных пленок [4] и рассчитанными по (6) зависимостями $\varepsilon_{1oP}(\lambda)$, $\varepsilon_{2oP}(\lambda)$.

Зависимости $n_{jA}(\lambda)$ и $k_{jA}(\lambda)$, измеренные методами эллипсометрии и приведенные в графической форме в работе [2], были оцифрованы нами и представлены на рис. 1. В области прозрачности при $\lambda > 0,55$ мкм наблюдаются малые фоновые (*background*) значения k_{bjA} , природа которых в работе [2] не обсуждается.

Рис. 1. Спектральные зависимости показателей преломления $n_{jA}(a)$ и показателей поглощения $k_{jA}(b)$ для обыкновенной (j = o, 1) и необыкновенной (j = e, 2) световых волн в монодоменной пленке F8BT [2]

Fig. 1. Spectral dependences of the refractive indices $n_{jA}(a)$ and absorption indices $k_{jA}(b)$ for the ordinary (j = o, 1) and extraordinary (j = e, 2) light waves in the monodomain F8BT film [2]

Длинноволновая полоса *k*(λ) с максимумом $\lambda_e \approx 0,467$ мкм является огибающей двух перекрытых полос близкой интенсивности, которым отвечают близкие значения углов $\theta_{1(2)}$ между дипольными моментами **m**₁₍₂₎ электронных переходов и оптической осью **n**_A образца. Величина $k_e^{\text{max}} \approx 1,36$ для огибающей близка к разности $n_e^{\text{max}} - n_e^{\text{min}} \approx 1,35$, что характерно для одиночных полос поглощения [15]. Для этой огибающей с дихроизмом $D = k_e^{\max}/k_o^{\max} \approx 10.8$ [2, 12] параметр ориентационного порядка U = $(3\cos^2\theta - 1)/2 = 0,895 \pm 0,022$ моментов $\mathbf{m}_{1(2)}$ относительно направления \mathbf{n}_A [12] дает эффективное значение $\theta = \arccos \langle \cos^2 \theta \rangle^{1/2} = 15,3 \pm$ 1,6°. В окрестности максимума λ_e значения ξ_e = ke/ne не малы, тогда как во всей рассматриваемой области спектра выполняется $\xi_o = k_o/n_o \ll 1$. Минимальное по спектру значение $\varepsilon_{1e} = 1,021$ для этой поляризации света локализовано в области данной полосы $k_e(\lambda)$ при $\lambda = 0.45$ мкм.

Более коротковолновая полоса $k(\lambda)$ с максимумом $\lambda_o \approx 0,31$ мкм и дихроизмом $D \approx 2,8$ [2] также является огибающей двух перекрытых полос близкой интенсивности, которым отвечают близкие значения углов $\theta_{3(4)}$ с ограничениями $\theta_{1(2)} < \theta_{3(4)} < \theta_{M}$, где угол $\theta_M \approx 54,7^{\circ}$ отвечает значению $\cos^2\theta_M =$ 1/3. Минимальное по спектру значение $\varepsilon_{1o} = 2,106$ для этой поляризации света наблюдается в области данной полосы $k_o(\lambda)$ при $\lambda = 0,295$ мкм.

Зависимости $n_{jP}(\lambda)$ и $k_{jP}(\lambda)$, измеренные методами эллипсометрии и приведенные в графической форме в работе [4], были оцифрованы нами и представлены на рис. 2. В области прозрачности при $\lambda > 0,55$ мкм фоновые значения $k_{bjP}(\lambda)$ отсутствуют, хотя в работе [5] тех же авторов для полидоменных пленок F8BT в этой области при $k_{beP} = 0$ присутствуют малые значения $k_{boP}(\lambda)$, которые возрастают с ростом λ . Наличие и изменение $k_{boP}(\lambda)$ в этой области в работах [5, 7] не обсуждаются.

Рис. 2. Спектральные зависимости показателей преломления n_{oP} , $n^*(a)$ и показателей поглощения k_{oP} , $k^*(b)$, полученные экспериментально (1) [4] и рассчитанные по формулам (14), (15) для полидоменной пленки F8BT (2)

Fig. 2. Spectral dependences of the refractive indices n_{oP} , $n^*(a)$ and absorption indices k_{oP} , $k^*(b)$ obtained experimentally (1) [4] and calculated using equations (14), (15) for the polydomain F8BT film (2)

Зависимость $n^*(\lambda)$, рассчитанная по (14) с использованием экспериментальных зависимостей $n_{iA}(\lambda)$ и $k_{iA}(\lambda)$ (рис. 1) вместо $n_i(\lambda)$ и $k_i(\lambda)$, практически полностью совпадает с экспериментальной зависимостью $n_{oP}(\lambda)$ [4] в области 0,37–0,85 мкм. Наличие $k_{biA} \neq 0$ при $\lambda > 0,55$ мкм пренебрежимо слабо влияет на значения $n^*(\lambda)$, которые превышают величину $(n_{oA}n_{eA})^{1/2}$ на 2·10⁻⁷ и 3.10^{-5} при $\lambda = 0.55$ и 0.84 мкм. Это соответствует выражению (17) и объясняет равенства $n_{eP} = n_{oA}$ и $n^* = (n_{oA}n_{eA})^{1/2} = n_{oP}$, установленные ранее в области $\lambda > 0,55$ мкм [10] без учета k_{bjA} ≠ 0. Небольшие различия зависимостей $n^*(\lambda)$ и $n_{oP}(\lambda)$ [4] при $\lambda < 0,37$ мкм не превышают различий между зависимостями $n_{oP}(\lambda)$ по данным разных авторов [4–6]. К тому же, в коротковолновой области условие $\lambda >> a$ применимости формул (9) - (15) может нарушаться.

Зависимость $k^*(\lambda)$ в области $\lambda = 0,37-0,85$ мкм совпадает по форме с зависимостью $k_{oP}(\lambda)$ [4] и смещена относительно нее на величину $\delta k(\lambda) = k^*(\lambda) - k_{oP}(\lambda)$, слабо зависящую от λ . С учетом (18), последнее обстоятельство указывает на то, что смещение $\delta k(\lambda)$ может быть обусловлено фоновыми добавками $k_{bjA} \propto \delta \xi_{bj}$, включенными в зависимости $k_{jA}(\lambda) \propto \xi_{jA}(\lambda)$. При

 $\lambda < 0,37$ мкм небольшие различия зависимостей $k^*(\lambda)$ и $k_{oP}(\lambda)$ [4] не превышают различий между зависимостями $k_{oP}(\lambda)$ по данным разных авторов [4–6].

На рисунке 3 приведены зависимости $\varepsilon_{1oP}(\lambda)$ и $\varepsilon_{2oP}(\lambda)$, рассчитанные по формулам (6) с экспериментальными значениями $n_{oP}(\lambda)$ и $k_{oP}(\lambda)$ (рис. 2). Там же показаны зависимости $\epsilon_1^*(\lambda)$ и $\varepsilon_2^*(\lambda)$, рассчитанные по формулам (9) с экспериментальными значениями $n_{iA}(\lambda)$ и $k_{iA}(\lambda)$ (рис. 1) вместо $n_i(\lambda)$ и $k_i(\lambda)$. По своей форме функции $\varepsilon_1^*(\lambda)$ и $\varepsilon_{1oP}(\lambda)$ близки, соответственно, к функциям $n^*(\lambda)$ и $n_{oP}(\lambda)$, а функции $\varepsilon_2^*(\lambda)$ и $\varepsilon_{2oP}(\lambda)$ близки, соответственно, к функциям $k^*(\lambda)$ и $k_{oP}(\lambda)$ при незначительном различии в спектральном положении экстремумов этих функций. $\varepsilon_1^*(\lambda)$ практически Зависимость полностью совпадает с экспериментальной зависимостью $\epsilon_{1oP}(\lambda)$ в области 0,37–0,85 мкм. Наличие $k_{bjA} \neq 0$ при λ > 0,55 мкм практически не влияет на значения ${\epsilon_1}^*(\lambda)$, что соответствует следствиям выражения (16) для ϵ_1^* . Небольшие отличия зависимостей ${\epsilon_1}^*(\lambda)$ и ${\epsilon_{1oP}}(\lambda)$ при $\lambda < 0.37$ мкм ΜΟΓΥΤ быть связаны как с неточностями экспериментальных значений $n_{iA}(\lambda)$, $k_{iA}(\lambda)$ [2] и $n_{oP}(\lambda), k_{oP}(\lambda)$ [4], так и с нарушением условия λ >> а применимости формул (9) - (15) в этой коротковолновой области.

Fig. 3. Spectral dependences of the values $\varepsilon_{1oP}(1)$, $\varepsilon_{2oP}(2)$, $\varepsilon_1^*(1')$ and $\varepsilon_2^*(2')$ calculated using equations (6) (1, 2) and (9) (1', 2') for the polydomain F8BT film

Зависимость $\varepsilon_2^*(\lambda)$ в области $\lambda = 0,37-0,85$ мкм смещена относительно $\varepsilon_{2oP}(\lambda)$ на величину $\delta\varepsilon_2(\lambda) = \varepsilon_2^*(\lambda) - \varepsilon_{2oP}(\lambda)$, слабо зависящую от λ . С учетом (16), последнее обстоятельство указывает на то, что смещение $\delta\varepsilon_2(\lambda)$ может быть обусловлено фоновыми добавками $k_{bjA} \propto \delta\xi_{bj}$, включенными в зависимости $k_{jA}(\lambda) \propto \xi_{jA}(\lambda)$. При λ < 0,37 мкм небольшие отличия зависимостей $\varepsilon_2^*(\lambda)$ и $\varepsilon_{2oP}(\lambda)$ могут быть связаны с теми же причинами, что и отличия зависимостей $k^*(\lambda)$ и $k_{oP}(\lambda)$ [4].

Выводы

Результаты настоящей работы можно рассматривать в двух аспектах. В прикладном аспекте установлена связь оптических и спектральных свойств одноосных двумерных полидоменных пленок, состоящих из одноосных доменов, с аналогичными свойствами доменов в области поглощения света. Эта связь, выраженная формулами (9), (14) и (15), подтверждена здесь в областях видимого диапазона прозрачности и электронного поглощения для моно-И полидоменных пленок сопряженного полимера F8BT – тестового материала для исследований и

устройств микроэлектроники и фотоники [2-7, 14]. Это дает возможность оптимизации и прогноза зависимостей $n_{iP}(\lambda)$, $k_{iP}(\lambda)$ для используемых на практике полидоменных пленок с плоскостной ориентацией (O_P) макромолекул по известным зависимостям $n_{iA}(\lambda)$, $k_{iA}(\lambda)$ для монодоменных аксиальной пленок с ориентацией (O_A) макромолекул того же полимера. Следует также иметь в виду, что формулы (9), (14), (15) соответствуют предельному случаю – идеальному двумерному поликристаллу с малой объемной долей междоменной аморфной фракции полимера, что характерно для полидоменных пленок F8BT [10, 12]. При значительной объемной доле междоменной фракции следует ожидать нарушения формул (1), (9), (14), (15). В отношении равенства $n_{eP} = n_{oA}$ и связи (1) это было установлено ранее для полидоменных пленок других сопряженных полимеров [9].

В физическом аспекте можно отметить несколько моментов. Во-первых, соотношения (9), (14), (15) являются точными для двумерного поликристалла в рамках условия $\lambda >> a$ применимости представлений об эффективных свойствах неоднородных сред в электродинамике. Размерность образца играет важную роль, так как для трехмерных изотропных поликристаллов, состоящих из одноосных кристаллитов (доменов), точные решения для эффективных значений ε^* , n^* неизвестны [11]. Во-вторых, соотношения (9), (14), (15) получены без конкретизации физической материала природы доменов (диэлектрики, полупроводники, металлы) и ограничений на показатели затухания ξ_i $= k_i/n_i$. Наряду с подтверждением этих соотношений для полидоменных пленок полимера F8BT представляет интерес ИХ экспериментальная проверка для одноосных полидоменных пленок другой природы и с более сильным поглощением одноосных доменов. В-третьих, при выполнении условия $\lambda >> a$ соотношения (9), (14), (15) не зависят от спектральной области, механизма поглощения света в доменах (колебательные или электронные переходы, локализованные или делокализованные возбуждения при эффективной длине делокализации $l_d < a$) и формы полос поглощения. Все это расширяет возможности проверки и использования данных соотношений.

Список литературы / References

- Scholes G.D., Rumbles G. Excitons in nanoscale systems. *Nature Mater.*, 2006, 5 (9), 683–696.
 DOI: 10.1038/nmat1710.
- Campoy-Quiles M., Etchegoin P.G., Bradley D.D.C. On the optical anisotropy of conjugated polymer thin films. *Phys. Rev. B*, 2005, **72** (4), 045209.
 DOI: 10.1103/PhysRevB.72.045209.
- Zhu D.-X., Shen W.-D., Zhen H.-Y. Anisotropic optical constants of in-plane oriented polyfluorene thin films on rubbed substrate. *J. Appl. Phys.*, 2009, 106 (8), 084504. DOI: 10.1063/1.3245328.
- Ramsdale C.M., Greenham N.C. Ellipsometric determination of anisotropic optical constants in electroluminescent conjugated polymers. *Adv. Mater.*, 2002, 14 (3), 212–215.

DOI: 10.1002/1521-4095(20020205)14:3<212::AID-ADMA212>3.0.CO;2-V.

- 5. Ramsdale C.M., Greenham N.C. The optical constants of emitter and electrode materials in polymer lightemitting diodes. *J. Phys. D: Appl. Phys.*, 2003, **36** (1), L29–L34. **DOI**: 10.1088/0022-3727/36/4/101.
- Winfield J.M., Donley C.L., Kim J.-S. Anisotropic optical constants of electroluminescent conjugated polymer thin films determined by variable-angle spectroscopic ellipsometry. *J. Appl. Phys.*, 2007, **102** (6), 063505. **DOI**: 10.1063/1.2778744.
- Campoy-Quiles M., Alonso M.I., Bradley D.D.C., Richter L.J. Advanced ellipsometric characterization of conjugated polymer films. *Adv. Funct. Mater.*, 2014, 24 (15), 2116–2134.

DOI: 10.1002/adfm.201303060.

- Аверьянов Е. М. Эффекты локального поля в оптике жидких кристаллов. Новосибирск : Наука, 1999. 552 с. [Aver'yanov E.M. Effects of local field in optics of liquid crystals. Novosibirsk : Nauka, 1999, 552 p. (in Russ.). DOI: 10.13140/RG.2.1.4720.6882].
- 9. Аверьянов Е. М. Эффективный показатель преломления двумерного поликристалла // Письма в ЖЭТФ. 2015. Т. 101, № 10. С. 761–765. [Aver'yanov E.M. Effective refractive index of a twodimensional polycrystal. JETP Letters, 2015, **101** (10), 685–689. **DOI**: 10.1134/S0021364015100033].
- Аверьянов Е. М. Эффективный показатель преломления квазидвумерной полидоменной пленки сопряженного полимера // ФТТ. 2016. Т. 58, № 1. С. 154–157. [Aver'yanov E.M. Effective refractive index of a quasi-two-dimensional polydomain film of a conjugated polymer. *Phys. Sol. St.*, 2016, **58** (1), 160– 163. **DOI**: 10.1134/S1063783416010042].

- Аверьянов Е. М. Влияние размерности поликристаллической пленки и оптической анизотропии кристаллитов на эффективную диэлектрическую проницаемость пленки // ΦΤΤ. 2016. Т. 58, № 8. С. 1580–1586. [Aver'yanov E.M. Influence of the dimension of a polycrystalline film and the optical anisotropy of crystallites on the effective dielectric constant of the film. *Phys. Sol. St.*, 2016, **58** (8), 1634–1641. **DOI**: 10.1134/S1063783416080035].
- Аверьянов Е. М. Молекулярно-оптическая и структурная анизотропия одноосных монодоменных/ полидоменных пленок сопряженного полимера F8BT с аксиальной/плоскостной ориентацией макромолекул // Жидк. крист. и их практич. использ. 2023. Т. 23, № 1. С. 68–77. [Aver'yanov E.M. Molecular-optical and structural anisotropy of uniaxial single-domain/polydomain films of conjugated polymer F8BT with axial/planar orientation of macromolecules. Liq. Cryst. and their Appl., 2023. 1.68].
- Борн М., Вольф Э. Основы оптики. М. : Наука, 1970. 856 с. [Born M., Wolf E. Principles of Optics: 2-nd ed. Oxford-London-Edinburg-New York-Paris-Frankfurt : Pergamon Press, 1964, 856 p.].
- Watts B., Schuettfort T., Mac Neil C.R. Mapping of domain orientation and molecular order in polycrystalline semiconducting polymer films with soft X-ray microscopy. *Adv. Funct. Mater.*, 2011, **21** (6), 1122– 1131. **DOI**: 10.1002/adfm.201001918.
- Аверьянов Е. М. Комплексные показатели преломления и ориентационный порядок молекул в органических пленках с вакуумным напылением // Жидк. крист. и их практич. использ., 2021. Т. 21, № 2. С. 82–91. [Aver'yanov E.M. Complex refractive indices and orientation order of molecules in vacuum-deposited organic films. *Liq. Cryst. and their Appl.*, 2021, 21 (2), 82–91 (in Russ.).
 DOI: 10.18083/LCAppl.2021.2.82].

Автор заявляет об отсутствии конфликта интересов.

The author declare no conflicts of interests.

Аверьянов Е. М. – https://orcid.org/0000-0002-8245-8589

Поступила 20.04.2023, одобрена 18.05.2023, принята 25.05.2023. Received 20.04.2023, approved 18.05.2023, accepted 25.05.2023