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Abstract
We study different resonances (first of all of the Fano type) in the interference device 
formed by the Aharonov–Bohm ring with superconducting (SC) wire in the topo-
logically nontrivial state playing a role of a bridge between top and bottom arms. 
We analyze Majorana modes on the ends of the SC wire and show that the collapse 
of the additional Fano resonance, that is initially induced by transport scheme asym-
metry, is connected with the increase of the length of the bridge when the binding 
energy of the Majorana end modes tends to zero. In local transport regime, the Fano 
resonances are stable against the change of the transport symmetry. The reasons of 
both collapse and sustainability are analyzed using a spinless toy model including 
the Kitaev chain.

Keywords Topological superconductivity · Majorana modes · Aharonov–Bohm 
ring · Fano resonanse

1 Introduction

The subject of the topological superconductivity and Majorana [1] modes is very 
fashionable nowadays. In topological superconductors there are Majorana bound 
states which are formed by the pair of the Majorana modes. These states are 
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characterized by the spatial nonlocality, quantum entanglement and nonabelian sta-
tistics. These features define the interest to topological superconductors and topo-
logically protected qubits based on them [2].

The necessary condition for the realization of the topological insulator state as we 
know is a presence of a band structure with band inversion and spin-orbit coupling. 
For some topological superconductors with Majorana modes an important ingredi-
ent is the SC pairing of electrons with the same spin projection, i.e. triplet pairing. 
(see e.g. [3, 4] for the review)

We note that the concept of topological superconductivity was closely connected 
historically with the earlier studies of the triplet p-wave superfluidity and the sym-
metry of the order parameter in the A- and B-phases of the superfluid He-3.

Let us emphasize that in several tunneling spectroscopy experiments with InAs 
and InSb SW (exhibiting strong spin-orbit coupling and induced SC pairing) we get 
some support in favor of the formation of the MBS (see [18, 21]). However, the 
decisive evidence is still lacking and cannot be connected just with the quantization 
of the conductance at zero voltage [22, 23]. That is why more profound approaches 
probing other features of the MBS, e.g. its spatial nonlocality or spin polarization, 
should be considered [24]. One of these approaches can be based on the investiga-
tion of the Fano resonances in the Aharonov-Bohm (AB) ring with the SW playing a 
role of bridge that is considered further.

In this article we will study the Majorana modes and the appearance and col-
lapse of the Fano resonances in the Aharonov–Bohm ring with the SC bridge. We 
will consider the superconducting bridge, which can be transferred in topologically 
nontrivial phase, between lower and upper shoulders of the Aharonov–Bohm ring 
[5] (see Fig. 1 and [4, 6, 7]). Note that in the geometry of Fig. 1 we have an inter-
ference device suitable to study the effects of the Aharonov–Bohm phase, differ-
ent resonances (the Fano and Breit-Wigner type [8, 9]) and topologically nontrivial 
excitations such as Majorana bound states. To be more specific on Fig. 1 of this sec-
tion we consider a SC bridge in an s-wave state in the presence of Rashba spin-orbit 
coupling [10, 11] and the in-plane magnetic field in the Aharonov–Bohm ring. The 

Fig. 1  The superconducting nanowire (s-wave SC with Rashba spin-orbit coupling) including N sites and 
connecting the shoulders (the arms) of the Aharonov–Bohm ring or an interference device formed by 
four leads (each with n sites): 1-left top (LT) and 2-right top (RT) on the upper shoulder; 3- left bottom 
(LB) and 4-right bottom (RB) on the lower shoulder. The shoulders are in the normal state (NW) and 
their ends are connected in parallel with metallic contacts L, R. We show on the Fig. the hopping inte-
grals t0 , t1 , t2 , external magnetic field B and effective Rashba field Bso
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Aharonov–Bohm ring in this scheme is an interference device formed by four leads: 
1-left top (LT) and 2-right top (RT) on the upper shoulder; 3-left bottom (LB) and 
4-right bottom (RB) on the lower shoulder. The shoulders are in the normal state, 
i.e. the leads are normal wires (NWs), and their ends are connected in parallel with 
metallic contacts.

This interference device contains a very rich physics connected first of all with 
the Majorana modes in the superconducting wire (SW). We will show that some 
effects of spinful coherent transport can be described by the spinless toy model 
including 4 normal sites located of the sides of the Kitaev chain [12] with even num-
ber of sites ( N = 2 and N = 4, 6, ... ) in (see [7] and Figs. 2a and b).

Qualitatively, the appearance and collapse of the different resonances in this 
scheme can be explained by the presence of two interacting transport channels in the 
system. As a result, the Fano resonances are connected with the bound states in the 
continuum (BICs). We will show that the width and the position of these resonances 
is highly sensitive to the lowest in energy excitations in the SW, which in topologi-
cally nontrivial phase corresponds to Majorana bound states (MBS) or Andreev 
bound states [13, 14]. This study is mostly focused on an asymmetric transport 
regime featured by different hopping integrals t1 and t2 . These quantities describe 
the tunnel processes between the left (right) contact and the LT (RB) and LB (RT) 
leads, respectively. Note that the Fano effect in the similar geometry was analyzed 
in [15]. However, its authors considered the symmetric transport regime and did not 
observe the disappearance of the Fano resonances due to the MBS nonlocality.

2  Topological Superconductivity in 1D Nanostructures

In this section we provide a brief introduction to the subject of topological super-
conductivity in 1D nanostructures. Note that the topological superconductivity is a 
very fashionable field of research nowadays because of its importance for the protec-
tion of the phase in the superconducting qubits under the external perturbations. The 

Fig. 2  The Aharonov–Bohm ring with n = 1 for each normal wire and the superconducting bridge 
described by Kitaev chain with N = 2 a or larger even number of sites N = 4, 6, ... b. The dots inside the 
ellipses denote the Majorana operators of the 1st and 2nd type in real space, �1j and �2j , respectively
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manifestation of the nontrivial topology in 1D structures such as SW first of all is 
connected with the presence of the MBSs.

As we mentioned already, the basic scenario for the formation of the MBS in the 
1D system is connected with the combination of three factors: SC pairing, spin-orbit 
coupling and an external magnetic field [16, 17]. Often this situation is realized for 
the NW on the surface of the massive s-wave SC [18]. In this case the topological 
superconductivity in the NW is induced by the proximity effect.

In the geometry of Fig. 1, when B ⟂ Bso two sub-bands arise in the normal state 
of the bridge with a gap at k = 0 that is equal to a Zeeman energy h (where k—wave 
vector). If a chemical potential � is in the gap center that the SC pairing between the 
electrons of the same sub-band dominates. Thus, effectively in this case the pairing 
of electrons in SW is equivalent to the triplet p-wave pairing [19] that was initially 
considered in the spinless Kitaev model [12].

This type of the pairing with l = S = 1 takes place, e.g. in the superfluid He-3. 
Generally, in the absence of the field there are three components of the magnetic 
quantum number m = lz and three components of the spin-projection Sz in the iso-
tropic B-phase of He-3. However, in strong magnetic fields the anisotropic triplet 
A-phase is realized with the pairing of two up spins on larger Fermi surface and two 
down spins on the smaller one, similar to the pairing of electrons on the same sub-
band in the SW.

Note that the importance of the spin-orbit coupling can be understood more for-
mally as well. It is necessary for the appearance of the self-conjugated Bogoliubov 
operators �0 = �

+

0
 describing the Majorana quasi-particles in the more realistic situa-

tion when electrons have spin degrees of freedom. The fulfillment of this condition 
requires the strong mixing of up and down spin projections of electrons in the Bogo-
liubov u-v representation. Thus, the appealing typical representation of the BCS-
type, where �0 ∼ ujaj↑ + vja

+

j↓
 , is forbidden [3].

3  Kitaev Chain Model

In the Kitaev model [12] the emergence of the MBS was demonstrated at 2t > |𝜇| 
and Δ ≠ 0 , where t—a hopping integral for electron between the neighboring sites 
of the chain; Δ—an SC gap. In the specific case of

the MMs arise only on the first and last sites of the chain.
To be more specific we consider the 1D Hamiltonian of Kitaev chain with N sites:

where a+
j
 and aj+1 are the creation and annihilation operators of spinless fermions on 

sites j and j + 1 , respectively. The SC order parameter is

(1)|Δ| = t, � = 0,

(2)Ĥ = −𝜇

N∑

j=1

(
a+
j
aj −

1

2

)
−

N−1∑

j=1

(
ta+

j
aj+1 − Δa+

j
a+
j+1

+ h.c.
)
,
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and Θ is the phase of the order parameter which is assumed to be fixed.
After that we can perform the transformation from fermionic operators a+

j
 and aj 

to Majorana self-conjugated operators �1j and �2j according to the prescription:

It is easy to understand from the expressions (4) that indeed:

Correspondingly for the anti-commutators of Majorana operators on the same site 
we get the relations:

while for the operators on the neighboring sites:

Thus, from the Eq. (6) we can see the striking difference between the anti-commuta-
tion relations of fermions and Majoranas on the same site.

Besides that, the Majorana modes have exactly zero energies. To show that, by 
analogy with the real-space representation via the Majorana operators discussed 
above, one can perform the same procedure for the Bogoliubov operators. In par-
ticular, for the lowest-energy excitation (possessing an index ‘0’) we can write 
�0 =

(
b1 + ib2

)
∕2 . Indeed, as it was noticed by Bogoliubov, we should satisfy two 

equations of motion simultaneously: iḃ1,2 = 𝜀0b1,2 and iḃ+
1,2

= −𝜀0b
+

1,2
 for Majorana 

operators b1,2 and b+
1,2

 . But, since b1,2 = b+
1,2

 , we have to assume that �0 = −�0 , and 
hence, �0 = 0.

Moreover, we can rewrite the Hamiltonian in Eq. (2) in terms of Majorana opera-
tors as follows:

If we consider a special point in the parameter space where |Δ| = t and � = 0 , then a 
simple form of the Hamiltonian expressed only via Majorana operators on the neigh-
boring sites appears,

(3)Δ = |Δ|eiΘ

(4)
�1j =e

iΘ

2 aj + e
−

iΘ

2 a+
j
,

�2j = − ie
iΘ

2 aj + ie
−

iΘ

2 a+
j
,

(5)�1,2j = �
+

1,2j

(6){�1,2j, �1,2j} = 2

(7){�
�j, ��j+1} = 0, �, � = 1, 2.

(8)Ĥ = −
i

2
𝜇

N∑

j=1

𝛾1j𝛾2j +
i

2

N−1∑

j=1

[
(t + |Δ|)𝛾2j𝛾1j+1 + (−t + |Δ|)𝛾1j𝛾2j+1

]
.

(9)Ĥ = it

N−1∑

j=1

𝛾2j𝛾1j+1.
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Now it is convenient to perform the inverse transformation from Majorana operators 
�1j+1 and �2j in Eq. (9) to the new fermionic nonlocal operators ãj and ã+

j
 assuming 

that they satisfy the relations:

We can resolve the Eq. (10) and get the representation for the new operators ãj and 
ã+
j
 via the Majorana operators �1j+1 and �2j . This yields:

Then we can easily express the product of Majorana operators �2j�1j+1 via the fermi-
onic one:

and, finally, diagonalize the Hamiltonian of the Kitaev chain in the real space:

Note that from Eq. (11) we can see that the operators ãj and ã+
j
 satisfy indeed the 

usual fermionic anti-commutation relations:

However, there is one important point in the Hamiltonian (13), namely the index j 
covers N − 1 instead of N values. In other words, some degrees of freedom are miss-
ing in the Eq. (13). They correspond to Majorana massless fermions. At the same 
time in the Eq. (9), where the Hamiltonian is expressed in terms of Majorana opera-
tors, the two operators on the ends of the chain �11 and �2N are also absent. Hence 
the ground state is doubly degenerate. It means [20] that a product of these missing 
operators

while the other products which enter in the Hamiltonian (9) are single valued:

The operators �11 and �2N describe the zero energy Majorana modes.
Note that the two states in (15) with i�11�2N = ±1 are practically indistinguisha-

ble. They can be distinguished only by the parity operator which is nonlocal. Indeed, 
an operator which distinguish these states should act simultaneously on both end 

(10)
𝛾2j =ãj + ã+

j
,

𝛾1j+1 = − iãj + iã+
j
, j = 1, 2, ...,N − 1.

(11)
ãj =

(
𝛾2j + i𝛾1j+1

)
∕2,

ã+
j
=
(
𝛾2j − i𝛾1j+1

)
∕2, j = 1, 2, ...,N − 1.

(12)𝛾2j𝛾1j+1 =
2

i

(
ã+
j
ãj −

1

2

)
.

(13)Ĥ = 2t

N−1∑

j=1

(
ã+
j
ãj −

1

2

)
.

(14){ãj, ãj} = {ã+
j
, ã+

j
} = 0, {ãj, ã

+

j
} = 1.

(15)i�11�2N = ±1,

(16)i�2j�1j+1 = 1, 1 ≤ j ≤ N − 1.
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sites 1 and N and thus it cannot be local. Hence these end states form a qubit. More-
over, from Eqs. (9)–(16) we observe that the qubit states are topologically protected 
because they are separated from the excited states by a gap |Δ| = t and immune to 
the local perturbations due to the MBS nonlocality in space on the length of the 
chain L.

If we go away from the special point, where |Δ| = t , we get the similar physical 
picture. There is a gap above the two nearly degenerate ground states with opposite 
parity. The MBS energy splits from zero value due to the overlap of their MM Ψ
-functions on the chain of the finite length. We can say, that such a hybridization 
yields the binding energy for the Majorana end states which is proportional to:

and is exponentially decreasing with the increase of the length of the chain 
L = (N − 1)d , where d is the inter-site distance. In Eq. (17) the coherence length 
enters,

which is inversely proportional to the absolute value of the gap. Note that the expres-
sion (17) for the energy of the MBS persists even in more physically relevant region, 
where |Δ| < t.

Note that the nontrivial topology in the Kitaev chain is defined by the so-called 
Majorana number:

Topologically nontrivial phase in Eq. (19) is related to the value of M = −1 
of the Majorana number. This situation is realized for the chemical potentials 
lying inside the band, −2t < 𝜇 < 2t . It is essential that a gap of a bulk spectrum 
�k =

√
(� + 2t cos k)2 + 4Δ2 sin2 k closes and reopens at � = 2t and a symmetric 

nodal point k̄ = 𝜋 or � = −2t and k̄ = 0 , i.e., on the borders of the topologically 
trivial and nontrivial regions. The latter indicates that topological phase transition is 
quantum phase transition.

Note that often in the problems of mesoscopic superconductivity the chains with 
odd and even number of sites yield the different results with respect to total energy. 
In the absence of Majorana end modes their difference in energy is just the energy 
cost of a single unpaired electron on the chain with odd number of sites. Thus 
Eodd(2N + 1) > Eeven(2N) . The appearance of the Majorana zero energy modes on 
the two ends of Kitaev chain eliminate this difference between odd and even number 
of sites [20], and hence:

(17)Eb ∼ exp

(
−
L

�0

)
→ 0 for N → ∞.

(18)�0 ∼
ℏvF

|Δ|
,

(19)M = sign
(
�
2
− 4t2

)
.

(20)Eodd(2N + 1) = Eeven(2N).
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Note also that the distribution of the Bogoliubov u-v coefficients over the differ-
ent sites j = 1, 2, ...,N . in the normalization condition 

∑N

j=1
[�uj�2 + �vj�2] = 1 also 

changes drastically when we work inside the region of topologically nontrivial 
phase. Namely, for � = 0 and |Δ| = t the combination |uj|2 + |vj|2 (which enters in 
the normalization condition) for the long chains have two explicit maxima at the two 
ends of the chain for j = 1 and j = N . For both maxima

and thus:

In the same time for � = −2t on the border of the topological interval the 
combination

is distributed almost in a uniform way between all the sites of the chain including its 
both ends.

4  Hamiltonian of the Anisotropic Aharonov–Bohm Ring 
with Superconducting Bridge

In this section we study anisotropic AB ring with different hopping integrals 
t1 ≠ t2 between the contacts and the shoulders of the device on Fig. 1. Left contact 
(L) has the hopping integral t1 with upper shoulder and t2 with the lower one. For 
the right contact (R)the situation is opposite: t1 with lower shoulder and t2 with 
the upper one. We will show that in the anisotropic situation new Fano resonances 
appear in the conductance of the ring [7]. Moreover, the width of these resonances 
is connected with the degree of the nonlocality of the lowest energy state of the 
SW.

In other words, the width is governed by the MBS energy whose deviation from 
zero arises due to the overlap of MMs Ψ-functions. If this overlap disappears and the 
binding energy Eb → 0 , then the two Majorana zero modes (two Majorana ’fermions’) 
become noninteracting and the width of the Fano resonance tends to zero. Accord-
ing to [7] in this case we have a collapse of the Fano resonance caused by the MBS 
nonlocality.

4.1  Hamiltonian of Superconducting Wire

The Hamiltonian of the SW which includes both SC pairing, spin-orbit coupling and 
the effect of the Zeeman splitting due to the presence of the external magnetic field 
reads:

(21)u1 = v1 = uN = −vN = 1∕2,

(22)|uj|2 + |vj|2 = 0 for j ≠ 1,N.

(23)|uj|2 + |vj|2 → 1∕N
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where � = �d − � is the onsite energy, �d is the gate voltage, � is the chemical poten-
tial, t is the nearest neighbors hopping integral in SW, � is Rashba constant for the 
spin-orbit coupling, Δ is an s-wave SC order parameter,and h is the Zeeman energy 
related to the magnetic field B lying in the plane of the interference device.

Then the topologically nontrivial phase is realized when the following inequali-
ties are satisfied [16, 17]:

Let us emphasize that Rashba constant � formally does not enter in the inequalities 
in Eq. (25). However, the nonzero spin-orbit coupling is essential for the formation 
of the MBS. Moreover, the effective Rashba field Bso should be perpendicular to the 
external magnetic field B.

In the forthcoming sections we will scale all the energy parameters in the units of 
t assuming that t = 1 , � = 0 , Δ = 0.25 , � = 0.2.

4.2  Full System Hamiltonian

Note that the upper and lower shoulders of the AB ring and their four leads: left top 
(LT), left bottom (LB) and right top (RT), right bottom (RB) are in the normal state. 
In other words, they correspond to the normal nanowires (NWs) and we consider 
them to be identical. Their Hamiltonians ĤNW(1−4) can be obtained from Eq. (24) by 
putting Δ = � = 0 and replacing aj� by bL(R)j� for ĤNW(1,2) and by dL(R)j� for ĤNW(3,4).

Finally, the coupling between SW and NW is governed by the tunneling 
Hamiltonian:

where t0 is the hopping integral between the edge sites of the SW and NW.
In the same time the coupling between the device (which consists of SW+NW) 

and the contacts is also described by the tunneling Hamiltonian. But now this Ham-
iltonian plays the role of the interaction operator in the Keldysh diagram technique 
[25]. It is given by:

(24)

ĤSW =

N∑

j=1

[
∑

𝜎

𝜉a+
j𝜎
aj𝜎 +

(
Δa+

j↑
a+
j↓
+ iha+

j↑
aj↓ + h.c.

)]

+
1

2

N−1∑

𝜎;j=1

[
−ta+

j𝜎
aj+1,𝜎 + i𝛼𝜎a+

j𝜎
aj+1,𝜎 + h.c.

]
,

(25)(𝜉 − t)2 + Δ
2
< h2 < (𝜉 + t)2 + Δ

2.

(26)ĤT = −t0

∑

𝜎

[(
b+
Ln𝜎

+ b+
Rn𝜎

)
a1𝜎 +

(
d+
L1𝜎

+ d+
R1𝜎

)
aN𝜎

]
+ h.c.,

(27)V̂ = −

∑

k𝜎

[
c+
Lk𝜎

(
t1bL1𝜎 + t2dLn𝜎

)
+ c+

Rk𝜎

(
t2bR1𝜎 + t1dRn𝜎

)]
+ h.c.,
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where c+
L(R)k�

 is the creation operator for the electron with wave vector k and spin 
projection � at the left (right) contact, whereas t1 and t2 are the hopping integrals 
between the contacts and the device.

Note that the Hamiltonians of the left (right) contact have the simple form:

where

is the electro-chemical potential of the left (right) contact which includes the bias 
voltage eV.

5  Evaluation of Steady‑State Current in Keldysh‑Nambu Formalism

In this section we present the convenient modified Nambu [26]—Keldysh formalism 
[25] for the calculation of the steady current of our system (see [4, 6, 7]) in the tight-
binding approximation.

We can generalize the Keldysh formalism on the calculation of the steady state 
current in superconducting state working in Nambu representation. Namely, it is 
convenient to diagonalize the full Hamiltonian of the device

utilizing the Nambu operators [26] in the site representation:

where fj� is the annihilation operator of an electron with spin projection � at the j-th 
site of the SW or NW. Then we can define the matrix Keldysh Green’s function [7] 
of the AB ring in the following form:

(28)ĤL(R) =

∑

k

(
𝜖k − 𝜇L(R)

)
c+
L(R)k𝜎

cL(R)k𝜎 ,

(29)�L(R) = � ± eV∕2,

(30)ĤD = ĤSW +

4∑

i=1

ĤNW,i + ĤT ,

(31)f̂j =
(
fj↑ f

+

j↓
fj↓ f

+

j↑

)T

,

Fig. 3  Keldysh time contour C with the lower branch C
−
 and the upper branch C

+
 . The time �

−
 on the 

contour is always ’after’ the time �
+
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where a, b = +,− and TC is the ordering operator at the Keldysh time contour which 
consists of the lower (superscript + ) and upper (superscript −) parts (see Fig. 3).

In Eq. (32) the Nambu operator Ψ̂ has the dimension 4(N + 4n) × 1 . It means that 
it includes the Nambu operators for both SW and four NWs. In explicit form it reads:

The steady current of the left lead is written as:

where NL =
∑

k� c
+

Lk�
cLk� is the operator of the particle number in the left contact. 

The solution of the Heisenberg equation yields for the current:

where we put ℏ = 1 . Note that in Eq. (35) we introduce the diagonal matrix 
�̂� = diag(1,−1, 1,−1) . In the same time,

are the diagonal matrices which depend on the time as a result of the unitary trans-
formation of Rogovin and Scalapino [27]. Note that Rogovin-Scalapino transforma-
tion explicitly takes the bias voltage into account and reads:

Performing this transformation transfers the voltage dependence into the interac-
tion operator V̂  . Note that the linear time dependence in the exponents of t̂1,n can be 
understood also from the nonequilibrium condition on the electrochemical potentials 
of the left and right contacts in the presence of the voltage according to Eq. (29).

Finally, in Eq. (35) for the current:

are the mixed Green’s functions in Keldysh NEGF terminology.
It is important to stress that in the space of the Nambu operators the Hamiltonian 

of the device ĤD has the form corresponding to the free particles. That is why in the 
averages entering in the definitions of the mixed Green’s functions in Eq. (38) we 
should use the same prescriptions as for the averages in the TC-ordered product of 
the secondly quantized operators [28, 29].

(32)Ĝab
(
𝜏, 𝜏�

)
= −i

⟨
TCΨ̂

(
𝜏a

)
⊗ Ψ̂

+
(
𝜏
�

b

)⟩
,

(33)Ψ̂ =
(
b̂L1...b̂Lnd̂L1...d̂Lnâ1...âN b̂R1...b̂Rnd̂R1...d̂Rn

)T
.

(34)I = e
⟨
ṄL

⟩
,

(35)I = 2e
∑

k

Tr

[
�̂�Re

{
t̂+
1
(t)Ĝ+−

k,L1
(t, t) + t̂+

n
(t)Ĝ+−

k,Ln
(t, t)

}]
,

(36)t̂1,n =
t1,2

2
diag

(
e
−i

eVt

2 , ei
eVt

2 , e−i
eVt

2 , ei
eVt

2

)
⋅ �̂�

(37)Û = exp
{
ieVt

2

(
nRk𝜎 − nLk𝜎

)}
.

(38)Ĝ+−

k,L1
= i

⟨
b̂+
L1

⊗ ĉLk
⟩
, Ĝ+−

k,Ln
= i

⟨
d̂+
Ln

⊗ ĉLk
⟩
.
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As a result, at t → 0 Eq. (35) for the current can be written as:

where

are the self-energies of the left contact, ( i, j = 1, n ), and ĝ+a
Lk

(
−𝜏1

)
 is the bare Green’s 

function of the left contact.
Integrating over the time � and making the Fourier transform we finally get:

where Σ̂r
Lj,Li

 and Ĝa
Lj,Li

 are the block matrices of the retarded self-energies and 
advanced Green’s functions respectively.

In principle it is possible to perform the further transformation of the Eq. (41) 
and obtain the explicit expression for the current which contains the terms corre-
sponding to the local Andreev reflection and to the nonlocal transfer of the charge 
carriers. However, for the sake of simplicity we will not present these lengthy equa-
tions in this section.

Note that the real many-particle interactions are absent in the system which we 
consider here. That is why the self-energies and full Green’s functions in Eqs. (40), 
(41) are determined taking into account all the tunneling processes between the 
device and the contacts. Correspondingly the block matrices Ĝa

Lj,Li
 of the advanced 

Green’s functions of the whole device Ĝa are determined by the following Dyson 
equation:

where ĥD is the Bogoliubov-de-Gennes matrix of the device Hamiltonian (Ĥ
D
) and 

Σ̂r is the matrix of the retarded self-energy. It is frequency-dependent in general case 
and describes the effect of both contacts on the AB ring.

However, in our numerical calculations we will use more simple approximation 
of the wide-band contacts. In this approximation we can neglect the real parts of the 
self-energies and assume the imaginary parts to be constant [28, 29]. Then, we get 
the following explicit expressions for the nonzero blocks of the retarded self-energy 
Σ̂r:

(39)

I =2e∫
C

d𝜏1Tr

[
�̂�Re

{
Σ̂
+a
L1,L1

(
−𝜏1

)
Ĝa−

L1,L1

(
𝜏1

)
+ Σ̂

+a
Ln,Ln

(
−𝜏1

)
Ĝa−

Ln,Ln

(
𝜏1

)

+Σ̂
+a
L1,Ln

(
−𝜏1

)
Ĝa−

Ln,L1

(
𝜏1

)
+ Σ̂

+a
Ln,L1

(
−𝜏1

)
Ĝa−

L1,Ln

(
𝜏1

)}]
,

(40)Σ̂
+a
Li,Lj

(
−𝜏1

)
= t̂+

i
(0)ĝ+a

Lk

(
−𝜏1

)
t̂j
(
𝜏1

)

(41)I = e
∑

i,j=1,n

+∞

∫
−∞

d𝜔

𝜋
Tr

[
�̂�Re

{
Σ̂
r
Li,Lj

(𝜔)Ĝ+−

Lj,Li
(𝜔) + Σ̂

+−

Li,Lj
(𝜔)Ĝa

Lj,Li
(𝜔)

}]
,

(42)Ĝa
=

[(
𝜔 − ĥD − Σ̂

r
(𝜔)

)−1]+
,
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In Eq. (43) we introduced the matrices:

where Î4 is 4 × 4 identity matrix,and

are the functions describing the broadening of the energy levels of the device related 
to its interaction with the ith contact. Finally, � in Eq. (45) is the density of states in 
the contact. In the expressions for the self -energies (43), off-diagonal broadenings 
are Γ12 =

√
Γ1Γ2.

For the symmetric AB ring we will assume in the numerical calculations that 
Γ1 = Γ2 = 0.01 . For the asymmetric ring we put Γ2 = Γ1∕2 = 0.01 . Then, assuming 
for simplicity that � = 1∕W , where W = 4t —a bandwidth, one can obtain for the 
asymmetric configuration t1 ≈ 0.11 , t2 ≈ 0.08.

The blocks Ĝ+−

Lj,Li
 in the Eq. (41) for the current are governed by the solution of 

the Keldysh equation:

Let us emphasize that we consider the regime where all the transition processes have 
been finished and thus the bare Green’s functions of the device ĝ do not enter in the 
Eq. (46) [29].

The nonzero blocks for the self-energies Σ̂+− in Eq. (46) have the form

where � = L,R , i, j = 1, n ; and we introduced the diagonal 4 × 4 matrix:

Note that n(� ± eV∕2) in Eq. (48) are the Fermi-Dirac distribution functions.

6  Results of Numerical Calculations

In this section we present the results of the numerical calculations for the quantum 
transport. We will work in the regime of the linear response (small bias voltages) 
and consider the limit of low temperatures ( eV → 0 , kBT → 0 ) for our system which 
consists of the device and contacts in Fig. 1.

(43)
Σ̂
r
L1,L1

=Σ̂
r
Rn,Rn

= −
i

2
Γ̂11, Σ̂

r
R1,R1

= Σ̂
r
Ln,Ln

= −
i

2
Γ̂22,

Σ̂
r
L1,Ln

=Σ̂
r
R1,Rn

= Σ̂
r
Ln,L1

= Σ̂
r
Rn,R1

= −
i

2
Γ̂12,

(44)Γ̂ii = ΓiÎ4,

(45)Γi = 2�t2
i
�,

(46)Ĝ+−
= Ĝr

Σ̂
+−Ĝa,

(47)Σ̂
+−

𝛼i,𝛼j
= −2Σ̂r

𝛼i,𝛼j
F̂
𝛼
,

(48)F̂L(R) = diag

(
n(𝜔 ± eV∕2), n(𝜔 ∓ eV∕2), n(𝜔 ± eV∕2), n(𝜔 ∓ eV∕2)

)
,
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We will start by considering the limiting case of the AB ring with the minimal 
number of sites. To be more specific we consider the case of six sites when n = 1 
and N = 2 . In Fig.  4a we show the dependence of the first 4 excitation energies 
E1−4 on the gate-field energy �d . Each color corresponds to the different excitation 
energy, i.e. 1st is red, 2nd is blue, 3rd is magenta and 4th is cyan. Due to degeneracy, 
curves of the same style (dotted, dashed, or solid) but different colors may overlap 
each other. In particular, at zero values of the Zeeman energy and Rashba constant 
h = � = 0 the four states are splitted in energy on the two pairs of the doubly degen-
erate states (see the dotted curves in Fig. 4a).

Moreover, since in the general case the superconducting pairing in the ring is 
inhomogeneous, the gap Δ appears in the system at �d ≠ 0 . However at zero gate 
field the energies E1−4 = 0 , and that is why the differential conductance G = dI∕dV  

Fig. 4  The dependence of the excitation energies E1−4 (4a) and the conductance (4b) of the AB ring on 
the gate field �d . In the calculations we use the parameters: n = 1 , N = 2 for the ring consisting of 6 sites, 
the hopping integral between NW and SW t0 = 0.5 , the Zeeman energy h = 0.3 . We scale all the param-
eters in the units of the hopping integral t = 1 between the nearest neighbor sites in the SW
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exhibits the 4G0 resonance peak, where G0 = e2∕h is the conductance quantum, only 
at �d = 0 (see the dotted line in Fig. 4b).

The nonzero Zeeman energy leads to the gap suppression. As a result, the set 
of E1−4 zeros appears symmetrically relative to �d = 0 as it is displayed by dashed 
curves in Fig.  4a. However not all the zeroes in the excitation energies manifest 
themselves as the resonances in the conductance. The reason for that is the forma-
tion of the bound states in the continuum (BICs). There are several possibilities to 
obtain the finite lifetime of this states.

One of the possibilities is to break the spatial symmetry of the eigenstates of the 
ring. It can be achieved e. g. by introducing the spin-orbit coupling in the system 
[30]. In this case the zeroes of the excitation spectrum related to the SW are slightly 
shifted (see the solid curves in Fig. 4a) and Fano resonances emerge in the conduct-
ance whose width is proportional to � (compare the dashed and dash-dotted curves 
in Fig. 4b at �d ≈ ±0.4 ). If 𝛼 ≪ t that there are couples of resonances, one of them is 
wide symmetric (of Breit-Wigner type) and another is narrow asymmetric (of Fano 
type). In double quantum dots emergence of such resonant patterns was interpreted 
as a manifestation of Dicke effect [31–33]. This phenomenon is known from optics 
and is expressed in the appearance of wide and narrow peaks in the luminescence 
spectrum of a pair of atoms [34–36]. The former is associated with a short-lived 
collective excitation (superradiant state), and the latter is with a long-lived one (sub-
radiant state). Thus, we can conclude that the combination of the spin-orbit coupling 
and the external magnetic field (the Zeeman energy) allows to get the Dicke effect in 
the symmetric ring with the SC central region.

Let us emphasize that the zero-energy states at the values of the gate fields 
�d = ±h remain doubly degenerate even at nonzero values of the Rashba constant 
� ≠ 0 . This degeneracy is also connected with the symmetry of the AB-ring and 
leads to the emergence of the additional BICs [37, 38]. Their appearance can be 
observed in the conductance if we consider the asymmetric case for the tunneling 
parameters between the device and the contacts, Γ1 ≠ Γ2 . In this case the additional 
Fano resonances appear at �d = ±h (see the solid curve in Fig. 4b). The similar effect 
is realized if we take into account the Aharonov–Bohm phase (see [39]).

Let us consider now the AB-ring with larger number of sites, namely we assume 
the parameters n = 20 and N = 30 for the NW and SW, respectively. According to 
[4, 6], in the nontrivial topological phase of the SW, when the set of inequalities 
(25) is fulfilled, and the Rashba constant � ≠ 0 , we get the topological Dicke effect 
that is a set of couples of wide Breit-Wigner and narrow Fano resonances of the 
conductance.

Interesting features in the conductance related to the nonlocality of the MS 
appear in the asymmetric AB-ring. In this case we observe a set of additional nar-
row Fano resonances akin to the effect discussed above for the six-site system. One 
of such peaks appearing near the wide anti-resonance at h ≈ 1.22 in Fig. 5a is shown 
in higher resolution in Fig. 5b by dashed curve.

We should stress, that when the length of the SC bridge (i.e. the SW length) is 
increased, the wide anti-resonance moves closer to the narrow Fano peak. Simul-
taneously, the narrow Fano peak collapses (its width goes to zero) and the BIC 
appears. We can clearly see this behavior in Fig. 5b. In other words, we can describe 
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this situation as an unusual topological blockade of the Fano effect related to the 
asymmetry of the transport parameters of the ring. Indeed, the narrow Fano reso-
nance disappears due to the nonlocality of the low-energy excitation in the SW.

To understand more deeply the mechanism which governs the collapse of the 
Fano resonance, it is important to note that this resonance is related to the BIC 
emerging due to the degeneracy of the zero-energy eigenstates of the closed sys-
tem. Therefore, we can assume that the disappearance of the Fano resonance can be 

Fig. 5  Evolution of narrow Fano resonance related to the transport asymmetry in the AB ring. In Fig. 5a 
we show the pair of resonances (one is Fano resonance at h ≈ 1.22 , another one is Breit-Wigner reso-
nance at h ≈ 1.26 ) which appear in the conductance of the symmetric AB-ring as a function of the Zee-
man energy. Note that in the asymmetric case ( Γ1 ≠ Γ2 ) a new narrow Fano peak occurs at h ≈ 1.22 . 
(5b) Collapse of the narrow Fano resonance with the strengthening of the MBS nonlocality controlled by 
N. The width of the Fano resonance depends crucially on the degree of the localization of the Majorana 
states in the SW. This fact makes it possible to use this effect for the detection of the Majorana excita-
tions. The parameters are n = 20 , N = 30 , t0 = 0.1 and �d = 1
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explained by an increase in the multiplicity of the degeneracy of these states when 
the overlap of the Majorana wave-functions becomes negligible.

7  Toy Model Illustrating Collapse of Fano Resonance

To test our suggestion concerning the BIC formation caused by the MBS nonlo-
cality, let us consider a spinless toy model for the AB-ring with n = 1 for the NW 
and N = 2 for the SW (see Fig. 2a). In other words, we can effectively consider the 
model of the Kitaev chain [12] with the even number of sites in the SC bridge.

In this situation the Hamiltonian of the AB-ring at the zero values �d = � = 0 
for the gate field and the chemical potential has the form:

Diagonalizing the Hamiltonian in Eq. (49), we get the following equation for the 
excitation spectrum:

where �1,2 = t ∓ Δ and Pi=1,...,4 are the polynomials of the power N/2 with the prop-
erty P2,4 = P1,3(E → −E) , which is connected with the electron–hole symmetry.

From the Eq. (50) it follows that for a special point of the Kitaev model [12], 
namely for Δ = ±t , the wave-functions of the Majorana fermions do not overlap, 
which was already mentioned in Sect. 3. Moreover, at this point the multiplicity 
of the degeneracy of the zero-energy states increases for N > 2 , leading to the 
suppression of the narrow Fano resonance in Fig. 5b.

To develop these arguments further we again, as in Sect. 3, consider our sys-
tem in the Majorana representation introducing self-conjugated Majorana opera-
tors �ij = �

+

ij
, i = 1, 2 , which are connected with the fermionic operators via the 

relation aj =
(
�1j + i�2j

)
∕2.

In Figs. 2a and b in the framework of our description we present the sketch of 
the device corresponding to the special point of the Kitaev model Δ = t for the 
two cases of N = 2 (Fig. 2a) and N > 2 (Fig. 2b), respectively. The straight lines 
on these figures denote the interaction between the Majorana fermions of differ-
ent sorts. We can see that for N = 2 on Fig. 2a the upper and lower shoulders of 
the device remain connected due to the absence of the SC pairing in the horizon-
tal direction. Analysis of the eigenstate problem leads to a fourfold degeneracy of 
the excitation with zero energy [4].

However, for N > 2 on Fig. 2b the device is effectively divided into identical 
upper and lower subsystems. Each of the subsystems includes two chains of the 

(49)

HD =

N−1∑

j=1

(
−ta+

j
aj+1 + Δa+

j
a+
j+1

) − t0a
+

1

(
bLn + bRn

)
− t0a

+

N

(
dL1 + dR1

)
+ h.c.

(50)
E4

(
E ⋅ P1 − 2t2

0
�
N∕2−1

1

)(
E ⋅ P2 + 2t2

0
�
N∕2−1

1

)
⋅

⋅

(
E ⋅ P3 − 2t2

0
�
N∕2−1

2

)(
E ⋅ P4 + 2t2

0
�
N∕2−1

2

)
= 0,
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interacting quasi-particles. The simple estimates yield for the eigen-energies of 
the chains with only two bonds in the horizontal direction:

If we include the vertical bond in the consideration practically in the same way as in 
the Fano-Anderson model [9, 40], then the eigen-energies read:

Therefore, the degeneracy of the zero-energy state increases by two. Thus, we can 
say that it is just the appearance of the T-shaped structures of the Majorana fermi-
ons, which leads to the collapse of the Fano resonance in the asymmetric AB-ring.

Let us emphasize that the MBS nonlocality does not depend on the relation-
ship between the tunneling parameters into the subsystems. Thus, the effect of 
the Fano resonance collapse has universal character and manifests itself in a more 
general situation, e.g., when these parameters are different from each other or a 
phase is added to t0 . According to Fig. 2 we observe, that the Fano resonance is 
not suppressed in the case of two noninteracting shoulders, i.e. when t = 0 . We 
should stress, that the Fano resonance which we describe here in principle does 
not emerge in the symmetric case.

8  Fano Resonances in Local Transport Scheme

Finally, let us consider a limiting case of the above transport scheme by leaving only 
the left half of the system. In other words, in this section we turn to a Π-shaped device 
consisting of the LT and LB normal wires separated by the SW [41, 42].

Here to allow the wave functions of the MMs to leak out of the SW [43] and couple 
with the single contact, we suppose that the on-site energies in the NWs, �1,2 = −� , 
are lesser than the SW’s one, � = �d − � . In Fig. 6a a typical h-dependence of the lin-
ear-response conductance is displayed for the symmetric half ring, where h is satis-
fied the inequalities (25). One can observe both Breit-Wigner (symmetric) and Fano 
(asymmetric) resonances. It is important that the wide and narrow Fano peaks appear 
simultaneously even if Γ1 = Γ2 (see dashed curve). Moreover, the transport asymme-
try ( Γ1 ≠ Γ2 ) does not induce new Fano resonances as it is depicted by solid curve. 
Remarkably, the wide and narrow peaks do not collapse if the SW length rises as it is 
shown in Fig. 6b. Obviously, one can see from the Figs. 2a and b that without the right-
side-coupled quantum dots (i.e. the RT and RB normal wires with n = 1 ) there are no 
zero-energy states if N = 2 . In turn, two such states occur if N > 2 , one in each arm. 
At first glance it might seem that this is enough to obtain BIC here. However, as it was 
shown in [41], the presence of fundamental �∕2-phase shift for tunneling into the MMs 
of different type prevents the BIC formation if the magnetic flux piercing the device 
plane (i.e. nonzero AB phase) is absent. Indeed, adapting the results of [41] for our case 
gives the following conductance expression at |𝜔| < Δ ( � is a carrier energy):

(51)E1 = 0,E2,3 = ±t0∕
√
2,

(52)E1,2 = 0,E3,4 = ±

√
t2 + t2

0
∕2,
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where D = C
(
�
2 − t2

0

)
− t2

0

(
�
2 − t2

0

)
 , 

Z = Z1Z2 +
Γ
2
12

4

(
2z1z2 + �

2C2 Γ
2
12

4
− 8t4t4

0
cos 2�

)
 , 

Z1,2 = �

(
CC2

1,2
+ t4

0

)
− 2t2

0
(C + 2t2)C1,2 , z1,2 = C

(
�C1,2 − t2

0

)
− 2t2t2

0
 , 

C = �
2 − 4t2 , C1,2 = � + iΓ1,2∕2 ; � is the AB phase. The in-gap conductance in the 

scheme with single normal contact is determined exclusively by processes of Local 
Andreev Reflection (LAR) [13, 44]. Hence, the factor 2 in the expression for G 
accounts for both electrons and holes. Now it is easy to realize that in the linear-
response regime ( � = 0 ) the antiresonance G = 0 occurs for any nonzero t0, Γ1,2 and 

(53)G = 2G0 ⋅ TLAR, TLAR = 4t4t4
0
D2

�
2
[
Γ
2
1
+ Γ

2
2
− 2Γ1Γ2 cos 2�

]
∕ ∣ Z ∣

2,

Fig. 6  Fano resonances in transport properties of the Π-shaped device with the superconducting bridge in 
the topologically nontrivial phase. a Linear-response conductance as a function of the Zeeman energy in 
the symmetric (dashed) and asymmetric (solid) transport regimes. Inset: persistence of the narrow Fano 
peak under the change in the transport symmetry. b h-dependencies of the conductance for the differ-
ent bridge lengths. Note that the wide and narrow antiresonances are stable against the N change. The 
parameters are n = 20 , N = 30 , t0 = 0.1 and �d = 1
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� ≠ �(n + 1∕2) , n ∈ ℤ . If � = �(n + 1∕2) , n ∈ ℤ , the Green’s function has a first-
order pole at � = 0 , i.e. Z = 𝜔Z̃ . Then, the antiresonance collapses and G = 2G0 . In 
other words, � = 0 becomes a BIC energy.

9  Conclusion

Let us summarize the results presented in this article. We considered the asym-
metric AB ring with different tunneling parameters. The shoulders of the ring are 
connected with the SC bridge in the topologically nontrivial phase. In this case the 
additional narrow Fano resonance emerges in the system due to the transport sym-
metry breaking. However, when we increase the length of the SC bridge, or in other 
words strongly reduce the overlap between the Majorana wave functions, this Fano 
resonance collapses.

To illustrate this effect, we studied the toy model of the spinless AB ring where 
the Kitaev chain serves as the SC bridge. The simple analytical estimates for the 
excitation spectrum of this model show the increase in the multiplicity of the degen-
eracy of the zero-energy state for the special point Δ = t of the Kitaev model at 
N > 2 . The increase in the multiplicity is due to the formation of the T-shaped 
chains of the Majorana operators which leads to the appearance of the bound state in 
the continuum. Thus, we can conclude that the collapse of the resonance is a direct 
consequence of the MBS nonlocality [7, 45].

The additional study of the particular case of only half of the interferometer (i.e., 
when superconducting bridge on Fig. 1 is connected only to the left normal wires 
[41, 42]) demonstrated the persistence of the stability of the Fano peaks when trans-
port symmetry changes (from symmetric to asymmetric). Using the spinless toy 
model it is shown that the fundamental �∕2-phase shift for tunneling into the MMs 
of different type prevents the collapse of Fano resonances and BIC emergence.

The performed analysis allows to propose a way to probe the MBS nonlocality, 
based on the properties of Fano resonances. First, in the parametric region corre-
sponding to the topologically nontrivial phase of the SW, one should look for the 
narrow Fano peaks emerging when the transport scheme becomes asymmetric (the 
tunnel parameters t1,2 can be controlled in experiment by gate electrodes). Second, 
the in-plane magnetic field or supergate [21], placed along the bridge area, can be 
utilized to control the overlap of the MMs wave functions by varying the Zeeman 
energy or on-site energy in the SW, respectively [46]. As a result, if the overlap 
tends to zero the narrow Fano resonances have to collapse. Third, when the local 
transport geometry is investigated (it can be achieved by employing gate electrodes 
to eliminate coupling of the SW with, e.g., the RT and RB normal leads) the narrow 
Fano peaks should be robust to the transport mode switching.
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