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A B S T R A C T

Electrically conductive nanoporous membranes represent a class of stimuli–responsive materials, which
selectivity/permeability characteristics can be adjusted by varying the surface potential. In this work, we
perform a comprehensive theoretical and experimental study of ionic conductivity of such membranes. The
2D Space charge and 1D Uniform potential models are used to describe the ion transport through a cylindrical
nanopore. The calculations show that the imposed electric field polarizes the conductive surface, which results
in the continuous variation of electronic surface charge from positive to negative along the nanopore. A
higher concentration of cations (anions) is observed at negatively (positively) charged part of the nanopore.
The increase of charge carries concentration due to polarization effect results in the enhancement of ionic
conductivity with increasing the voltage difference. The corresponding current–voltage curves are non-linear.
The enhancement can reach a few orders of magnitude at low salt concentrations, but becomes much smaller
at high concentrations. The presence of chemical charge has a screening effect on the interaction of electric
field with the electronic charge on the nanopore surface, and reduces the conductivity enhancement. A
novel analytical solution is derived for the dependence of ionic current on the Stern layer capacitance, salt
concentration, and the applied potential difference. The theoretical predictions are first confirmed by the ionic
conductivity measurements in porous anodic alumina membranes with carbon nanotubes inside the pores. The
experimental data are approximated by the 1D Uniform potential model curves using chemical charge as a
fitting parameter. Strong enhancement of ionic conductivity (more than 6 times) and the corresponding non-
linear dependence of current on the applied voltage is experimentally registered at low KCl concentrations
(0.1 – 10 mM) with increasing the voltage difference.
1. Introduction

In recent decades, many research groups have focused their at-
tention on the development and investigation of stimuli–responsive
membranes [1]. Such membranes can change their transport properties
in response to external signals (changes in temperature, light, electric
field, ionic strength, and pH) [2,3]. Electrically conductive membranes
represent a class of stimuli–responsive materials, which provide the
possibility of varying their surface charge by applying a prescribed
potential [4]. The electrostatic interaction between membrane surface
and charged components (ions) gives a powerful tool for control and
adjustment of membrane selectivity, conductivity, and rejection [5,6].
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Switching the ionic selectivity from cation to anion by varying the
surface potential was first demonstrated for track-etched membranes
with gold coating of pores [7,8]. The control of ion diffusion fluxes
through track–etched as well as carbon black membranes was achieved
by changing the applied potential in [9,10]. One of the first applications
of conductive membranes to nanofiltration was presented in [11].
Using a membrane based on nanotubes and conducting polymers, the
authors demonstrated the increase of rejection for monovalent ions
from 50% to 80% without decreasing the liquid permeability. Similar
results were obtained on the basis of membranes with a selective layer
from nanotubes and graphene oxide [12]. The increase of dye rejection
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by MXene/CNT nanofiltration membrane was achieved by applying
cathode potential to the membrane surface in [13].

To understand and predict complex ion transport mechanisms in
conductive membranes, mathematical models are widely employed.
The capillary models assume that the membrane can be represented as
an array of cylindrical pores, and consider the ion transport through a
single pore [14]. The classical 2D Space charge (SC) model [15] and its
1D analogue known as Uniform potential (UP) model [16] were orig-
inally developed for nanopores with constant surface charge density.
These models were applied to the analysis of electrokinetic phenom-
ena [17], determination of zeta potential [18], membrane potential at
zero current [19] as well as carbon nanotube conductivity [20]. The
SC and UP models were revisited in [21,22] and later extended to the
case of conductive nanopores with constant surface potential in [23].
The experimental results on switchable ionic selectivity were described
by the extended models in [24,25]. A new effect of enhancing the
membrane potential at zero current due to polarization of conductive
surface by the electric field caused by ions diffusion was discovered
in [26]. The polarization induces an inhomogeneous electronic charge
on the conductive surface, which can trigger various phenomena such
as electroosmotic flows [27,28] or bipolar currents between cathodic
and anodic parts of the surface in the presence of a reversible redox
couple [29]. Thus, the key difference between non-conductive and
conductive surfaces is that the latter can developed polarization (or
induced) charges in the presence of electric field. The model, which
takes into account the induced electronic and pH–dependent chemical
surface charges, was proposed in [30]. It was based on the theory of
amphifunctional interfaces allowing both electronic and ionic surface
charging [31,32]. The extension of UP model to describe nanofiltration
of binary aqueous electrolytes with the help of electrically conduc-
tive membranes was proposed in [33] and applied to describing the
experimental results obtained in [11,13].

The ability of nanopores to transport ions under the applied electric
field is characterized by the ionic conductivity. There have been a
number of studies of ionic conductance in electrically conductive mem-
branes and single nanochannels. The authors of [34] found that the
increase of applied potential magnitude resulted in the enhancement
of ionic conductivity in gold nanotube membranes due to increase
of counter-ion concentration in the pores. However, it was found
that the adsorption of ions on the pore surface at anodic potential
vanished the conductivity enhancement effect. The increase of pure
water conductivity by a few orders of magnitude by varying the po-
tential of a porous gold membrane was discovered in [35]. Using alu-
mina nanofiber membrane with conductive carbon coating, the authors
of [36] demonstrated the change of its ionic conductivity and selec-
tivity by changing the surface potential. The principle of electrostatic
gating was also employed for control of ionic conduction in field-effect
reconfigurable ionic diodes [37]. The study of graphene nanopores
showed that their ionic conductivity spans three orders of magnitude,
and they display distinct linear, voltage-activated or rectified current–
voltage characteristics [38]. The ionic current measurements through
several single-walled nanotubes were reported in [39]. Linear and non-
linear current–voltage dependencies were observed. The latter were
explained theoretically by local energy barriers along the nanopores
(i.e. regions without surface charge). The voltage-gated nanochannels,
where both the potential applied to the conductive membrane surface
and the transmembrane potential are independently controlled, were
theoretically analyzed in [40]. Using 2D numerical modeling based
on the Navier–Stokes, Nernst–Planck, and Poisson equations, the au-
thors showed that transmembrane potential induces an inhomogeneous
charge distribution on the nanochannel surface, which can affect its
ionic conductivity. Modeling the effect of surface potential variation
on the nanopore ionic conductivity was performed in [41] and verified
against a number of existing experimental datasets.

In this work, we perform a comprehensive theoretical and exper-

imental study of ionic conductivity of a nanoporous membrane with
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electrically conductive surface. Unlike the previous works, we assume
that the potential of membrane surface is not controlled externally, but
the membrane is floating in the applied electric field. The 2D Space
charge and 1D Uniform potential models are employed to describe the
ion transport. The analytical solutions for ionic current and distribu-
tions of potential, ion concentrations, and pressure are derived for the
first time assuming potential-dependent surface charge. It is shown that
polarization of nanopore surface by the applied electric field leads to
the enhancement of conductivity with increasing the transmembrane
potential. The interaction between electronic and chemical surface
charge is investigated. The theoretical predictions of conductivity en-
hancement are first confirmed by the experimental measurements in
a porous anodic alumina membrane with carbon nanotubes inside the
pores.

The paper is organized as follows. The theoretical models and solu-
tions are presented in Section 2, while the membrane preparation and
conductivity measurements are described in Section 3. The theoretical
results are discussed and analyzed in Section 4 and the comparison with
experiments is performed in Section 5.

2. Theoretical part

2.1. Problem statement

We consider a porous membrane of thickness 𝐿𝑝, which separates
two reservoirs denoted by left (𝐿) and right (𝑅). An aqueous solution of
monovalent and symmetric electrolyte with concentration 𝐶0 is placed
in the reservoirs, which are kept at equal pressures 𝑃0 assumed to be
zero for simplicity. The potential difference ΔΦ = Φ𝑅 − Φ𝐿 between
the reservoirs is applied. It results in the electric field, which causes
the motion of ions through the membrane. The latter is idealized as an
array of cylindrical nanopores with length 𝐿𝑝 and radius 𝑅𝑝 assuming
that 𝐿𝑝 ≫ 𝑅𝑝. Thus, it is sufficient to consider the ion transport
through a single nanopore. The two-dimensional nanopore geometry is
described using the cylindrical coordinates 𝑅 and 𝑍 in radial and axial
directions, respectively, see Fig. 1a. The boundary layers of thickness
𝐿𝑏 from both sides of the nanopore can be considered to account for
concentration polarization if it is relevant.

The ionic conductivity 𝐺 (S) of the nanopore is the ratio of ionic
current 𝐼 through it to the applied voltage 𝑈 :

𝐺 = 𝐼
𝑈
,

where 𝑈 = −ΔΦ = Φ𝐿 − Φ𝑅. The sign of ionic current is determined
by the direction of electric field, so it is positive when the potential
difference between left and right reservoirs is positive. The specific
conductivity 𝜅 (S/m) of a cylindrical nanopore is defined by

𝜅 = 𝐺
𝐿𝑝
𝑆𝑝
, (1)

where 𝑆𝑝 = 𝜋𝑅2
𝑝 is the nanopore cross-sectional area.

The nanopore surface is assumed to be electrically conductive with
electronic charge density Σ𝑒 and electrical potential Φ𝑒, see Fig. 1b.
The solution side of electric double layer (EDL) is divided into the
Stern layer and the diffuse layer with relative permittivities 𝜀𝑠 and 𝜀,
electrical potentials Φ𝑠(𝑅,𝑍) and Φ(𝑅,𝑍), and thicknesses 𝛿𝑠 and 𝑅𝑝 −
𝛿𝑠, respectively. The diffuse layer contains ions and water molecules,
while only water molecules are present inside the Stern layer. The
interface between these layers (oHp, the outer Helmholtz plane) has
the potential Φ𝑑 (𝑍). At the oHp, we assume the presence of chemical
charge Σ𝑐 , which may result from the adsorption of ions or dissociation
of surface functional groups. Here Σ𝑐 is considered to be constant. For
a polarizable conductive nanopore wall floating in an external electric
field, the total electronic charge is conserved and we assume it to be
zero:

𝐿𝑝 2𝜋
Σ𝑒 𝑅𝑝 𝑑𝛷 𝑑𝑍 = 0. (2)
∫0 ∫0
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Fig. 1. The cylindrical nanopore (a) and the scheme of electric double layer (b).

The relation between charge density Σ𝑑 at the oHp, the electronic
charge density Σ𝑒 at the nanopore wall, and chemical charge density Σ𝑐
is derived from the boundary condition for electric fields at the oHp,
see equation (S2) in Section 1 of the Supplementary Info. The result is
written as [25,41]

Σ𝑑 =
𝑅𝑝

𝑅𝑝 − 𝛿𝑠
Σ𝑒 + Σ𝑐 = 𝐶𝑠

(

Φ𝑒 − Φ𝑑
)

+ Σ𝑐 . (3)

Here 𝐶𝑠 is the Stern layer capacitance defined as

𝐶𝑠 =
𝜀𝑠𝜀0

(𝑅𝑝 − 𝛿𝑠) ln
(

𝑅𝑝
𝑅𝑝−𝛿𝑠

) ,

where 𝜀0 is the vacuum permittivity.
To describe the ion transport in the diffuse layer, we consider

the two-dimensional Space Charge (SC) model and one-dimensional
Uniform Potential (UP) model. In these models, the assumption of point
ions is employed. The calculations show that the variation of potential
mostly occurs within the Stern layer (see Fig. 1), so no unphysical
accumulation of ions at the diffuse layer boundary is expected. Thus, we
do not take finite ion size effects [42,43] into account in this study. The
description of SC and UP models in Sections 2.2 and 2.3 closely follows
the works [25,41]. A novel model, which allows analytical solution
for electrical potential, ion concentrations, pressure, and ionic current
through the nanopore, is first proposed in this work on the basis of
simplified UP model equations.

2.2. The Space Charge model of the diffuse layer

If the pore radius is larger than Debye length, then we have to take
into account the radial variations of the electrical potential Φ, pressure
𝑃 , cation 𝐶+ and anion 𝐶− concentrations, and solution velocity 𝑼 =
(𝑈, 𝑉 ). The Space Charge model is based on the stationary Navier–
Stokes, Nernst–Planck, and Poisson equations. This model was first
suggested for the case of constant surface charge [15,21] and later
extended to the case of constant surface potential [23].

The fluxes of ions induced by convection, diffusion, and electromi-
gration are written as

𝑱± = 𝐶±𝑼 −𝐷±∇𝐶± ∓
𝐷±𝐹 𝐶±∇Φ,
𝑅𝑔𝑇
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where 𝐷± are the ion diffusion coefficients, 𝑅𝑔 is the ideal gas constant,
𝑇 is the temperature, and 𝐹 is the Faraday constant. The dimensionless
variables are introduced by

𝑅 = 𝑅′
𝑝 𝑟, 𝑍 = 𝐿𝑝 𝑧, 𝑼 =

𝐷−
𝐿𝑝

𝒖, 𝑃 = 𝐶∗𝑅𝑔𝑇 𝑝,

𝐶± = 𝐶∗ 𝑐±, Φ =
𝑅𝑔𝑇
𝐹

𝜑, 𝑱± =
𝐷−𝐶∗
𝐿𝑝

𝒋±. (4)

Here 𝑅′
𝑝 = 𝑅𝑝−𝛿𝑠, 𝒖 = (𝑢, 𝑣), and 𝐶∗ is the reference concentration taken

as 𝐶∗ = 1 mol/m3. The dimensionless potentials and surface charge
densities on the pore wall and diffuse layer boundary are defined as
follows

Φ𝑒 =
𝑅𝑔𝑇
𝐹

𝜑𝑒, Φ𝑑 =
𝑅𝑔𝑇
𝐹

𝜑𝑑 , Σ𝑒 =
𝜀𝜀0𝑅𝑔𝑇
𝐹𝑅𝑝

𝜎𝑒, Σ𝑐 =
𝜀𝜀0𝑅𝑔𝑇
𝐹𝑅′

𝑝
𝜎𝑐 ,

Σ𝑑 =
𝜀𝜀0𝑅𝑔𝑇
𝐹𝑅′

𝑝
𝜎𝑑 . (5)

Let us introduce the quantities averaged over the diffuse layer. The
dimensional average axial velocity is given by

𝑉 = 2
𝑅′2
𝑝

∫

𝑅′
𝑝

0
𝑉 𝑅𝑑𝑅. (6)

The average pressure 𝑃 , ion concentrations 𝐶±, potential Φ, axial ion
fluxes 𝐽±, total axial ion flux 𝐽 = 𝐽+ + 𝐽−, and axial charge flux
𝐼 = 𝐽+ − 𝐽− are introduced in the same way. The corresponding
dimensionless quantities are 𝑣, 𝑝, 𝑐±, 𝜑, 𝑗±, 𝑗 = 𝑗++ 𝑗−, and 𝑖 = 𝑗+− 𝑗−.

The specific conductivity (1) can be expressed in terms of dimen-
sionless average charge flux and potential difference as

𝜅 =
𝐷−𝐶∗𝐹 2

𝑅𝑔𝑇
𝑖

𝜑𝐿 − 𝜑𝑅
, (7)

while the dimensional axial ionic current is given by

𝐼 =
𝐷−𝐶∗
𝐿𝑝

𝐹𝜋𝑅2
𝑝 𝑖.

The dimensionless axial velocity, ion concentrations, and electrical
potential in the SC model are sought in the form [21]:

𝜑(𝑟, 𝑧) = 𝜙𝑣(𝑧) + 𝜓(𝑟, 𝑧), 𝑐±(𝑟, 𝑧) = 𝑐𝑣(𝑧) exp(∓𝜓(𝑟, 𝑧)), (8)
𝑝(𝑟, 𝑧) = 𝑝𝑣(𝑧) + 2𝑐𝑣(𝑧) cosh(𝜓(𝑟, 𝑧)).

In this representation, the ion concentrations satisfy the Boltzmann
distribution, and 𝜙𝑣, 𝑐𝑣, 𝑝𝑣 are the so–called virtual potential, con-
centration, and pressure. It follows from (S4), (4), (5), and (8) that

𝜑𝑑 (𝑧) = 𝜙𝑣(𝑧) + 𝜓(1, 𝑧), 𝜎𝑑 (𝑧) =
𝜕𝜓
𝜕𝑟

(1, 𝑧). (9)

The dimensionless electronic charge is derived from (S3) taking into
account solution (S1), boundary condition (S2), relations (S4), and
definitions (5):

𝜎𝑒(𝑧) = 𝜎𝑑 (𝑧) − 𝜎𝑐 . (10)

Eq. (10) is the dimensionless analogue of Eq. (3).
Function 𝜓 is determined by solving the Poisson equation [25,41]

1
𝑟
𝜕
𝜕𝑟

(

𝑟
𝜕𝜓(𝑟, 𝑧)
𝜕𝑟

)

=
𝑐𝑣(𝑧)
𝜆2

sinh𝜓(𝑟, 𝑧) (11)

with the condition of axial symmetry at 𝑟 = 0:
𝜕𝜓
𝜕𝑟

(0, 𝑧) = 0. (12)

The boundary condition at the oHp (𝑟 = 1) is derived from (3) taking
into account relations (4), (5), (8):

𝜓(1, 𝑧) + 𝜈
𝜕𝜓
𝜕𝑟

(1, 𝑧) = 𝜑𝑒 − 𝜙𝑣(𝑧) + 𝜈𝜎𝑐 . (13)

Here 𝜆 =
√

𝜀𝜀0𝑅𝑔𝑇 ∕2𝐹 2𝐶∗∕𝑅′
𝑝 is the dimensionless Debye length, and

𝜈 = (𝜀∕𝜀 ) ln (𝑅 ∕𝑅′ ).
𝑠 𝑝 𝑝
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The conservation of total electronic charge given by Eq. (2) is
expressed in dimensionless form with the help of (9) and (10) as follows

∫

1

0
𝜎𝑒(𝑧)𝑑𝑧 = ∫

1

0

𝜕𝜓
𝜕𝑟

(1, 𝑧)𝑑𝑧 − 𝜎𝑐 = 0. (14)

This is also known as floating boundary condition [23,26], from which
the surface potential 𝜑𝑒 should be determined.

The average volume flux (or average axial velocity) 𝑣, average ion
flux 𝑗, and average charge flux 𝑖 are related to the gradients of virtual
ressure 𝑝𝑣, virtual chemical potential 𝜇𝑣 = ln 𝑐𝑣, and virtual electrical
otential 𝜙𝑣 by the symmetric 3 × 3 matrix 𝐿 = −−1 [21]:

(

𝑑𝑝𝑣
𝑑𝑧

,
𝑑𝜇𝑣
𝑑𝑧

,
𝑑𝜙𝑣
𝑑𝑧

)𝑇
= 𝐿

(

𝑣, 𝑗, 𝑖
)𝑇 . (15)

he coefficients of matrix  = {𝑖𝑗 (𝑧)} depend on the function 𝜓(𝑟, 𝑧)
and virtual concentration 𝑐𝑣(𝑧) and can be found in Section 2 of the
Supplement Information.

The boundary conditions for Eqs. (15) are derived from (8) by
substituting 𝜓(𝑟, 𝑧) = 0 and taking into account the dimensional values
of potential, ion concentration, and pressure in the reservoirs (see
Section 2.1 and Fig. 1a):

𝑧 = 0 ∶ 𝑝𝑣 = −2𝑐0, 𝑐𝑣 = 𝑐0, 𝜙𝑣 = 𝜑𝐿, (16)
𝑧 = 1 ∶ 𝑝𝑣 = −2𝑐0, 𝑐𝑣 = 𝑐0, 𝜙𝑣 = 𝜑𝑅.

The detailed solution methodology is described in Section 3 of the
Supplement Information.

2.3. The Uniform potential model of the diffuse layer

If the nanopore radius is comparable with or less than the De-
bye length, we can neglect the radial dependence of potential, ion
concentrations, and pressure. In this case, the equations of SC model
are significantly simplified and reduced to what is known as Uniform
potential (UP) model. Then the potential Φ(𝑍) coincides with the
potential Φ𝑑 at the oHp, while ion concentrations 𝐶±(𝑍) and pressure
𝑃 (𝑍) depend only on the longitudinal coordinate 𝑍.

Let us introduce the dimensionless electronic, chemical, and diffuse
volume charge densities:

𝑋𝑒 =
2Σ𝑒

𝐹𝑅𝑝𝐶∗
, 𝑋𝑐 =

2Σ𝑐
𝐹𝑅′

𝑝𝐶∗
, 𝑋 =

2Σ𝑑
𝐹𝑅′

𝑝𝐶∗
.

Eq. (3) can be rewritten as

𝑋 =
𝑅𝑝
𝑅′
𝑝
𝑋𝑒 +𝑋𝑐 = 𝑐𝑠(𝜑𝑒 − 𝜑) +𝑋𝑐 , (17)

here

𝑠 =
2𝑅𝑔𝐶𝑠𝑇

𝐹 2𝑅′
𝑝𝐶∗

is the dimensionless Stern layer capacitance.
The electroneutrality condition requires that 𝑋 must be equal in

agnitude and opposite in sign to the ionic charge density

= 𝑐− − 𝑐+. (18)

The UP model governing equations are derived from the SC model
quations by ignoring the radial dependency of all variables. The
lements of matrix 𝐿 are simplified and Eqs. (15) are reduced to the
ystem of three ordinary differential equations [25,41]:
𝑑𝑝
𝑑𝑧

= −8𝛼𝑣 +𝑋
𝑑𝜑
𝑑𝑧

,

𝑑𝑐
𝑑𝑧

= 1
2𝑐𝐷

(

(𝐷 + 1)(𝑐2 −𝑋2)𝑣 − ((𝐷 − 1)𝑋 + (𝐷 + 1)𝑐) 𝑗

− ((𝐷 + 1)𝑋 + (𝐷 − 1)𝑐) 𝑖
)

−
𝑐𝑠𝑋
𝑐

𝑑𝜑
𝑑𝑧

, (19)
𝑑𝜑

= 1 (

(

(𝐷 − 1)𝑐 − (𝐷 + 1)𝑋
)

𝑣 − (𝐷 − 1)𝑗 − (𝐷 + 1)𝑖
)

.

𝑑𝑧 2𝐷(𝑐 + 𝑐𝑠) 𝑝
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Here 𝑐 = 𝑐+ + 𝑐− is the total concentration of cations and anions, and
= 𝜇𝐷−(𝐶0𝑅𝑔𝑇𝑅′

𝑝
2)−1 is a parameter.

The boundary conditions inside the pore at the inlet from the left
eservoir and at the outlet to the right reservoir are written as [25]:

= 0 ∶ 𝑝 = 𝑐 − 2𝑐0, 𝑐 =
√

𝑋2 + 4𝑐20 , 𝜑 = 𝜑0, (20)

𝑧 = 1 ∶ 𝑝 = 𝑐 − 2𝑐0, 𝑐 =
√

𝑋2 + 4𝑐20 , 𝜑 = 𝜑1. (21)

These conditions describe the osmotic pressure jumps, concentrations
jumps, and the Donnan potential jumps at the pore interfaces, re-
spectively. Taking into account the concentration jumps 𝑐± = 𝑐0 exp
(

∓(𝜑0 − 𝜑𝐿)
)

at 𝑧 = 0 and 𝑐± = 𝑐0 exp
(

∓(𝜑1 − 𝜑𝑅)
)

at 𝑧 = 1 and
combining them with Eqs. (17) and (18), we obtain the equations for
determination of potentials 𝜑0 and 𝜑1:

𝑐𝑠
(

𝜑𝑒 − 𝜑0
)

+𝑋𝑐 = 2𝑐0 sinh
(

𝜑0 − 𝜑𝐿
)

, (22)

𝑐𝑠
(

𝜑𝑒 − 𝜑1
)

+𝑋𝑐 = 2𝑐0 sinh
(

𝜑1 − 𝜑𝑅
)

. (23)

The condition of total electronic charge conservation (2) is now
expressed as

∫

1

0
𝑐𝑠(𝜑𝑒 − 𝜑)𝑑𝑧 = 0. (24)

The algorithm for solving the UP model problem is described in
Section 4 of the Supplement Information.

When concentration polarization is taken into account, one should
solve the ion transport equations in two boundary layers of thickness
𝐿𝑏 (see Fig. 1a). The corresponding equations and boundary conditions
are presented in Section 5 of the Supplement Information.

2.4. Analytical model of ion transport in a polarizable nanopore

In this section, we derive an analytical solution of the UP model
under a number of simplifying assumptions: the average velocity is
zero (𝑣 = 0), the chemical charge is absent (𝑋𝑐 = 0), and the ions
have equal diffusion coefficients (𝐷 = 1). The first assumption means
that the axial velocity depends on the radial coordinate in such a way
that the fluid is moving in opposite directions in different parts of the
nanopore cross-section (see formula (6)). At the same time, the total
flow through any cross-section is absent. The validity of this assumption
for the considered configuration will be confirmed by comparing the
results with the 2D Space Charge model in Section 4.1. The second
assumptions allows us to focus on the situation when only the electronic
charge determines the conductive properties of the nanopore. Finally,
the third assumption means that cations and anions equally contribute
to the total ionic current in a neutral electrolyte. So, it is valid for
electrolytes with close values of ion diffusion coefficients (such as
aqueous KCl solution).

Under the proposed assumptions, Eqs. (19) are reduced to
𝑑𝑝
𝑑𝑧

= 𝑐𝑠(𝜑𝑒 − 𝜑)
𝑑𝜑
𝑑𝑧

, (25)

𝑑𝑐
𝑑𝑧

= −𝑗 + 𝑐𝑠(𝜑𝑒 − 𝜑)
𝑑𝜑
𝑑𝑧

, (26)

𝑑𝜑
𝑑𝑧

= − 𝑖
𝑐 + 𝑐𝑠

. (27)

hey should be solved subject to boundary conditions (20), (21) and
elation (24). It follows from (25) and (26) that
𝑑𝑐
𝑑𝑧

= −𝑗 +
𝑑𝑝
𝑑𝑧
.

ntegration of this equation from 𝑧 = 0 to variable 𝑧 taking into account
oundary conditions (20) gives 𝑝 = 𝑐 − 2𝑐0 + 𝑗𝑧. Applying boundary

conditions (21) leads to 𝑗 = 0, thus

= 𝑐 − 2𝑐 . (28)
0
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Now let us integrate (26) subject to boundary conditions (20) at 𝑧 = 0:

𝑐 =
𝑐𝑠
2

(

(𝜑𝑒 − 𝜑0)2 − (𝜑𝑒 − 𝜑)2
)

+
√

𝑐2𝑠 (𝜑𝑒 − 𝜑0)2 + 4𝑐20 . (29)

pplying boundary conditions (21) at 𝑧 = 1 results in the following
elation

𝑐2𝑠 (𝜑𝑒 − 𝜑0)2 + 4𝑐20 −
√

𝑐2𝑠 (𝜑𝑒 − 𝜑1)2 + 4𝑐20

+
𝑐𝑠
2

(

(𝜑𝑒 − 𝜑0)2 − (𝜑𝑒 − 𝜑1)2
)

= 0. (30)

At the next step, we express 𝑑𝑧 from (27) and substitute it into relation
(24) taking into account (29):

∫

1

0
𝑐𝑠(𝜑𝑒 − 𝜑)𝑑𝑧 = −∫

𝜑1

𝜑0
𝑐𝑠(𝜑𝑒 − 𝜑)

𝑐 + 𝑐𝑠
𝑖

𝑑𝜑 = (31)

=
𝑐𝑠
2𝑖
(𝜑1 − 𝜑0)(2𝜑𝑒 − 𝜑0 − 𝜑1)

×
( 𝑐𝑠
4
(𝜑1 − 𝜑0)(2𝜑𝑒 − 𝜑0 − 𝜑1) +

√

𝑐2𝑠 (𝜑𝑒 − 𝜑0)2 + 4𝑐20 + 1
)

= 0.

Assuming that the applied potential difference is non-zero (𝜑𝐿 ≠ 𝜑𝑅),
we can easily see from (22) and (23) that 𝜑1 ≠ 𝜑0. Thus, the only
possibility to satisfy both relations (30) and (31) is 𝜑𝑒 − 𝜑0 = 𝜑1 −
𝜑𝑒, i.e. the potential of the nanopore surface is the average between
potentials just at the entrance and exit inside the nanopore:

𝜑𝑒 =
𝜑0 + 𝜑1

2
. (32)

Let us now add (22) and (23), which gives

𝑐𝑠(2𝜑𝑒 − 𝜑0 − 𝜑1) = −4𝑐0 sinh
(𝜑𝐿 + 𝜑𝑅 − 𝜑0 − 𝜑1

2

)

× cosh
(𝜑𝑅 − 𝜑𝐿 + 𝜑0 − 𝜑1

2

)

.

s the left–hand side of this equation is zero due to (32), we find that
𝐿 + 𝜑𝑅 = 𝜑0 + 𝜑1, which leads to

𝑒 =
𝜑𝐿 + 𝜑𝑅

2
. (33)

Now we have rigorously proved that the nanopore surface potential
is the arithmetic average of potentials specified at the left and right
reservoirs. Only under this condition, the total electronic charge is
zero and conserved when a potential difference is applied between
the reservoirs. Similar conclusion was previously reported in [40] as
a result of 2D numerical simulations. Note that the local electronic
charge density can vary along the nanopore surface, which will be
demonstrated in the next sections.

The expression for total ion concentration (29) can now be simpli-
fied using formula (32):

𝑐 = −
𝑐𝑠
2
(𝜑 − 𝜑1)(𝜑 − 𝜑0) +

√

𝑐2𝑠 (𝜑1 − 𝜑0)2∕4 + 4𝑐20 . (34)

et us now integrate Eq. (27), which leads to
𝜑

𝜑0
(𝑐 + 𝑐𝑠)𝑑𝜑′ = −𝑖∫

𝑧

0
𝑑𝑧′.

aking into account boundary conditions (20) and expression (34) for
, we find

𝜑−𝜑0)
( 𝑐𝑠
12

(𝜑−𝜑0)(3𝜑1 −2𝜑−𝜑0) +
√

𝑐2𝑠 (𝜑1 − 𝜑0)2∕4 + 4𝑐20 +1
)

= −𝑖𝑧.

(35)

his equation implicitly determines the electrical potential 𝜑 as a
unction of coordinate 𝑧 along the nanopore. Applying boundary con-
itions (21), we find the explicit formula for the charge flux

𝑖 = −(𝜑1 − 𝜑0)
( 𝑐𝑠
12

(𝜑1 − 𝜑0)2 +
√

𝑐2𝑠 (𝜑1 − 𝜑0)2∕4 + 4𝑐20 + 1
)

, (36)

rom which the ionic conductivity can be determined using formula (7).
t follows from Eq. (27) and formula (36) that 𝜑(𝑧) is a monotonically
5 
increasing (decreasing) function of 𝑧 when 𝜑1 > 𝜑0 (𝜑1 < 𝜑0),
espectively. Thus, at fixed 𝑧 = 𝑧∗ there is a single root 𝜑 = 𝜑∗

f Eq. (35) at the interval 𝜑0 < 𝜑∗ < 𝜑1 (𝜑1 < 𝜑∗ < 𝜑0), respectively.
When 𝜑(𝑧) is determined, one can calculate the total concentration from
34) and pressure from (28). Finally, the concentrations of cations and
nions are given by 𝑐+ = (𝑐 − 𝑋)∕2 and 𝑐− = (𝑐 + 𝑋)∕2, respectively,

where 𝑋 = 𝑐𝑠(𝜑𝑒 − 𝜑).
When the applied potential difference is small (<𝑅𝑇 ∕𝐹 ), Eqs. (22)

and (23) can be solved using the approximate relation sinh 𝑥 ≈ 𝑥. It
gives

𝜑1 − 𝜑0 =
𝜑𝑅 − 𝜑𝐿
1 + 𝑐𝑠∕2𝑐0

.

The model developed in this section will be further referred to as
UPS (Uniform Potential Simplified) model.

3. Experimental part

3.1. Preparation of PAA membranes

The porous anodic alumina (PAA) membranes were prepared ac-
cording to the method previously described in [44]. The aluminum foil
of high purity (99.999%) with the thickness of 500 μm was electrochem-
ically polished in a solution of 1.85 M CrO3 and 15.1 M H3PO4 at 80 ◦C
in pulsed mode (40 pulses with 3 s duration of each pulse at current
density of 0.5 A/cm2 and 40 s interpulse interval). The anodization
was performed in a 0.3 M sulfuric acid electrolyte in potentiostatic
mode at 25 V and the temperature of 5 ◦C. The anodized area was a
circle with the diameter of 40 mm on a 50 mm diameter aluminum
foil. After the first anodization during 8 h, the alumina layer was
removed in a solution of 0.2 M CrO3 and 0.6 M H3PO4 at 60 ◦C
during 40 min. The second anodization was performed under the same
conditions during 15 h, which resulted in the membrane thickness of
70 μm. The aluminum substrate was selectively etched in the form of
11 mm diameter circles in a solution of 0.25 M CuCl2 and 5 vol % HCl.
Then the barrier layer was removed using a solution of 0.5 M H3PO4
with electrochemical detection of pore opening [45]. Membranes in the
form of 10 mm diameter disks were obtained by cutting them from an
aluminum frame with the help of laser (SharpMark–30SM Fiber smart,
USA).

3.2. Carbon nanotube growth inside PAA membranes

The catalyst-free CVD was used to grow carbon nanotubes in the
PAA membranes. The tube furnace OTF–1500X–UL–3 equipped with
the liquid vaporization system LVD–F1 (MTI, USA) and the vacuum
pump PC 3001 VARIO (Vacuubrand GMBH, Germany) was used. The
ethanol (95.6%) – water (4.4%) mixture was employed as a carbon
precursor. It was vaporized at 150 ◦C and mixed with argon gas by
the vaporization system. A membrane sample was placed in the tube
center using a quartz plate holder. The furnace was heated with the
rate of 5 ◦C/min in an argon atmosphere at flow rate of 100 mL/min
and pressure of 0.1 bar. The deposition was performed at temperature
750 ◦C and pressure of 0.5 bar during 180 min with ethanol–water flow
rate 0.083 ml/min in the liquid phase and argon flow rate 200 ml/min.
Then the sample was cooled to 150 ◦C with the rate of 5 ◦C/min in
an argon atmosphere. The membranes with carbon nanotubes will be
further referred to as C–PAA membranes.

3.3. Membrane characterization

The morphology of membranes was characterized by the Scanning
electron microscopy using FE–SEM Hitachi S–5500 instrument (Japan)
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Fig. 2. The scheme of ionic current measurement (a) and the electrochemical cell (b).
operating at 5 kV. Before examination, the membrane samples were
glued to a support and coated with platinum by magnetron sputtering
(Emitech K575X DX, Quorum Technologies Ltd, Great Britain) during
1 min at the current of 10 mA and the pressure of 8 ⋅ 10−6 Bar in argon
atmosphere. The samples of membrane cross-sections for TEM studies
were prepared by focused ion beam system Hitachi FB–2100 (Japan)
operating at 40 kV with additional 1 kV Ar+ ion polishing by Leica
RES 102 (Austria). The TEM images were obtained by Hitachi HT7700
(Japan) at 100 kV accelerating voltage. The pore size distribution of
prepared membranes was determined by processing of SEM and TEM
images using the methodology described in details in [44].

3.4. Measurement of ionic current

To study the ionic conductivity of PAA membranes, a special elec-
trochemical cell was developed (Fig. 2). A membrane sample (1) was
glued in the holder using epoxy resin and placed between two com-
partments of the cell (2) made of plexiglass. The area available for ion
transport (19.6 mm2) corresponded to a circle with the diameter of
5 mm. The cell parts were fixed together with screws and nuts. Milli–
Q water (18 MΩ cm−1) was used to prepare working solutions and to
wash the cell before each experiment. The solutions were also degassed
to prevent bubbles nucleation. After assembling the cell, the compart-
ments were filled with KCl aqueous solution of specified concentration
from the 2 L flask (3) using peristaltic pump (4). During measurements,
the solutions were pumped through the cell with the flow rate of 10–
30 ml/min to avoid concentration polarization, especially at low salt
concentrations [46–48].

Electrical measurements were performed using Potentiostat PI—
50 Pro (Electrochemical instruments, Russia) in galvanostatic mode.
The specified current was applied by the potentiostat (5) connected to
platinum plates (6) with the size of 20 × 20 mm. The resulting voltage
difference was measured using 4.2 M Ag/AgCl electrodes (7) connected
to Luggin capillaries (8), which nozzles were located at a distance of
3 mm from the membrane. The measurements were performed until
the stationary potential difference was established (typically 10–100 s
depending on salt concentration). The transmembrane voltage was
determined by subtracting the voltage difference measured in the cell
with membrane from that measured in the cell without membrane. The
measurements were carried out in the range of KCl concentrations from
0.1 mM to 1 M (with a step of one order-of-magnitude) and in the
range of applied currents from ±2 μA to ±10 mA, respectively (see more
details in Section 5.2).

It should be noted that the stationary ion current through membrane
pores was accompanied by water splitting with the evolution of hydro-
gen and oxygen at the cathode and anode, respectively (see Fig. 2a).
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As a result, the solution at the cathode (anode) space became more
basic (acidic). The solutions were neutralized in the flask (3), which
was put on a magnetic stirrer (see Fig. 2b). The change of electrolyte
composition in the half–cells was negligibly small due to low currents,
short measurement time, and pumping the solution from the flask of
large volume (2 L). The situation shown in Fig. 2a corresponds to the
case when the fluxes of K+ and Cl− are equal in magnitude and opposite
in sign (see analytical model in Section 2.4). However, in the presence
of chemical charge, the ion fluxes could be different due to selectivity
of nanopore to cation or anion.

Assuming that a C–PAA membrane has straight cylindrical
nanopores, the specific conductivity of a nanopore can be calculated
from the measured current 𝐼 under applied voltage difference 𝑈
according to the formula

𝜅 = 𝐼
𝑈
𝐿𝑝
𝜖𝑆

. (37)

Here 𝑆 is the membrane area and 𝜖 is the C–PAA membrane porosity
calculated as

𝜖 = 𝜋

2
√

3

( 𝐷𝑝

𝐷𝑖𝑝

)2

, (38)

where 𝐷𝑝 is the pore diameter and 𝐷𝑖𝑝 is the distance between centers
of neighboring pores [44].

4. Results and discussion

4.1. The impact of polarization on the ion transport in a single nanopore

We start from theoretical description of ion transport in a single
nanopore with the help of SC and UP models. The pore length 𝐿𝑝 = 70
μm corresponds to the porous anodic alumina membranes synthesized
in this work, while the pore radius is taken as 𝑅𝑝 = 8 nm. It is
assumed that the potentials in the reservoirs are set to 𝑃𝐿 = −ΔΦ∕2 and
𝑃𝑅 = +ΔΦ∕2, where ΔΦ is the applied potential difference. The Stern
layer thickness is taken as 𝛿𝑠 = 0.5 nm and the Stern layer capacitance
is 𝐶𝑠 = 0.1 F/m2. The calculations are performed for aqueous KCl
solution with diffusion coefficients 𝐷+ = 1.957 ⋅ 10−9 m2/s for K+ ion
and 𝐷− = 2.032 ⋅ 10−9 m2/s for Cl− ion. The dynamic viscosity is taken
as 𝜇 = 0.888 ⋅ 10−3 Pa s. The chemical charge is absent (Σ𝑐 = 0).

The typical profiles of potential, ion concentrations, pressure, and
electronic surface charge density in a conductive polarizable nanopore
are shown in Fig. 3. It can be seen that the electric field inside the
nanopore (Fig. 3a) induces a non-uniform electronic charge distribution
on the conductive surface (Fig. 3d) while keeping the total surface
charge zero. In other words, the surface is polarized by the electric field.



I.A. Kharchenko et al. Electrochimica Acta 506 (2024) 144994 
Fig. 3. The average potential (a), ion concentrations (b), pressure (c), and surface charge density (d) calculated from SC model (dashed curves) and from UP model (solid curves).
𝑅𝑝 = 8 nm, 𝐿𝑝 = 70 μm, 𝐶0 = 10 mM, 𝐶𝑠 = 0.1 F/m2, 𝛥𝛷 = 300 mV.
It leads to the increase of anion (cation) concentration in the left (right)
part of the nanopore (Fig. 3b), where the surface charge is positive
(negative). As a result, the concentration of ions (charge carriers) inside
the nanopore increases in comparison with that in the reservoirs. It
leads to the enhancement of nanopore ionic conductivity (𝜅 = 0.5567
S/m) in comparison with conductivity of 10 mM KCl bulk solution
(𝜅 = 0.1498 S/m). The pressure is symmetric with respect to the center
of the pore and reaches maximum at that point (Fig. 3c). It results from
the specific structure of electroosmotic flows in the nanopore (to be
discussed below).

Note that the cross-sectionally averaged profiles of potential and
ion concentrations as well as electronic charge density obtained from
the SC model are rather close to those obtained from the UP model.
However, the latter overestimates the pressure magnitude by almost
two times in comparison with the former. As for the UPS model derived
in Section 2.4, its predictions fully coincide with numerical results
based on the UP model.

The results of two-dimensional calculations are presented in Fig. 4.
The potential slightly varies with radial coordinate and increases (de-
creases) towards the wall when 0 < 𝑍∕𝐿𝑝 < 0.5 (0.5 < 𝑍∕𝐿𝑝 < 1.0),
see Fig. 4a. The surface potential 𝛷𝑒 is zero as expected from formula
(33) since the potentials in the reservoirs are equal in magnitude and
opposite in sign. There is a strong potential change within the Stern
layer, which is shown by darker areas near the nanopore walls. The ion
concentration fields demonstrate a complex shape (Fig. 4b) with cation
(anion) concentration increasing towards the wall in the negatively
(positively) charged part of the nanopore. The electric field interacts
with the excess of negative (positive) charge near the walls in the
corresponding part of the nanopore 0 < 𝑍∕𝐿𝑝 < 0.5 (0.5 < 𝑍∕𝐿𝑝 <
1.0). It results in the electroosmotic flows near the walls towards the
nanopore entrance (𝑍 = 0) and exit (𝑍 = 𝐿𝑝) and in opposite direction
in the central part of the nanopore (Fig. 4d). These flows compensate
each other in such a way that the total flow through the nanopore
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remains zero (𝑉 = 0, see formula (6)). In addition, they result in the
pressure distribution, which is symmetric with respect to the nanopore
center (𝑍∕𝐿𝑝 = 0.5) and reaches maximum at that point (Fig. 4c).
Note that the 2D calculations show that the assumption of zero average
axial velocity is justified when deriving the analytical UPS model in
Section 2.4.

4.2. The salt concentration effect on conductivity enhancement

Now let us investigate the impact of salt concentration on the
enhancement of ionic current and conductivity by the polarization
effect. The results of calculations are shown in Fig. 5. For convenience,
the ionic current is normalized to its absolute value 𝐼𝑚𝑎𝑥 at ΔΦ = 500
mV.

When the applied potential difference is close to zero, the induced
charge is very small, so the nanopore specific conductivity coincides
with that of bulk solution of a given salt concentration (Fig. 5a). The
rise of potential difference increases the induced charge, which leads
to the increase of ion concentrations inside the nanopore (Fig. 3b)
and the corresponding enhancement of conductivity. This effect is most
pronounced at low concentrations, where the enhancement can reach
a few orders of magnitude. In this case, the current–voltage curves
show strong non-linearity, see Fig. 5b. At larger salt concentrations,
the relative change of ion concentrations inside the nanopore due to
polarization effect becomes smaller, so the conductivity enhancement
with the rise of applied potential difference gets lower. In this case,
the current–voltage curves tend to linear form. It should be noted that
the UP and UPS models show practically the same results. Analytical
formula (36) for the charge flux can explain the observed variation
of conductivity enhancement with salt concentration. It results from
the relative importance of electronic charge contribution (terms pro-
portional to 𝑐𝑠(𝜑1 − 𝜑0)) and salt concentration contribution (term 𝑐20)
to the ionic current.
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Fig. 4. The fields of potential (a), ion concentrations (b), pressure (c), and axial velocity (d) calculated from 2D SC model. 𝑅𝑝 = 8 nm, 𝐿𝑝 = 70 μm, 𝐶0 = 10 mM, 𝐶𝑠 = 0.1 F/m2,
ΔΦ = 300 mV.
Fig. 5. The dependence of specific conductivity (a) and normalized ionic current (b) on the applied potential difference for different KCl concentrations based on the UP model
(solid curves) and the UPS model (dashed curves). The solid and dashed curves almost coincide. 𝑅𝑝 = 8 nm, 𝐿𝑝 = 70 μm, 𝐶𝑠 = 0.1 F/m2.
4.3. The Stern layer capacitance effect on conductivity enhancement

Fig. 6a shows the impact of Stern layer capacitance 𝐶𝑠 on the
specific conductivity of the nanopore. As the induced electronic charge
is proportional to 𝐶𝑠 (see formulas (3) and (17)), the enhancement of
ionic conductivity with increasing the applied potential difference is
stronger for larger 𝐶𝑠. The non-linearity of current–voltage curves be-
comes more pronounced with increasing 𝐶𝑠, see Fig. 6b. The agreement
between the UP and UPS models is perfect. The contribution of induced
electronic charge to the ionic current and conductivity is determined by
two terms proportional to 𝑐 in formula (36).
𝑠
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4.4. The effect of chemical charge density on conductivity enhancement

In this section, we analyze how the presence of chemical charge
at the oHp can affect the ionic conductivity of the nanopore. Fig. 7a
shows the dependence of specific conductivity on the applied potential
difference ΔΦ. In the absence of chemical charge, the conductivity
tends to its minimum when ΔΦ tends to zero. The increase of poten-
tial difference enhances the nanopore conductivity due to increase of
ions concentration, which is caused by the induced electronic charge,
see Section 4.1. In this case, the current–voltage curve is strongly
non-linear (Fig. 7b). When the chemical charge density Σ𝑐 becomes
non-zero, we first observe the increase of conductivity at small potential
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Fig. 6. The dependence of specific conductivity (a) and ionic current density (b) on the applied potential difference for different Stern layer capacitances based on the UP model
(solid curves) and the UPS model (dashed curves). The solid and dashed curves almost coincide. 𝑅𝑝 = 8 nm, 𝐿𝑝 = 70 μm, 𝐶0 = 10 mM.
Fig. 7. The dependence of specific conductivity (a), ionic current density (b), and surface potential (c) on the applied potential difference for different values of chemical charge
density based on the UP model. 𝑅𝑝 = 8 nm, 𝐿𝑝 = 70 μm, 𝐶𝑠 = 0.1 F/m2, 𝐶0 = 0.01 mM.
differences. In this region, the contribution of induced charge is small,
so the conductivity is controlled by the chemical charge. When the
latter increases, there appears a linear region on the current–voltage
curve. When ΔΦ tends to zero, the conductivity attains its local maxi-
mum, while two local minima are observed at two values of ΔΦ, which
are equal in magnitude and opposite in sign. In this region, the chemical
charge is partially screened by the induced electronic charge. In the two
ranges of ΔΦ values between local maximum and two local minima, the
ionic current becomes independent on the applied potential difference,
see Fig. 7b. When the magnitude of ΔΦ is increased further, the
conductivity follows the curve corresponding to Σ𝑐 = 0. In this region,
the contribution of induced electronic charge is much larger than that
of chemical charge.

The dependence of surface potential on the applied potential differ-
ence is shown in Fig. 7c. Note that in the absence of chemical charge,
the requirement of zero total electronic charge requires the surface
9 
potential to be zero. The increase of chemical charge leads to the rise
of surface potential at small ΔΦ. In this case, the chemical charge is
dominant and it determines the value of Φ𝑒. However, with increasing
the magnitude of ΔΦ, the induced electronic charge becomes dominant
with one half of the pore being negatively charged and the other half
being positively charged, so the surface potential tends to zero to ensure
the conservation of electronic charge.

Finally, we would like to note that the conductivity dependence on
the applied voltage difference is symmetric with respect to ΔΦ = 0 (see
Figs. 5–7). It is related to the fact that the nanopore surface is polarized
by the external electric field in such a way that the electronic charge in
one half of the pore is positive, while in the other half it is negative. It is
demonstrated in Figs. 3 and 4. So, when the applied potential difference
changes its sign to the opposite one, these halves are exchanged,
but the values of ionic current and conductivity remain the same.
The calculations show that the presence of chemical charge does not



I.A. Kharchenko et al. Electrochimica Acta 506 (2024) 144994 
Fig. 8. SEM image (a) and TEM image (b) of membrane cross-section, TEM image of a single nanopore (c), and pore size distribution obtained by processing of TEM images (d).
affect this symmetrical behavior. It is characteristic for the considered
system in contrast to the other systems such as e.g. nanofluidic ionic
diodes, where the current and conductivity magnitudes change when
the opposite potential difference is applied [37].

5. Ionic conductivity of porous anodic alumina membranes with
carbon nanotubes

5.1. Membrane morphology

Let us now proceed to the experimental studies of ion transport
through porous anodic alumina membranes with carbon nanotubes.
The membrane morphology is presented in Fig. 8a. The SEM image
shows a random horizontal cut of membrane, where some nanotubes
stick out of the surface, while the other ones are hidden inside the
membrane pores. The TEM image of membrane slice prepared by
the FIB displays a regular structure of carbon nanotubes, which are
embedded in all membrane pores (Fig. 8b). A single nanotube is shown
in Fig. 8c. It can be seen that the nanotube wall consists of concentric
layers of carbon.

The pore size distribution obtained by processing the TEM images
is presented in Fig. 8d. The TEM data provide the pore diameter of
10.4 ± 1.5 nm. In the model calculations below, we assume that the
pore diameter is 𝐷𝑝 = 10 nm. The interpore distance is 𝐷𝑖𝑝 = 65 nm, so
the membrane porosity calculated from formula (38) is 𝜖 = 0.0215.

5.2. Current–voltage curves and ionic conductivity

In this section, we present the experimental results on conductivity
measurement and compare them with model predictions. The 1D UP
model is used with the parameters described in Section 4.1 except
the Stern layer permittivity, which is taken as 𝐶𝑠 = 0.05 F/m2. This
parameter controls the conductivity enhancement with variation of
potential difference, so it is chosen lower to fit the experimental data.

The conductivity was measured in galvanostatic mode by applying
constant current in the ranges ±2 μA, ±20 μA, ±200 μA, ±1.2 mA,
±10 mA for KCl concentrations 0.1 mM, 1 mM, 10 mM, 100 mM,
10 
1000 mM, respectively. First, the potential drop in the cell without
membrane was measured. At the highest current applied, it was 80–
90 mV for 0.1 mM, 1 mM, 10 mM KCl solutions, and 40–50 mV for
100 and 1000 mM KCl solutions. This potential drop was subtracted
from that measured in the cell with a C–PAA membrane. The latter
was around 300–600 mV at the highest current applied.

We have found some difficulties in comparing the absolute values of
ionic current 𝐼 and specific conductivity 𝜅 calculated from the model
using formula (1) and determined from experimental measurements
using formula (37). The experimental values were 5–10 times smaller
than the theoretical ones depending on the measured sample and salt
concentration (see discussion below). It could be explained by the
hypothesis that a part of nanopores might not be fully available for ion
transport due to narrowing of pore diameter just near the membrane
surface. To perform a meaningful comparison between experiment
and theory, we normalize the experimental and calculated currents by
their maximum values 𝐼𝑚𝑎𝑥. The calculated conductivity is normalized
by its value when ΔΦ → 0, while the experimental conductivity
is normalized by 𝜅0, the average of conductivities measured at two
lowest (negative and positive) currents. The experimental dependence
of normalized conductivity is approximated by the model dependence
using the chemical charge density as a fitting parameter.

The results are presented in Fig. 9. At KCl concentration of 1000 mM
(Fig. 9a,b), the current–voltage curve is linear, and the conductivity
is constant. When the concentration is decreased to 100 mM, the
polarization effect starts to play a role. There is a slight enhancement
of conductivity with the rise of potential difference, which leads to
some non-linearity of current–voltage curve (Fig. 9c,d). In the case
of 10 mM solution, these trends become much stronger (Fig. 9e,f).
The conductivity is enhanced by around 4.6 times at ΔΦ = ±440
mV in comparison with 𝑘0. At lower concentrations of 1 mM and
0.1 mM, the charge distribution induced on the nanopore walls leads to
a significant increase of ion concentrations inside the nanopore. It leads
to a significant rise of conductivity with ΔΦ and strong non-linearity
of current–voltage curve, see Fig. 9g,h and i,j. The values of chemical
charge density, which were obtained by fitting the conductivity curves,
are as follows: Σ = 2.1⋅10−4 C/m2 for 𝐶 = 0.1 mM, Σ = 1.3⋅10−3 C/m2
𝑐 0 𝑐
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Fig. 9. The dependence of ionic current and normalized ionic conductivity on the applied potential difference for different KCl concentrations. Experiment (red circles) and 1D
UP model calculations (black curves). The left axis in figures a,c,e,g,i corresponds to the experimental current values, while the right axis shows the calculated normalized current.
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Fig. 10. The dependence of specific ionic conductivity on the KCl concentration. Bulk
KCl aqueous solution (blue line), C–PAA membrane for different applied voltages (black
dashed curves).

for 𝐶0 = 1 mM, and Σ𝑐 = 4.3 ⋅ 10−3 C/m2 for 𝐶0 = 10 mM. The increase
of chemical charge density with the rise of salt concentration can be
explained by adsorption of ions on the membrane surface. However,
we cannot determine the sign of adsorbed charge from the measured
conductivity data. Note that at higher concentrations (100 mM and
1000 mM), the variation of chemical charge does not affect the normal-
ized conductivity as it turns to unity. Thus, for these concentrations we
used the same Σ𝑐 as for 10 mM. In general, we observe a remarkable
agreement between experimental data and model calculations.

Fig. 10 shows the comparison between specific conductivity of
bulk KCl aqueous solution (blue curve) and the experimentally mea-
sured specific conductivity of the same solution in the pores of C–PAA
membrane (solid black curve) depending on salt concentration and
voltage difference. One can see that at lowest voltages (lowest applied
currents), the conductivity of C–PAA membrane is lower by one order
of magnitude in comparison with that of bulk KCl. Nevertheless, both
curves are almost parallel showing the same trend with increasing
salt concentration. The dashed curves correspond to different applied
voltages and are obtained from model predictions based on fitting
the experimental data (see Fig. 9). The conductivity enhancement is
negligible at high concentrations, but becomes stronger with decreasing
salt concentration and reaches 28.2 times at 𝐶0 = 0.1 mM and ΔΦ = 500
mV.

6. Conclusion

In this work, we have investigated the ionic conductivity of elec-
trically conductive membranes. The 2D Space charge and 1D Uniform
potential models are employed to describe the ion transport through a
cylindrical nanopore with conductive surface. The latter separates two
reservoirs with equal salt concentrations and pressures, but different
electrical potentials. The models assume that the nanopore interior
consists of a Stern layer and a diffuse layer with chemical charge
present on the boundary between them.

The calculations show that the imposed electric field polarizes the
conductive nanopore surface leading to redistribution of electrons on it.
It leads to the continuous variation of electronic charge from positive
to negative along the nanopore surface. At the same time, the total
electronic charge is conserved and remains zero. A higher concentration
of cations (anions) is observed at negatively (positively) charged part
of the nanopore. The increase of charge carries concentration inside
the nanopore due to polarization effect results in the enhancement of
ionic conductivity with increasing the applied voltage difference. This
enhancement can reach a few orders of magnitude at low salt concen-
trations, but becomes much smaller at high concentrations. It leads to
the non-linear current–voltage curves. The conductivity enhancement is
12 
controlled by the electronic charge, which is proportional to the Stern
layer capacitance. The presence of chemical charge has a screening
effect on the interaction of electric field with the electronic charge on
the nanopore surface, and reduces the enhancement of conductivity
with increasing the applied voltage difference.

We have derived a novel analytical solution of 1D Uniform poten-
tial model for the charge flux and ionic conductivity assuming equal
ion diffusion coefficients, zero average electroosmotic velocity, and
the absence of chemical charge. It is shown that the conservation of
electronic charge requires that the nanopore surface potential is the
average between potentials imposed in the reservoirs separated by the
nanopore. The analytical results are in perfect agreement with those
provided by the full 1D UP model.

To verify the theoretical predictions, we have synthesized porous
anodic alumina membranes and deposited carbon nanotubes inside the
pores by chemical vapor deposition from ethanol precursor. It allows
to obtain the matrix of straight cylindrical nanopores with electrically
conductive surface and precisely controlled internal diameter. The
ionic conductivity of obtained membranes is measured in KCl aqueous
solution in the range of concentrations from 0.1 mM to 1000 mM. The
experimental data are approximated by the 1D UP model curves using
chemical charge as a fitting parameter. Strong enhancement of ionic
conductivity (more than 6 times) and the corresponding non-linear
dependence of current on the applied voltage is observed experimen-
tally at low concentrations when the potential difference increases.
The enhancement is reduced at large concentrations in agreement with
theoretical predictions.
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