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A B S T R A C T   

Lead-free non-rare earth oxide phosphors have attracted wide attention due to their environmental protection, 
sustainability, and potential to replace halides and fluorides in the field of plant lighting. Among them, the Cr3+- 
excited aluminate phosphor exhibits high brightness, high thermal stability, and far red to near-infrared (NIR) 
emission due to the influence of the crystal field strength (CFS). This property gives rise to a variety of strategies 
used to modulate the CFS, for example, single ion substitution, chemical unit co-substitution, etc. Here, we chose 
the substitution of a single ion, with [BaO6] gradually replacing [SrO6] to form a solid solution. Their structural 
characteristics and the local structure of Cr3+ are studied and discussed. The device is packaged to evaluate the 
feasibility of the material for practical application. The prepared phosphor had a bright far-red light emission of 
693 nm under blue light excitation, and this spectrum strongly matched the absorption of plant phytochrome 
PFR. This work provides the design principle of far red light emission activated by Cr3+ aluminate solid solution, 
which can inspire further research on pc-LED lights for plant lighting.   

1. Introduction 

With the improvement of people’s living standards and the rapid 
development of industrialization, global resources have been over- 
exploited, which has seriously affected the ecological environment [1, 
2]. Furthermore, extreme weather, serious water pollution, and air 
pollution have made it impossible for traditional agricultural production 
methods better to meet the supply and demand in today’s society. Using 
modern engineering technology, indoor plant cultivation (IPC) makes 
the growth of crops no longer subject to the external natural ecological 
environment, greatly improves the crop’s production efficiency, and 
brings more economic and social benefits [3–7]. Light is a necessary 
environmental condition for plant growth, which has important effects 
on biological phenomena such as photosynthesis, color development, 
phototropism, and morphogenesis of plants. Phytochrome PR and 
Phytochrome PFR are distributed in various plant organs, mainly 
absorbing red light (600− 680 nm) and far-red light (680− 780 nm), of 
which far-red light can promote the formation of chlorophyll and 

carbohydrates, affecting plant flowering, stem elongation, and seed 
germination [8–14]. Phosphors-converted light-emitting diodes 
(pc-LEDs) are the inevitable trend of scientific and technological 
development to replace the traditional light source. Pc-LEDs have 
become the main light source for ICP due to their advantages of 
energy-saving, environment-friendly, long life, and high efficiency [15, 
16]. At present, a large number of reports of red phosphors are mainly 
based on luminescent materials activated by rare earth ions. For 
example, CaAlSiN3:Eu2+, Ca2BO3Cl: Sm3+, and Cs2NaBiCl6: Mn2+

[17–20]. However, these phosphors are not suitable for agricultural 
lighting due to the presence of toxic substances, high prices, harsh 
synthesis conditions and other shortcomings. Therefore, a new type of 
environmentally friendly, low-cost, and easy-to-synthesize far-red 
phosphor has been developed. 

Cr3+, virtually nontoxic and inexpensive, is the ideal emission center 
for red/far red light. The luminous characteristics of Cr3+ are greatly 
affected by the crystal field environment, and the 2E → 4A2 transition of 
the outermost 3d3 energy layer can exhibit far-red luminescence 
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[21–24]. The excitation range of Cr3+ is 250 nm–650 nm, and there are 
generally three excitation peaks, among which the excitation peak 
located in the blue light range can well match the commercial blue light 
chip. Such Cr3+ activated phosphor such as ZnGa2O4: Cr3+ and LiGa5O8: 
Cr3+ have good performance [25–28]. Against Cr3+ -activated aluminate 
phosphors, also previously reported, for example, ZnAl2O4:Cr3+ has 
multi-peak broadband emissions [29,30]. 

Both SrMgAl10O17 and BaMgAl10O17 belong to the hexagonal crystal 
system and have the same β-alumina type with space group P63/mmc 
[31–33]. Cr3+ has the same valence state, similar ion radius, and elec
tronegativity as Al3+, so Cr3+ easily replaces Al3+ into the host lattice 
and occupies the octahedral site, resulting in red and far red radiation 
transitions. According to our understanding, although there are reports 
on Cr3+ doped SrMgAl10O17 or BaMgAl10O17, so far, there have been no 
reports on the luminescence properties of Cr3+ in the orthogonal Sr1-y

BayMgAl10O17 solid solution. In this work, we focused on the crystal 
structure of the Cr3+-doped Sr1-yBayMgAl10O17 solid solution and 
improved thermal stability, luminous intensity, and quantum efficiency 
of the luminescent material. The optimal performance of the material is 
prepared as an LED device combined with a blue light chip, showing a 
mixture of bright blue and red light, matching the plant pigment ab
sorption spectrum, indicating that this phosphor is suitable as a light 
source for indoor plant cultivation. 

2. Experimental sections 

2.1. Materials and synthesis 

The SrMgAl10O17: xCr3+(x = 0.005, 0.01, 0.015, 0.02, 0.025) and 
Sr1-yBayMgAl10O17: Cr3+ (y = 0, 0.2, 0.4, 0.6, 0.8, 1.0) phosphors were 
prepared by high-temperature solid-state reaction. Analytical-grade re
agents SrCO3 (99.99%)、BaCO3 (99.99%)、MgO (99.99%)、Al2O3 
(99.99%)、Cr2O3 (99.99%) were used as raw materials, which pur
chased from Aladdin. According to the stoichiometric ratio, they were 
weighting the starting materials and adding a mass fraction of 2 % wt 
H3BO3 as cosolvent. Subsequently, the mixtures were placed in an agate 
mortar with a few drops of alcohol and grinded carefully for 30 min. 
Then the mixed samples were loaded into the crucible, and sintered at 
1300 ◦C for 6 h in a high-temperature furnace. Ultimately, these samples 
were cooled to room temperature naturally for grinding for subsequent 
tests. 

2.2. Measurements and characterization 

The X-ray diffraction (XRD) data of these phosphors were measured 
by an X-ray diffractometer (PANalytical, Netherlands). The scanning 
range was from 10◦ to 120◦, and the scanning rate was 10◦/min. Exci
tation and emission spectra were measured by a F-4700 spectrometer 
(Hitachi, Japan), excited by 150 W Xe lamp. The thermal stability of 
phosphors was tested by controlling their temperature with a heat 
controller (Orient KOJI, China). The surface topography of the samples 
was recorded by dual-beam scanning electron microscope (SEM) mi
croscope (FEI helios nanolab G3 UC, USA), and elemental analysis was 
recorded by energy dispersive X-ray detector (EDX). The internal 
quantum efficiency (IQE) was collected using a QE-2100 test system 
(Otsuka, Japan). The UV− disuse reflection spectroscopy was recorded 
by a UV-2600i spectrophotometer (Shimadzu, Japan). 

3. Results and discussion 

3.1. Crystal structure and morphological characterization 

Fig. 1a shows the SrMgAl10O17 crystal structure model, belonging to 
the hexagonal system, P63/mmc space group, Al3+ occupy four different 
sites, labeled Al1, Al2, Al13, Al14, for more information included in 
Table 1 and TabS1-S3. Four different Al sites respectively belong to two 
octahedrons [AlO6] and two kinds of tetrahedral [AlO4]. When Cr3+ ion 
doping, due to the ionic radius of Cr3+ ion (CN = 6, r = 0.62 Å) and the 
ionic radius of Al3+ ion (CN = 6, r = 0.54 Å) are similar, and Cr3+ ion 
tends to occupy the octahedral position site, thus Cr3+ ion will replace 
the Al4 and Al1 site. Sr2+ ion forms a hexahedron [SrO6] with six 
adjacent oxygen atoms. It is adjacent to the octahedron where Al1 is 
located, which means that the change of [SrO6] is likely to cause a 
change in the environment of the Al1 site. In other words, it may change 

Fig. 1. (a) Schematic representation of the structure of the SrMgAl10O17 matrix; (b) The XRD pattern of Sr1-yBayMgAl10O17: Cr3+ (y = 0–1); (c) and (d) XRD re
finements of SrMgAl10O17: Cr3+ and BaMgAl10O17: Cr3+. 

Table 1 
The coordination environment information of Al3+ ions in SrMgAl10O17.  

Atom x y z Biso Occ. 

Al1 0.8360(3) 0.6720(5) 0.10728(11) 0.39(18) 1 
Al2 0.3333333 0.6666667 0.02407(18) 0.2(2) 0.5 
Al3 0.3333333 0.6666667 0.1739(2) 0.4(2) 1 
Al4 0 0 0 0.7(2) 1  
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the crystal field environment of the Cr3+ ion and then regulate the 
luminescence of the Cr3+ ion. Fig. 1b shows the XRD pattern of Ba2+ ion 
gradually replacing Sr2+ ion. When y = 0 and y = 1, samples of 
diffraction peak corresponding to the perfect SrMgAl10O17 (PDF# 
26–0879) and BaMgAl10O17 card (PDF# 26–0163), and refinement re
sults also prove that there are no other impurities (Fig. S1). Ba2+ ion 
radius (CN = 6, r = 0.135 Å) is greater than the Sr2+ ion (CN = 6, r =
0.118 Å), according to Bragg’s law: 2dsinθ = nλ, the displacement of 
small radius ions by large radius ions leads to a shift of diffraction peak 
to a lower angle. This phenomenon is observed in the inset of Fig. 1b. 
The refinement results for y = 0.2–0.8 samples are included in, Fig. S1 
and the linear increase in unit cell volume indicates successful sample 
preparation. 

Fig. 2a indicates a SEM image Sr0.2Ba0.8MgAl10O17: 0.02Cr3+ phos
phor. It shows that the particle is a smooth-surfaced polyhedron, and the 
particle size is about 15 μm, with good crystallinity and a clear grain 
boundary. Fig. 2b is an element map of the selected sample, and cor
responding spectral energy distribution (EDS) which shows the element 
distribution of Sr, Ba, Mg, Al, O, and Cr. Cr3+ has been successfully 
incorporated into Sr0.2Ba0.8MgAl10O17 crystal structure, which can be 
reflected from the uniform distribution of various elements, and the 
ideal phosphor has been successfully synthesized. 

3.2. Photoluminescent properties 

In previous reports on Sr/BaMgAl10O17: Cr3+, it has been learned 
that the emission spectrum of Sr/BaMgAl10O17: Cr3+ is strictly depen
dent on the concentration of Cr3+ ion: at low concentrations, narrow
band emission around 693 nm dominates, whereas at high 
concentrations, broadband emission attributed to 4T2 → 4A2 dominates. 
In this work, our research focuses on far-red light emission at 693 nm. 
Fig. 3a shows the emission spectrum of SrMgAl10O17 at different Cr3+

concentrations, with the increase of Cr3+ concentration, the emission 
intensity of SrMgAl10O17 gradually increases. When x = 0.02, it reaches 
the peak. Therefore, the sample with a concentration of Cr3+ = 0.02 was 
selected in the subsequent substitution project. In Fig. 3b, the excitation 

spectrum of the Cr3+ ion covers the range from 300 nm to 650 nm. It is 
divided into two parts: the spin-allowed transition from the 4A2 → 4T1 
energy level and the transition from the 4A2 → 4T2 energy level, corre
sponding to peak positions of 399 nm and 554 nm, respectively [34–37]. 
The emission peak of SrMgAl10O17 comes from the 2E → 4A2 energy level 
transition (Fig. 3c), covering a range of 650 nm–800 nm, with a peak of 
693 nm. A schematic representation of the Cr3+ electron being excited to 
produce a transition is depicted. In SrMgAl10O17: Cr3+, electrons are 
excited to produce three different transitions (Fig. 3d), the 4A2 → 4T1 
(4P) transition can be observed in the excitation peak of 200 nm–300 
nm, but the spectrum of excitation shows that the probability of this 
transition occurring is weak, and more excitation comes from 4A2 → 
4T1(4P) and 4A2 → 4T2. Although the intensity from the 4A2 → 4T2 
transition is almost close to that of 4A2 → 4T1(4F), considered a more 
convenient commercial blue-light chip, this work focuses on the exci
tation peak at 399 nm. 

The far-red emission of Cr3+ is most likely due to the strong crystal 
field environment. Introduce the Racah parameter and use the following 
equation for the calculation [38,39]: 
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The calculated Dq/B value is 2.46 (Fig. 3e), which is not equal to but 
greater than 2.3, indicating that Cr3+ is in a strong crystal field, corre
sponding to the far-red light emission emitted by this material. 

The triangular prismatic site occupied by Sr2+ ion in SMAO shares O 
atoms with the octa-planar position site occupied by Al3+ ion. When 

Fig. 2. (a) SEM images of Sr0.2Ba0.8MgAl10O17:0.02Cr3+ phosphor in various detecting scales; (b) EDS spectra of selected Sr0.2Ba0.8MgAl10O17:0.02Cr3+ particle and 
the corresponding elemental mapping images for Sr, Ba, Mg, Al, O, and Cr in Sr0.2Ba0.8MgAl10O17:0.02Cr3+. 
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Sr2+ ion is gradually replaced by Ba2+ ion, the luminescence of SMAO is 
greatly enhanced (Fig. 4a b), while spectral broadening is observed in 
the normalized figure (Fig. 4c). When y = 0.8, the highest point is 
reached, and the integrated intensity increases to 254 % of the initial 
strength. This is caused by a change in the strength of the crystal field in 
which Cr3+ is located. The Dq/B values for y = 0–1 were also calculated 

and are listed in Table S4. The gradually increasing Ba2+ ions lead to an 
enhanced lattice distortion, which in turn leads to an enhanced crystal 
field strength, while when y = 1, the material undergoes a fundamental 
change, reaching a new equilibrium and, as a result, the CFS decreases. 
The increase in crystal field strength leads to a more intense far-red 
emission of Cr3+, before which far red emission of Cr3+ is significantly 

Fig. 3. (a) Emission spectra of SrMgAl10O17: xCr3+; (b) Excitation and emission spectra of SrMgAl10O17: 0.02Cr3+; (c) and (d) Cr3+ electron transition diagram and 
radiation transition diagram; (e) Tanabe-Sugano diagram for the d3 electronic configuration in an octahedral symmetry. 

Fig. 4. (a) Excitation spectrum of Sr1-yBayMgAl10O17: Cr3+ (y = 0–1); (b) The integrated intensity of Sr1-yBayMgAl10O17: Cr3+ (y = 0–1) emission; (c) Normalized 
emission spectra; (d) and (e) temperature dependence spectra of SrMgAl10O17: Cr3+ and Sr1-yBayMgAl10O17: Cr3+ (y = 0–1) from 298 K to 473 K; (f) normalized 
spectra of two phosphors. 
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enhanced. 
An important indicator to evaluate the application prospects of 

phosphors is their stability at high temperatures. The temperature- 
dependent emission spectra of SrMgAl10O17: Cr3+ and Sr0.2Ba0.8M
gAl10O17: Cr3+ were tested, and as shown in Fig. 4d and e, the lumi
nescence intensity of both samples showed a sharp decrease with 
increasing temperature, maintaining 55.2 % and 61.5 % of that at room 
temperature at 423 K, respectively. The thermal stability of samples 
substituted with Ba2+ ions showed a slight enhancement. Generally 
speaking, the Cr3+-activated phosphors will be subjected to severe 
thermal quenching, resulting in a decrease in luminous intensity. A 
material with good thermal stability generally has one or more char
acteristics: i) strong structural rigidity; and ii) a large band gap [40]. In 
SMAO, the strong thermal quenching occurs due to the nonradiative 
transition of thermally excited electrons back to the ground state 
through the intersection of 4A2 and 4T2. The difficulty of reaching the 
intersection depends on the thermal activation energy (Ea). It is calcu
lated by the following formula [7,41,42]: 

I(T)=
I0

1 + c exp
(

− Ea
kT

) (4)  

where I(T) and I0 are integrated PL intensity at a given temperature and 
initial temperature, k is a Boltzmann constant (8.617 × 10− 5 eV/K), and 
c is a constant that is related to the matrix. The Ea values of SrMgAl10O17: 
Cr3+ and Sr0.2Ba0.8MgAl10O17: Cr3+ were 0.26 eV and 0.24 eV, respec
tively (Fig. S2). 

Fig. 5a tests the UV diffuse reflectance spectrum of Sr1-yBayM
gAl10O17: 0.02Cr3+ (y = 0.2, 0.4, 0.6, 0.8, 1.0) and the host. SMAO is a 
flat plot line without any absorption. There are three absorption bands 
in the spectrum were observed, which are weak absorption bands be
tween 200 nm and 230 nm, a strong absorption band from 320 nm to 
470 nm, and an absorption band from 500 nm to 620 nm, respectively. 
Corresponding to the excitation spectrum of Cr3+. The optical band gap 
can be calculated according to the following formula [43,44]: 

F(R∞)= (1 − R∞)
2 /

(2R∞) (5)  

(αhv)n
=
(
hv − Eg

)
(6)  

where hv is the photon energy and α represents the absorption coeffi
cient, based on the reported SrMgAl10O17: Cr3+ belongs to the direct 
bandgap structure, so n is 2. The intercept marked in the corresponding 
Fig. 5b is the optical band gap of the material. The optical band gap of 
SrMgAl10O17: Cr3+ and Sr0.2Ba0.8MgAl10O17: Cr3+ was calculated to be 
4.42 eV and 4.49 eV, respectively, and the size of the optical band gap 
could correspond to the thermal stability of the material to some extent. 

An important indicator to evaluate the performance of phosphors is 
the QE (Fig. 5c), which is calculated by the following equation [45]: 

η=
∫

Ls∫
ER −

∫
Es

(7)  

where, η is IQE, emission spectra and excitation spectra are represented 
as LS, ES is BaSO4 reference excitation line ER, and sample excitation 
spectra. An excitation wavelength of 399 nm and emission range of 660 
nm–750 nm were used to test the QE. The IQE of SrMgAl10O17: 0.02Cr3+

is 36.15% and the IQE of Sr0.2Ba0.8MgAl10O17: 0.02Cr3+ phosphor is 
56.13% (Fig. S4). This is higher than previously reported and has the 
potential applications of plant growth LEDs [46]. 

To verify the potential application of Sr0.2Ba0.8MgAl10O17: 0.02Cr3+

phosphor in plant growth, it was packaged as an LED device using a 470 
nm blue chip. Fig. 5d shows the Commission Internationale de 
l’Éclairage (CIE) chromaticity coordinate of (0.2313, 0.0812) for the 
electroluminescence characteristics of the devices. The inset is the 
physical picture of the prepared LED devices. Fig. 5e and f and its il
lustrations reveal the EL spectra and photographs of the luminescence of 
these fabricated LED devices. The comparison between the electrolu
minescence spectrum and the plant pigment absorption spectrum is 
shown in Fig. 6. The prepared device can well match the phytochrome 
PFR in the range of 650–780 nm, which represents the application po
tential of the material. 

Fig. 5. (a) UV diffuse reflectance spectra of Sr1-yBayMgAl10O17: Cr3+(y = 0–1) and host; (b) Optical band gap calculation of SrMgAl10O17: Cr3+ and Sr0.8Ba0.2M
gAl10O17: Cr3+; (c) The quantum yield of Sr0.8Ba0.2MgAl10O17: Cr3+; (d) CIE coordinate chart of Sr0.8Ba0.2MgAl10O17: Cr3+; (e) and (f) Electroluminescence spectra of 
Sr1-yBayMgAl10O17: Cr3+ (y = 0–1). 
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4. Conclusion 

In summary, a series of SrMgAl10O17: xCr3+ and its solid solution 
phosphors were prepared by the high-temperature solid phase method, 
and XRD and Rietveld refinement confirmed the pure phase of the ma
terials. The change in luminescence performance was recorded during 
the process of gradually replacing Sr2+ ion with Ba2+ ion and gradually 
changing from [SrO6] to [BaO6]. Specifically, the 2E → 4A2 dominated 
far-red light emission of Cr3+ in SrMgAl10O17 is enhanced due to the 
gradual increase in crystal field strength. Specifically, it is the strongest 
at y = 0.8, reaching 254 % of the initial value. The IQE of the Ba2+ ion 
substituted phosphor reached 56.13%, which is higher than that re
ported previously, indicating the good performance of the material. The 
far-red light emission at 693 nm can well correspond to the plant 
phytochrome PFR, which represents the material that has great appli
cation prospects in the field of plant lighting. 
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