
Citation: Ikonnikov, D.A.; Myslivets,

S.A.; Arkhipkin, V.G.; Vyunishev,

A.M. Near-Field Evolution of Optical

Vortices and Their Spatial Ordering

Behind a Fork-Shaped Grating.

Photonics 2023, 10, 469. https://

doi.org/10.3390/photonics10040469

Received: 18 February 2023

Revised: 20 March 2023

Accepted: 18 April 2023

Published: 20 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Communication

Near-Field Evolution of Optical Vortices and Their Spatial
Ordering Behind a Fork-Shaped Grating
Denis A. Ikonnikov 1,* , Sergey A. Myslivets 1,2 , Vasily G. Arkhipkin 1,2 and Andrey M. Vyunishev 1,2,*

1 Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
2 Department of Photonics and Laser Technology, Siberian Federal University, 660079 Krasnoyarsk, Russia
* Correspondence: ikonnikov@iph.krasn.ru (D.A.I.); vyunishev@iph.krasn.ru (A.M.V.)

Abstract: Fork-shaped gratings are periodic structures containing a spatial dislocation known to be
used for the production of optical vortices in a far field. Spatial overlapping of diffraction orders in a
near field results in complex spatial evolution of optical vortices. In this paper, we report the results
of near-field diffraction on fork-shaped gratings with different topological charges and analyze the
evolution of specific optical vortices during propagation. Optical vortices have been shown to form
two-dimensional well-ordered spatial configurations in specific transverse planes. The locus of points
of optical singularities has been shown to form two helical lines twisted around the ±1 diffraction
order directions. Our results demonstrate that the spatial behaviour of optical vortices is in close
connection with the spatial ordering arising from the Talbot effect. The quantity of optical vortices
demonstrates complex spatial dynamics, which includes spatial oscillations and decreasing along
the propagation direction. These results provide a foundation towards a deeper understanding of
near-field singular optics phenomena.
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1. Introduction

Optical vortices (OVs) represent a special kind of structured optical field [1–3] with its
helicoidal wavefronts described by the phase term exp (−ilφ), where l is the topological
charge (TC) and φ is the azimuthal angle [4–7]. The helicoidal wavefront results in a dough-
nut intensity distribution and optical (phase) singularity (OS) at the center of the OV, where
the optical phase is undetermined and its intensity goes to zero. Optical vortices have
been intensively studied (see, e.g., [1–9]) and have found plenty of applications, ranging
from optical communications to high-resolved optical microscopy and optical manipula-
tions [10–13], the detection of defects in nano-structures [14] and spinning objects [15], etc.
Fork-shaped gratings (FSGs) are commonly used for producing optical vortices, among
others [16,17]. FSGs have a point defect disturbing the periodicity of a regular structure,
which results in OV beams in the diffraction orders in a far field of diffraction [18]. The
topological charges of OVs depend on the diffraction order and TC of the incident beam.
Recently, it has been shown that optical singularities produced by FSG may form complex
spatial structures in a near field of the grating [19], which is caused by spatial overlapping
of diffraction orders [19–21]. A previous study [19] revealed an analogue of the Talbot
effect [22] for FSG grating and self-healing for regular intensity distributions. It was shown
that optical singularities demonstrate complex spatial distributions near the grating, which
breaks the regularity of spatial intensity distributions known as Talbot carpets, and, then,
fit into intensity minima in integer Talbot carpets. It indicates the coexistence of spatial
ordering and optical singularities, which is somehow the opposite of the diffraction of
OVs on a periodic grating [18,23–28]. In [29], a singular optical field was demonstrated to
evolve into two spatially separated first-order diffraction patterns with opposite integer
topological charges under near-field diffraction on a fork-shaped grating.
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The current study is devoted to a detailed analysis of the evolution of optical vortices
behind fork-shaped gratings. These results allow us to understand the physical reason
for the coexistence of the spatially ordered intensity distribution and locations of optical
singularities, which is important for near-field singular optics.

2. Basic Formulas

Let us consider the near-field diffraction of a Gaussian beam with a waist radius w0 on
a fork-shaped grating with a period of structure Λ and a topological charge p. The FSG trans-
mission function in the plane (x0, y0) is given by
T(x0, y0) = {1 + sgn[cos (2πx0/Λ + pφ)]}/2, where φ = arctan(y0/x0) is the azimuthal
angle and sgn Ψ = Ψ/|Ψ| is the sign function. The diffracted field in the plane (x, y)
near the grating at distance z can be numerically calculated using the Fresnel diffraction
integral [30]

E(x, y, z) =
exp (ikz)

iλz

∫∫
E(x0, y0, 0) exp

{
ik
2z

[(x− x0)
2 + (y− y0)

2]

}
dx0dy0. (1)

where E(x0, y0, 0) = T(x0, y0)E0 exp [−(x2
0 + y2

0)/w2
0] is the field distribution in the grating

plane. It is convenient to represent integral (1) as [30,31]

E(x, y, z) = F−1{F{E(x0, y0, 0)}H( fx, fy)
}

, (2)

where the transfer function H is given by

H( fx, fy) = eikz exp [−iλz( f 2
x + f 2

y )]

with the spatial frequencies fx = x/λz, fy = y/λz. F (or F−1) is the notation for the
Fourier (or inverse Fourier) transform.

In the far field, the diffracted field represents a spatially separated set of optical vortices
propagating in the diffraction order directions, with the TC of each vortex defined as [6]

lm = l0 + mp, (3)

where l0 is the TC of the incident beam (l0 = 0 for further consideration) and m is the
diffraction order.

3. Experimental Setup

In the experiment, a fork-shaped grating with a period of Λ = 10 µm for the structures,
with the characteristic dimensions of the entire structure being 3× 3 mm2, was photolitho-
graphically imprinted on a chromium-coated glass substrate. This mask was illuminated
by a He–Ne laser beam with a wavelength of 632.8 nm and a radius of 1.5 mm (Figure 1).
The experimental studies were carried out for a set of FSG masks with topological charges
of ±1, +2, +3, and +4. Using the objective with an optical magnification of ×50 and a
numerical aperture of 0.55, located behind the mask, the image obtained near the grating
was projected onto the beam profiler (LBP-1, Newport, pixel sizes 9.05× 8.3 µm2). By mov-
ing the objective along the beam propagation axis, the experimental near-field intensity
distribution patterns at different distances from the FSG mask were obtained, allowing one
to reconstruct the spatial distribution of intensity in 3D behind the mask by analyzing the
2D intensity profiles at specific coordinates.
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Figure 1. Illustration of the experiment. Ensembles of OVs of the opposite-sign form helical lines
behind the FSG. Intensity distribution of the diffracted light is projected by the objective onto the
CCD for analysis.

4. Results and Discussion

An analogue of the Talbot effect has been recently revealed to take place for fork-
shaped gratings [19]. Figure 2 shows the experimentally obtained intensity distribution
under diffraction on a fork-shaped grating with topological charge p = +1 for differ-
ent planes z/zT , where zT = 2 Λ2/λ is the Talbot length [22]. The Gerchberg–Saxton
method [32] has been applied for retrieving the phase distributions from experimental
intensity profiles (Figure 2). The five planes presented in the figure have been used for
the phase retrieval. The bandwidth and the number of spatial harmonics used for phase
restoration are defined by the geometric sizes of the intensity profile and pixels, which
complicate extraction of the optical singularities from the experimental data due to low
spatial resolution. It is more reliable to determine the positions and magnitudes of sin-
gularities from numerical calculations. Figure 2 shows some intensity and phase profiles
calculated using Formula (2), which take into account the calculation area, with a size of
3× 3 mm2 and 50 sample points per period Λ. A good agreement between the measured
and calculated intensity profiles is evident and proves the calculated model used. At the
same time, the calculated phase distributions and retrieved ones are close together. The
calculated phase distributions represent sets of vertical stripes of two types alternating
with each other. The phase along the stripes of the first type does not change, and on the
stripes of the second type, it is possible to see quite accurately the presence of a phase
discontinuity. While observing the phase change depending on the coordinate along the
propagation axis z, these discontinuities are seen to line up along two sets of rotating
lines. The number of lines in each set is equal to the topological charge |p| of the grating.
Each of the sets rotates around its center of rotation; both of the sets rotate in opposite
directions to each other. At the boundaries of these phase, discontinuities singular points
are formed. The positions of these singular points were numerically calculated from the
condition Re E(x, y, z) = Im E(x, y, z) = 0, and their respective charges were calculated as
the number of phase jumps by 2π when going around the singularity in a closed loop. In
each transverse plane, OS ensembles occur, the locus of points of which forms two helical
traces twisted around the ±1 order direction (Figure 3).

It is known that diffraction on a fork-shaped grating in the far field results in the
formation of a set of optical vortices; consequently, near-field diffraction will be the result of
a superposition of this set of vortices, being essentially spatial harmonics. Since the ampli-
tudes of the spatial harmonics associated with the respective-order m decrease quadratically
with increasing order, we should expect that the harmonics with lower orders will make
a determining contribution. In this case, we can assume that the lines along which the
phase discontinuities line up are the manifestation of ±1-order spatial harmonics. Indeed,
if we consider only the first-order harmonics in the plane perpendicular to the harmonic
propagation direction, we can observe the presence of the phase discontinuity lines.
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Figure 2. Experimental (the first column) and calculated (the third column) intensity profiles, and
retrieved (the second column) and calculated (the fourth column) phases of diffracted field at different
distances (in units of zT) from FSG with p = +1. Circles mark positive (green) and negative (red)
optical singularities. Scale bar corresponds to 50 µm.

Figure 3. Calculated positions of positive (green) and negative (red) optical singularities behind FSG
with topological charges p = +1 (a,b) and p = +2 (c,d). Solid curves show approximated helical
traces of locus of points corresponding to the OS ensembles.

Since the topological charge of the first spatial harmonic is equal to the topological
charge of the grating in the case of an incident Gaussian beam, the number of phase
break lines is also equal to the topological charge p of FSG. During propagation, these
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break lines rotate around the propagation axis of a specific harmonic in the theoretical
model. However, there is a significant difference between propagation of a single spatial
harmonic and propagation of the field superimposed by all spatial harmonics. While a
single harmonic has a spatial period along the propagation axis equal mpλ, according to
the Talbot effect, the superimposed field has a spatial period equal to zT . It implies that
each harmonic rotates several hundred times at a distance of zT/2, while the helical traces
of OS ensembles rotate only by the angle of ± 2 π/p at the same distance. These results
demonstrate that the spatial behaviour of OVs produced by FSG is in close connection with
the spatial ordering arising from the Talbot effect. To note, the experimental value of the
Talbot length was about 321 µm, which is in good agreement with the calculated one, at
316 µm.

In addition, we analyzed the dependence of the quantity of optical singularities N
on the distance along the propagation axis. The corresponding graphs are shown in
Figure 4. We see that, in each plane, the quantity of positive and negative singularities is
approximately equal and, consequently, the total aggregate charge is approximately equal to
0. Indeed, one can expect that the total topological charge behind the grating is equal to the
topological charge of the incident beam. The difference from zero is probably caused by the
limited region of the calculation, and a part of singularities is outside the calculated region.
This dependence shows that the total quantity of singularities decreases with distance
along the propagation axis z. This is due to the fact that the spatial harmonics gradually
diverge with distance from the grating and, consequently, the field distribution simplifies.
The periodicity of the shown dependence can be explained by the Talbot effect: since the
self-reproducing pattern of diffraction occurs, the position and quantity of singularities
should also repeat with the same periodicity. To note, a drastic reduction in OS quantity
corresponds to the integer and semi-integer Talbot planes (see inset in Figure 4), where
the transverse intensity distribution reproduces the grating and becomes the most ordered.
This means that the OVs are annihilated right before the integer and semi-integer Talbot
planes and are born immediately after these planes.

Figure 4. The quantity of positive (green) and negative (red) optical singularities N on the distance
along the propagation axis z, calculated in the region 40× 10 Λ2.

5. Conclusions

The near-field diffraction of a Gaussian beam on fork-shaped gratings with the topo-
logical charge p has been studied. The proposed theoretical model has been proved, with a
good agreement between the calculated and measured intensity distributions in specific
transverse planes. It has allowed us to study the evolution of optical vortices in a near field
of diffraction. These results have shown that the locus of points of optical singularities
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forms two helical lines twisted around the ±1 diffraction order directions. These helical
lines have been found to have a spatial period equal to |p|zT/2. These results demonstrate
that the spatial behaviour of OVs produced by FSG is in close connection with the spatial
ordering arising from the Talbot effect. The quantity of optical vortices demonstrates
complex spatial dynamics, which includes spatial oscillations and decreasing along the
propagation direction. These results pave the way to understanding near-field singular
optics phenomena.
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