KAZAN SCIENCE WEEK 2023

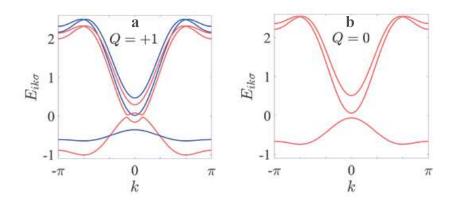
ABSTRACTS

Interplay of ferromagnetism and nontrivial topology in triple layers Te-Mn-Te of MnBi, Te₄

V.V. Val'kov, A.O. Zlotnikov, A. Gamov

Kirensky Institute of Physics, FRC Krasnoyarsk Science Center of SB RAS, Krasnoyarsk, Russia

Considering the structure of triple layers Te-Mn-Te, as a part of septuple layers Te-Bi-Te-Mn-Te-Bi-Te of the van der Waals single crystal MnBi_2Te_4 [1, 2], the effects of the crystal field, spin-orbit interaction, and covalent mixing between 3d orbitals of Mn^{2+} ions and 5p orbitals of Te^{2-} ions are studied. We propose the effective tight-binding model with strong electron correlations between d electrons and analyze the topology of the Fermi excitation spectrum in the ferromagnetic state.


In the framework of the formalism of the Zubarev Green's functions and Zwanzig-Mori projection technique the system of equations is obtained in the form

$$\left(\omega - \hat{M}_{k\sigma}\right)\hat{D}_{k\sigma}(\omega) = \hat{P}_{\sigma} ,$$

where $\hat{D}_{k\sigma}$ is the Fourier transform of the matrix Green's function formed by the three-component field operator of p- and d-electrons, $\hat{P}_{k\sigma}$ is the diagonal matrix with elements $(1, N_{0\sigma}, 1)$, and

$$\hat{M}_{k\sigma} = \begin{pmatrix} \varepsilon_{pk\sigma} & -t_{1k\sigma}^* & -t_{12k} \\ -N_{0\sigma}t_{1k\sigma} & \varepsilon_{dk\sigma} & -N_{0\sigma}t_{2k\sigma} \\ -t_{12k}^* & -t_{2k\sigma}^* & \varepsilon_{pk\sigma} \end{pmatrix}.$$

Here $N_{0\sigma}=1-n_{\rm d}/2+2\sigma M$ with concentration $n_{\rm d}$ and magnetization M of d-electrons, $\varepsilon_{pk\sigma}$ and $\varepsilon_{dk\sigma}$ are the bare energies of p- and d-electrons, respectively, renormalized by

Fig. 1. Fermi excitation spectrum for two phases: a unsaturated ferromagnetic phase (red and blue lines correspond to the spin-splitted energy branches); **b** paramagnetic phase with the energy branches which are degenerated with respect to spin projection. In both cases chemical potential is in a gap at zero energy. The Chern number Q is nontrivial (Q = 1) in the presence of ferromagnetism and trivial (Q = 0) for paramagnetic state.

the p-d exchange interaction and kinematic interaction of Hubbard fermions [3]. The p-d hybridization is described by the functions $t_{1k\sigma}$ and $t_{2k\sigma}$, and t_{12k} is the hopping integral of p-electrons between different Te-layers.

It is crucial that $t_{1k\sigma}$ and $t_{2k\sigma}$ are complex functions depending on spin index. Therefore, nontrivial topology of the energy structure can exist when d- and p-bands are overlapped and long-range magnetic ordering is realized. It is shown that the Chern number Q of the lower filled band has the value +1 in the ferromagnetic phase which is caused by the kinematic interaction. This corresponds to the nontrivial topology of the energy structure of triple layers Te-Mn-Te in MnBi₂Te₄. On the contrary, the Chern number is zero and the topology is trivial in the paramagnetic phase.

The reported study was supported by Russian Science Foundation Project No. 23-22-10021 (https://rscf.ru/project/23-22-10021/), and Krasnoyarsk Regional Fund of Science.

- 1. Otrokov M.M., Klimovskikh I.I., Bentmann H. et al.: Nature 576, 416–422 (2019)
- 2. Shikin A.M., Estyunin D.A., Glazkova D.A. et al.: JETP Lett. 115, 213-225 (2022)
- 3. Zaitsev R.O.: JETP 96, 286–300 (2003)
- 4. Val'kov V.V., Zlotnikov A.O., Gamov A.: JETP Lett. 118, No. 5 (2023)