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Abstract: We analyze the classical and quantum dynamics of the driven dissipative Bose–Hubbard
dimer. Under variation of the driving frequency, the classical system is shown to exhibit a bifurcation
to the limit cycle, where its steady-state solution corresponds to periodic oscillation with the frequency
unrelated to the driving frequency. This bifurcation is shown to lead to a peculiarity in the stationary
single-particle density matrix of the quantum system. The case of the Bose–Hubbard trimer, where
the discussed limit cycle bifurcates into a chaotic attractor, is briefly discussed.
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1. Introduction

In the present work, we analyze the dynamics of the two-site driven dissipative Bose–
Hubbard (BH) model. Similar to the conservative two-site BH model, which provides a
model for the Josephson oscillations and the phenomenon of self-trapping [1–4], the driven
dissipative BH systems model a number of phenomena in open quantum systems. For ex-
ample, the one-site system, which is nothing else than the driven dissipative non-linear
oscillators, is the paradigm system for quantum bistability (see Ref. [5] and references
therein). Extending the system to two sites enriches its dynamics and drastically com-
plicates the classical bifurcation diagram [6,7], which poses the problem of a quantum
signature of these bifurcations [8,9]. Finally, the classical three-site BH system can show the
chaotic attractor that brings us to the problem of the dissipative Quantum Chaos [10,11].
We mention that nowadays the few-site open BH model can be and has been realized
experimentally by using different physical platforms, among which the most successful are
exciton–polariton semi-conductor systems [4,12,13] and super-conducting circuits [14–17].
In what follows, we theoretically analyze the two- and three-site driven dissipative BH
model by keeping in mind laboratory experiments on photon transport in the chain of
transmons, which are micro-cavities coupled to Josephson’s junctions. The presence of
Josephson’s junction introduces an effective inter-particle interaction for photons in the cav-
ity and, thus, each transmon can be viewed as a quantum non-linear oscillator, see Figure 1.
We mention that in the present work we do not try to relate the model parameters to the
system parameters used in one or the other laboratory experiment. In this sense, the model
depicted in Figure 1 captures only the general scheme of these experiments, where quan-
tum non-linear oscillators are arranged in the ‘transmission line’ and one measures the
amplitude of the transmitted signal, i.e., the current of the microwave photons.
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Figure 1. Pictorial presentation of the considered model. The figure shows two coupled non-linear
micro-cavities with three photons in the first cavity and two photons in the second cavity. It is assumed
that the microwave photons are injected into the first cavity by using a generator of the microwave
field, and the transmitted photons are absorbed with some probability by a measurement device.

2. Quantum Dynamics

We consider two coupled transmons where the first transmon is excited by a mi-
crowave generator and the transmitted signal is read from the second transmon. The gov-
erning equation for the system density matrix R̂ reads [13,16]

∂R̂
∂t

= − i
h̄
[Ĥ, R̂]− γ

2

(
â†

2 â2R̂ − 2â2R̂â†
2 + R̂â†

2 â2

)
, (1)

where γ is the decay constant proportional to the absorption rate. Using the rotating wave
approximation, the Hamiltonian Ĥ in Equation (1) has the form

Ĥ = −h̄∆
2

∑
`=1

n̂` −
h̄J
2

(
â†

2 â1 + h.c.
)
+

h̄2U
2

2

∑
`=1

n̂`(n̂` − 1) +

√
h̄Ω
2

(â†
1 + â1) , (2)

where â† and â are the creation and annihilation operators with the commutation relation
[â, â†] = 1, n̂` is the number operator, Ω is the Rabi frequency, ∆ the detuning defined as
the difference between the driving frequency and the cavity eigen-frequency, J the coupling
constant, U the microscopic interaction constant, and h̄ is the dimensionless Planck constant
which determines how close is the system to its classical counterpart. For quantum systems
with the conserved number of particles N, one can define the dimensionless Planck constant
as h̄ = 1/N. In our case, where the number of particles is not conserved, h̄ is just the scaling
parameter that leaves invariant the classical dynamics. We focus on the case h̄� 1 where
the quantum dynamics shows similarities with the classical dynamics. In the opposite limit
h̄ > 1 the system dynamics is dominated by the multi-photon resonances which have no
classical analog.

Our main object of interest is the single-particle density matrix (SPDM) ρ̂ which is
defined as follows,

ρ`,m(t) = Tr[â†
` âmR̂(t)]. (3)

The diagonal elements of the SPDM obviously determine the populations of the sites,
while off-diagonal elements determine the current of Bose particles (photons) between the
sites. We find the stationary SPDM for different ∆, which will be our control parameter,
by using two methods: (i) by evolving the system for fixed ∆ for a long time sufficient to
reach the steady-state regime, and (ii) by sweeping ∆ in the negative direction starting from
a large positive ∆. In both cases, the initial condition corresponds to the empty system,
i.e., ρ̂(t = 0) = 0. The obtained results are depicted in Figure 2. It is seen in Figure 2 that
stationary occupations of the chain sites (i.e., the mean number of photons in transmons)
show a kind of plateau in the certain interval of ∆. Notice that this plateau is absent for the
one-site BH model. It is argued in the next section that this peculiarity is a signature of the
attractor bifurcation which one finds in the classical counterpart of the system (2).
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Figure 2. The mean number of bosons in the BH dimer as the function of the detuning ∆. The blue
and red lines correspond to the first and second sites, respectively. (a) Quasi-adiabatic passage with
the sweeping rate d∆/dt = 0.0012. (b) Steady-state solution for different ∆. The system parameters
are J = 0.5, U = 0.5, Ω = 0.5, h̄ = 1/4, γ = 0.2.

3. Classical Dynamics

The classical (mean-field) dynamics of the system is governed by the equations

iȧ1 = (−∆ + U|a1|2)a1 −
J
2

a2 +
Ω
2

iȧ2 = (−∆ + U|a2|2)a2 −
J
2

a1 − i
γ

2
a2 (4)

where a` are complex amplitudes of the local oscillators. The numerical simulations were
performed by using the fourth-order Runge–Kutta method. It is found that for non-zero γ
the system (4) relaxes in course of time to some attractor which determines the system’s
stationary response to the external driving. In what follows, we shall be interested only
in attractors whose basin contains the point a = 0. For ∆ < 0.48 and ∆ > 0.77, we found
these attractors to be simple focuses (in the rotating frame), where the populations |a`(t)|2
approach their stationary values depicted in Figure 3a by the blue and red solid lines.
However, in the interval 0.48 < ∆ < 0.77 these simple attractors bifurcate into the limit
cycle, where the steady state solution of Equation (4) corresponds to periodic oscillations of
the oscillator amplitudes with the frequency ν = ν(∆) not related to the driving frequency,
see Figure 3b. (Bifurcation of a simple attractor into a limit cycle in the driven dissipative
two-site BH system was discussed earlier in Refs. [8,9] where the authors considered a
specific model with non-local driving and dissipation. Additionally, when addressing the
quantum system, the authors focussed on the transient dynamics for particular initial
conditions but not on the stationary regime). In addition to this characteristic frequency, we
also introduce the mean squared amplitudes |a`|2 where the bar denotes the time average.
We depict these quantities in Figure 3a by using the same line styles. Comparing now
Figures 2b and 3a we conclude that bifurcation of the classical attractor is well reflected in
the quantum dynamics of the BH dimer already for h̄ = 1/4.
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Figure 3. (a) The mean number of bosons in the BH dimer averaged over time as a function of
detuning ∆. (b) System dynamics for ∆ = 0.5. Shown are the squared amplitudes of the local
oscillators as the function of time.

4. Dissipative BH Trimer

We repeated calculations for the BH trimer. The dynamics of the trimer is controlled
by the following set of equations of motion

iȧ1 = (−∆ + U|a1|2)a1 −
J
2

a2 +
Ω
2

iȧ2 = (−∆ + U|a2|2)a2 −
J
2
(a1 + a3)

iȧ3 = (−∆ + U|a3|2)a2 −
J
2

a2 − i
γ

2
a3 (5)

In the trimer, the new feature is that the above-discussed limit cycle bifurcates into a
chaotic attractor, see the upper panel in Figure 4, which shows the Lyapunov exponent
of the steady-state solution as the function of the control parameter ∆. An example of
this ‘stationary’ solution is given in the lower panel in Figure 4 for ∆ = 0.406 where the
Lyapunov exponent is maximal.
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Figure 4. (a) Lyapunov exponent of the ‘stationary’ solution of the driven dissipative BH trimer as a
function of the detuning ∆. (b) System dynamics for ∆ = 0.406. Shown are the squared amplitudes of
the local oscillators as the function of time.



Entropy 2023, 25, 117 5 of 6

5. Summary

We showed that attractor bifurcations in the driven dissipative BH system can be well
observed already for the value of the effective Planck constant h̄ = 1/4. In the laboratory
experiment, the value of this effective constant is determined by the ratio of the interaction
constant U (non-linearity of the transmon spectrum) to the Rabi frequency Ω, which is
proportional to the amplitude of the microwave field. Clearly, the larger the Rabi frequency
is, the more photons are simultaneously present in the system. The presented in this work
results indicate that the quantum BH dimer reproduces the dynamics of the classical BH
dimer when the mean number of photons is of the order of 10.

To conclude, we would like to briefly comment on the experiments where the detuning
∆ is monotonically swept in time. In the present work, we restricted ourselves by the case
where ∆ is swept in the negative direction. If the sweeping direction is inverted, the result
may strongly deviate from that shown in Figure 2a due to quantum hysteresis. Within the
classical approach, the positive sweeping populates the other attractor whose basin excludes
the point a = 0 [18]. In the quantum approach, however, this attractor is a metastable state
with a finite lifetime. Thus, unlike the case of negative sweeping, the result of a quasi-
adiabatic passage in the positive direction strongly depends on the sweeping rate d∆/dt.
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