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Abstract: Using density functional theory in the noncollinear approximation, the behavior of quantum
states of hole qubits in a Ge/Co:ZnO system was studied in this work. A detailed analysis of the
electronic structure and the distribution of total charge density and hole states was carried out. It was
shown that in the presence of holes, the energetically more favorable quantum state is the state |0>,
in contrast to the state |1> when there is no hole in the system. The favorability of hole states was
found to be dependent on the polarity of the applied electric field.
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1. Introduction

The problem of creating a quantum transistor that operates on the new principles of
hole qubits and performs quantum operations without errors is the most pressing task for
modern nanoelectronics [1–3]. The construction of such a transistor will make it possible
to design a quantum processor with high computing power that is capable of solving
important scientific problems in a short time in various fields such as materials science,
medicine, and machine learning. The most promising material for creating quantum
computers is flat germanium nanowire [4–6], due to the fact that the holes in this nanowire
have a strong spin–orbit coupling [7], a light effective mass [8], ease of control of the electric
field [9], compatibility with existing Si-technology, and ability to operate in much lower
magnetic fields [10]. In Ref. [11], it was shown that excited hole levels make a significant
contribution to the g factor and its derivative with respect to the electric field. Moreover,
the spin–hole qubits approach sometimes exceeds the performance of qubits with electron
spin [12].

To date, the problem of controlling hole qubits to obtain precise logical operations or
their correction remains technologically challenging. This is because the process of con-
trolling hole qubits’ quantum states via a magnetic field is associated with the complexity
of constructing a special installation in which this magnetic field is created. In this work,
we theoretically demonstrate for the first time the use of a new ultrathin two-dimensional
Co:ZnO magnets [13–15] as a magnetic substrate to create external magnetization, which
creates a magnetic field in the germanium structure and, accordingly, influences hole qubits
with the ability to control them. This study analyzes the advantage of hole states depending
on the applied electric and magnetic fields.

2. Methods and Details of Calculations

Calculations of the equilibrium structures, as well as electronic and magnetic prop-
erties, were performed by means of the VASP package [16–18]. A generalized gradient
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approximation in the GGA–PBE form [19] in the PAW pseudopotentials [20,21] was used
for estimating the exchange-correlation potential. The noncollinear calculations [22] were
performed, taking into account spin–orbit coupling [23] with additional GGA + U correc-
tions [24]. The effective on-site Coulomb interactions were set as equal to the following
values: Up(Ge) = 2.0 eV, Ud(Zn) = 10.5 eV, Up(O) = 7.0 eV, and Ud(Co) = 3.3 eV. To calculate
the magnetic properties of atomic systems, first the initial magnetic moment was set for
each atom, then complete relaxation of the atomic system was carried out taking into
account the generalized local-spin-density theory [22] and the resulting magnetization
on the atoms was determined from the results obtained. For multi-layered systems, van
der Waals corrections were used based on the semiempirical Grimme’s DFT-D3 method
with the Becke–Johnson damping function [25]. We used the plane–wave basis with a
cutoff energy of 600 eV. All slab calculations were performed with a 6 × 6 × 1 k-point set
using the Monkhorst–Pack scheme [26]. To test the bulk germanium unit cell, we used
an 18 × 18 × 18 k-point set. The optimization of the atomic structure continued until the
forces acting on atoms became less than 0.01 eV/Å.

3. Results and Discussion

Previously, in our work [4], we proposed a 2D structural model with the most stableGe
{105} surfaces for germanium hut wires. It was shown that for this model, with the relaxation
of atoms, it is more advantageous to exist with monoclinic symmetry in the space group
P2/m. The smallest structural basis with which this two-dimensional layer can be built
is presented in Figure 1. It is characterized by the space group P2/m and has four Ge
atoms in its structure located at the following atomic positions within the point symmetry
group C2h: two 2n positions with symmetry m, one 2m position with m symmetry, and
another 1a position with 2/m symmetry. The cell parameters are equal to the following
values: a = 6.3060 Å, b = 4.2808 Å, and c = 18.2268 Å, with the angles equal to α = 89.87◦,
β = 115.67◦, and γ = 89.99◦, respectively.
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Figure 1. Germanium slab as a model layer for a hut wire.

A two-dimensional monolayer of zinc oxide with an increased cell size of 4 × 4 × 1
was combined with a germanium slab with a size of 2 × 2 × 1 (Figure 2). As a result, the
supercell with the Ge28/Zn16O16 composition was obtained. Then, the complete structural
relaxation of this system was carried out. In the equilibrium structure, the distance between
the Ge and ZnO surfaces was 3.079 Å. Figure 2 shows the equilibrium atomic structure
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for the Ge/ZnO interface. Next, we calculated the binding energy of the two-dimensional
germanium and the 2D ZnO structure per unit area using the following equation:

Eb = (EGe_ZnO − EZnO − EGe)/S,

where EGe_ZnO is the total energy of the Ge/ZnO interface, EZnO is the total energy of the
2D ZnO structure, EGe is the total energy of the germanium structure, and S is the Ge/ZnO
surface area. The calculations show that the binding energy is −0.192 eV/Å2 per unit
surface area. Thus, this system can be obtained experimentally. To analyze the charge
distribution, the difference in charge density for the Ge/ZnO interface was calculated
(Figure 3). An analysis of the results shows that during the formation of the Ge/ZnO
structure, electrons flow mainly from the lower layer of germanium atoms and partially
from oxygen atoms and are localized mainly in the interlayer space between the Ge and
ZnO layers. Moreover, the charge on zinc atoms and germanium atoms (except for those in
the lower layer) practically does not change, but on oxygen atoms, the charge is polarized.
The calculations show that the germanium layer transfers an additional charge of 0.218 e to
the ZnO layer. Thus, the germanium slab is a donor for the ZnO layer.
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To determine the nature of the interaction of atoms in the Ge/ZnO system, the total
and partial electron densities of states were calculated. The total electron density of states
(Figure 4b) shows that the band gap for the pure Ge/ZnO compound is 0.13 eV. This value
is much less than for bulk zinc oxide, which is 3.30 eV (Table 1), as calculated using the
GGA + U method based on the ATK code [27], and less than 3.40 eV, as obtained using
the VASP code [28]. The value obtained from the experimental data is 3.37 eV [29]. Our
calculation for pure bulk zinc oxide gives a band gap of 3.29 eV. For the two-dimensional
layer of zinc oxide, with one-atom thickness, the band gap is 3.04 eV, according to our
calculations. This value is in good agreement with the value of 3.28 eV [30] obtained by
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using the Heyd–Scuseria–Ernzerhof (HSE06) hybrid functional method. In Table 1, the
calculated band gaps for the monolayer, bulk zinc oxide, and Ge/ZnO and Ge/Co:ZnO
compounds are presented.
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Table 1. The electronic energy gap in Ge/ZnO according to the GGA + U method.

Structure Energy Gap Ref.

monolayer ZnO 3.04 3.28 [30]

bulk ZnO 3.29
3.30 [27]
3.40 [28]

3.37, Exp. [29]
Ge/ZnO 0.13 —

Ge/Co:ZnO 0.13 —

Figure 4a shows the partial densities of states for Ge, Zn, and O atoms during the
formation of the Ge/ZnO structure. It can be seen that the binding of the germanium slab
and the two-dimensional zinc oxide layer occurs due to the hybridization of the Ge 4p2–Zn
3d10–Zn 4s2, Ge 4p2–O 2p2, and Ge 4s2–O 4p4 orbitals. From the density of states shown in
Figure 4 for Ge/ZnO, it can be seen that the top of the valence band and the bottom of the
conduction band are determined by the 4p2 states of germanium.

Next, we studied the effect of impurity due to cobalt atoms on the atomic structure and
electronic properties of the Ge/Co:ZnO system. In Ref. [13], Rui Chen et al. showed that
cobalt atoms replace zinc atoms in a concentration of 1 Co: 7 Zn, and at this concentration,
the maximum magnetization in the material is achieved with a random arrangement of
cobalt atoms in the zinc oxide layer. In our case, we investigated this cobalt concentration
at the Ge/Co:ZnO interface. The calculation results show that the band gap for Ge/Co:ZnO
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is also 0.13 eV, as for Ge/ZnO (Table 1). Thus, the band gap does not change with the
introduction of a cobalt atom due to the fact that the top of the valence band and the bottom
of the conduction band are completely determined by the 4p2 states of germanium.

Next, we calculated the charge density difference for the Ge/Co:ZnO interface (Figure 5).
The results show that during the formation of the Ge/Co:ZnO structure, a redistribution
of electrons occurs in the dxz and dyz orbitals of cobalt atoms. Electrons also flow from
the lower layer of germanium atoms and partially from oxygen atoms and are localized
in the interlayer space between the Ge and ZnO layers. The calculations of charges on
atoms using the Bader method [31] show that, in this case, the germanium layer transfers
an additional charge of 0.213 e to the Co:ZnO layer. This charge value of 0.005 e is less than
in the absence of cobalt in the zinc oxide structure. Thus, it is clear that the introduction of
cobalt into zinc oxide leads to a decrease in the charge transferred to the ZnO layer.
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Next, we studied the magnetic properties that arise in the system when a cobalt atom
is introduced into a thin ZnO layer (Figure 6). In this case, two magnetic states were studied,
with spin “up” and “down”. The calculations show that the spin-down state is the most
favorable at 5 meV. In this state, the magnitude of the magnetic moment on the cobalt atom
is 2.65 µB, with coordinates in the Bloch sphere equal to (θ; ϕ) = 140.26◦; −37.29◦. Thus,
the magnetic moment on the cobalt atom lies in the second half of the Bloch sphere and
corresponds to the quantum state |1>. The total magnetic moment of the system is 3.00 µB
in the same quantum state.
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Next, we calculated the localization of hole states in a Ge/Co:ZnO system containing
cobalt. The calculations show that hole states are localized mainly in the germanium layer
and partially in the zinc oxide layer (Figure 7). Indeed, the calculation of atomic charges
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shows that in the Ge/Co:ZnO system without a hole, the total charge is 111.787 e on the
Ge layer and 285.213 e on the Co:ZnO layer. When a hole is formed, the charge on the
layers changes to be 110.948 e for the Ge layer and 285.052 e for the Co:ZnO layer. Thus,
the calculation clearly shows that it is the germanium layer that loses a larger portion
of charges, and this value is 0.839 e. Due to the presence of excess positive charges in
the system, electron polarization occurs in the ZnO layer. The calculations show that the
spin-up magnetic state is the most favorable, in this case, at 0.5 meV. Moreover, the total
magnetic moment of the entire system in a given magnetic state increases and amounts to
3.16 µB, and in the Bloch sphere, its coordinates are equal to (θ; ϕ) = 1.98◦; −31.50◦. The
magnetic moment on a cobalt atom is 2.66 µB in the same magnetic quantum state |0> in
the lower hemisphere of the Bloch sphere. Thus, we can conclude that in the presence of a
hole in the Ge/Co:ZnO system, the energetically more favorable quantum state is the state
|0>, in contrast to the state |1> when there is no hole in the system. Thus, it is clear that
in this case, the total magnetic moment of the system and the magnetic moment on the
cobalt atom are almost 10 times easier to transfer from one quantum state to another. In
this case, you need to spend only 0.5 meV, in contrast to the case when there are no holes in
the system (which needs 5 meV).
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Next, we investigated the influence of the electric field on the process of transition
between quantum states |0> and |1>. We calculated the values of the total energies of the
system depending on the magnitude and direction of the applied field. The calculations
show that with an applied field equal to −0.01 eV/Å, for the transition between quantum
states |0> and |1>, it is necessary to expend energy equal to 134 meV. For a field equal
to +0.01 eV/Å, the transition between states |0> and |1> occurs with the expenditure
of energy equal to only 5 meV. Thus, it is clear that the application of a negative electric
field prevents the transition between quantum states |0> and |1>, and a positive electric
field promotes this transition. This occurs due to the violation of inversion symmetry and
the appearance of new non-degenerate states in the material under the influence of the
magnetic field [32–36].

4. Conclusions

In this work, quantum mechanical calculations were carried out to investigate the
behavior of atomic magnetic moments in a Ge/Co:ZnO system in the presence or absence
of a hole qubit. The results show that the germanium layer is a donor of charge for the
ZnO layer, and the introduction of cobalt into the zinc oxide layer leads to a decrease in the
charge transferred to the ZnO layer. A detailed analysis of the electronic structure shows
that the band gap for the pure Ge/ZnO compound is 0.13 eV. The introduction of a cobalt
atom does not lead to a change in the band gap for Ge/Co:ZnO due to the fact that the
top of the valence band and the bottom of the conduction band are determined by the 4p2

states of germanium. Moreover, the spin-down state is the most favorable at 5 meV for the
Ge/Co:ZnO system. It is revealed that hole states are localized mainly in the germanium



Nanomaterials 2023, 13, 3070 7 of 8

layer and partially in the zinc oxide layer. In the presence of a hole in the Ge/Co:ZnO
system, the energetically more favorable quantum state is the |0> state, in contrast to the
|1> state when there is no hole in the system. In this case, the total magnetic moment
of the system and the magnetic moment on cobalt atoms are easier to transfer from one
quantum state to another, in contrast to the case when there are no holes in the system.
It is shown that a negative electric field prevents the transition between quantum states
|0> and |1>, and a positive electric field promotes this transition. This occurs due to the
violation of inversion symmetry and the appearance of new non-degenerate states in the
material under the influence of the magnetic field.
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