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A B S T R A C T

Manifestations of quantum effects in the macroscopic properties of frustrated magnets keep attracting
considerable interest. We have formulated and studied a simple model of a three-sublattice mixed-spin (𝑆 =
1, 1∕2, 1∕2) 𝑆𝑈 (3)-ferrimagnet on triangular lattice in which the strong quantum fluctuations are developed due
to combined effect of frustrated exchange bonds, reduced dimensionality and a single-ion easy-plane anisotropy
in the spin-1 sublattice. To account correctly for the 𝑆𝑈 (3) algebra, the Hubbard operators representation
of generators is used. Dependencies of the magnetic moments 𝑅 and 𝑅𝐿 (for spin-1/2 and spin-1 sublattices
respectively), the total magnetic moment 𝑀 , as well as the quadrupole moment, on the anisotropy parameter 𝐷
are calculated at zero temperature and different ratios 𝐼∕𝐽 of exchange integrals from different sublattices. It is
established that for 𝐼∕𝐽 ≪ 1 the critical value 𝐷𝑐 , at which the system enters the quadrupole antiferromagnetic
phase, can be much smaller than both 𝐼 and 𝐽 . Besides, with an increase in 𝐷 from zero to 𝐷𝑐 the total moment
𝐌 can change its direction several times via taking zero value. Classification of four branches of the spin-wave
excitation spectrum of the 𝑆𝑈 (3)-ferrimagnet is carried out and modification of the spectrum with change in
the single-ion anisotropy is analyzed.
1. Introduction

Physical properties of ferrimagnets are often described within the
phenomenological approach based on thermodynamic potential expan-
sion and subsequent use of the Landau-Lifshitz equation [1]. Such an
approach is justified if relativistic effects are insignificant. The quantum
consideration of such ferrimagnets is based on the spin Hamiltonians
with operators obeying 𝑆𝑈 (2) algebra.

In last decades, magnetic materials have been actively studied, in
which relativistic (viz. spin–orbit) interactions lead to manifestation
of quantum effects at the macroscopic level [2–13]. Such materials
are commonly referred to as quantum magnets [14]. Quantum effects
are enhanced in systems of reduced dimension [15], as well as in the
materials with frustrated bonds [16].

The simplest type of interaction making a magnet to be quantum
appears due to taking into account the crystal field. If the energy of such
an interaction, for instance, the energy of single-ion anisotropy (SIA),
is not small, then to describe correctly the properties of a magnet, it
is necessary to consider not only dipole degrees of freedom, but rather
quadrupole ones [7,11,12,17–20].

The possibility of quadrupole ordering in 𝑆 = 1 Heisenberg mod-
els was initially associated with additional biquadratic spin exchange
interactions (𝐒𝑖 ⋅ 𝐒𝑗 )2 with nearest sites 𝑖 and 𝑗 [21]. Later, Andreev
and Grishchuk mentioned that the notion of quadrupoles can also be
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extended to 𝑆 = 1∕2 spins, albeit not with on-site, but rather with bond-
based order parameters [6]. For larger spin values 𝑆 the biquadratic
Heisenberg models can be extended to account for bicubic exchange
terms (𝐒𝑖 ⋅ 𝐒𝑗 )3 [22] and further up to polynomial spin-𝑆 exchange
interactions of order 2𝑆 [23]. All these extensions of the Heisenberg
model lead to a quadrupole ordering in a certain parameter domain.
Also, it should be noted that the so-called three-site interaction of the
form (𝐒𝑖 ⋅ 𝐒𝑗 )(𝐒𝑗 ⋅ 𝐒𝑘) (which can be thought of as partly destroyed
biquadratic interaction) was shown to be able to give a small admixture
of quadrupolar component to the main chiral magnetic order [24].
Probably, the most advanced generalization of the quantum Heisenberg
model is known as 𝑆𝑈 (𝑁)-symmetric antiferromagnetic spin model
[25–29] in which all generators of the 𝑆𝑈 (𝑁)-group (all equally and
pairwise symmetrically) are used instead of generators of the rotation
group, i.e. spin operators. As a matter of fact, we believe, that account-
ing for any kind of (strong enough) interaction involving generators of
𝑆𝑈 (𝑁)-algebra that are beyond the usual spin operators (such, for in-
stance, as any degree of a spin operator) can be considered as sufficient
to designate such an (anti)ferromagnet as 𝑆𝑈 (𝑁)-(anti)ferromagnet.

In multi-sublattice ferrimagnets with different magnetic ions, man-
ifestation of quantum effects can be significantly enhanced due to
possible compensation of the effective field acting on the magnetoactive
ions. Indeed, as was shown in [18] in the two-sublattice ferrimagnet,
vailable online 29 February 2024
304-8853/© 2024 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jmmm.2024.171906
Received 10 January 2024; Received in revised form 16 February 2024; Accepted 2
6 February 2024

https://www.elsevier.com/locate/jmmm
https://www.elsevier.com/locate/jmmm
mailto:zldgin2@mail.ru
mailto:ddm@iph.krasn.ru
https://doi.org/10.1016/j.jmmm.2024.171906
https://doi.org/10.1016/j.jmmm.2024.171906
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmmm.2024.171906&domain=pdf


Journal of Magnetism and Magnetic Materials 594 (2024) 171906A.S. Martynov and D.M. Dzebisashvili
the quantum spin reduction (i.e. a decrease in the sublattice average
magnetization) in an anisotropic sublattice at low temperatures can be
essentially reduced by the action of exchange interaction field of the
isotropic sublattice. If there are more than two sublattices, then the
effective field of two isotropic, antiferromagnetically coupled sublat-
tices, acting on the ions of the third anisotropic sublattice, can turn to
zero eliminating thereby the mentioned mechanism of suppression of
quantum spin reduction.

Examples of such magnetic systems, which have been of great
interest for quite a long time, are frustrated mixed spin-1/2 and spin-1
Ising ferrimagnets with SIA on square lattice [30–38] and recently on
triangular lattice [39–41]. The main focus were their phase diagrams as
well as technologically interesting compensation behavior with possi-
bility to achieve zero total magnetization by tuning temperature below
the critical point.

In these systems, the SIA in the spin-1 sublattice is an important
source of zero-point quantum vibrations which, in particular, results in
significant quantum spin reduction at zero temperature [3,5–9,11,42].
When parameter of the SIA is comparable to the value of exchange
integrals, the magnetization complete suppression can occur. To de-
scribe this effect, the theory of strongly anisotropic magnet with SIA
being developed should involve operators from 𝑆𝑈 (3) algebra. Also,
these systems are interesting from a perspective of both reduced (2d)
dimensionality amplifying fluctuations, and geometric frustration in the
case of triangular lattice [39–41].

In the present study we consider a three-sublattice mixed spin
ferrimagnet on triangular lattice with taking into account the easy-
plane SIA. In one sublattice, the spin value is taken to be 𝑆 = 1 and
in the other two sublattices 𝑆 = 1∕2. An important distinction of our
model from that of Refs. [39–41] (based on the Ising model) is the
use of the full Heisenberg exchange interaction which is known to
enhance quantum fluctuations even more. In the case of square lattice
a similar generalization of the anisotropic mixed-spin 𝑆 = (1∕2, 1)
ferrimagnets [30–38] with replacement of the Ising exchange with the
Heisenberg one was performed in Ref. [43]. The significance of the
three-sublattice mixed-spin anisotropic ferrimagnet to be considered
in our study is due to the fact that it includes the combination of
SIA, reduced dimension, geometric frustration as well as developed
quantum fluctuations. Also, the emphasis is made not on the study of
finite temperature behavior but rather on zero temperature properties
inaccessible by Monte-Carlo simulations used in Refs. [39–41]. We
focus mainly on the dependence of the ground state magnetic structure
and energy spectrum on the single-ion anisotropy parameter at different
ratios of exchange integrals. In what follows, for brevity and also
taking into account the above, we refer the magnetic system under
consideration as 𝑆𝑈 (3)-ferrimagnet (SU3-F).

The further presentation is organized as follows. In the second
section, the Hamiltonian of the SU3-F is formulated. In Section 3,
the 𝑆𝑈 (2) transformation describing local coordinate axes rotation in
two sublattices with spin-1∕2 is applied to the Hamiltonian of SU3-
F. In Section 4, using proposed in [8] variational function for spin-1
with easy-plane SIA, we analyzed the ground state properties of the
system in the mean field approximation, and introduced the dipole and
quadrupole order parameters. The Holstein-Primakov transformations
for two sublattices with spin-1∕2 are carried out in Section 5. In
Section 6, the 𝑆𝑈 (3) transformation in the Hubbard operators rep-
resentation is used to diagonalize the single-site Hamiltonian of the
spin-1 sublattice. To calculate spectral properties, the bosonization
of Hubbard operators is performed in Section 7 and corresponding
dispersion equation is presented in Section 8. The results of the ground
state structure calculations and analysis of the spectral properties are
presented in Sections 9 and 10, respectively. The main conclusions of
the study are formulated in the Section 11.
2

Fig. 1. Three triangular sublattices: 𝐿-sublattice with spin 𝑆 = 1 (red), 𝐹 - and 𝐺-
sublattices with spin 𝑆 = 1∕2 (green and blue, respectively). Here |𝐚1| = |𝐚2| = 𝑎 are
basis vectors, and the vectors 𝝃 and 𝜻 connect sites from different sublattices.

2. The model of 𝑺𝑼 (𝟑)-ferrimagnet

The crystalline structure of the three-sublattice anisotropic 𝑆𝑈 (3)-
ferrimagnet on triangular lattice is shown in Fig. 1. Here, the sites
hosting spins 𝑆 = 1 are highlighted in red. These sites form sublattice
denoted further by the symbol 𝐿. The green and blue sites contain spins
𝑆 = 1∕2. The sublattices formed by these sites are denoted as 𝐹 - and
𝐺-sublattices, respectively. Periodicity of each sublattice is determined
by the basis vectors 𝐚1 and 𝐚2, and the vectors 𝝃 and 𝜻 connect sites
from different sublattices.

The Hamiltonian of the three-lattice SU3-F under consideration has
the form:

𝐻 = 𝐻𝐴 +𝐻𝑒𝑥𝑐ℎ, (1)

where

𝐻𝐴 = 𝐷
∑

𝑙

(

𝑆𝑦𝑙
)2 ,

𝐻𝑒𝑥𝑐ℎ = 𝐽
∑

{𝑓𝑔}
𝐒𝑓 ⋅ 𝐒𝑔 + 𝐼

∑

{𝑓𝑙}
𝐒𝑓 ⋅ 𝐒𝑙 + 𝐼

∑

{𝑔𝑙}
𝐒𝑔 ⋅ 𝐒𝑙 . (2)

In the expression (1), the operator 𝐻𝐴 takes into account the energy
of SIA in 𝐿-sublattice with spin 𝑆 = 1 and with anisotropy constant 𝐷
being positive. The site indices from this 𝐿-sublattice are below denoted
by 𝑙, and corresponding spin projection operators by 𝑆𝛼𝑙 (𝛼 = 𝑥, 𝑦, 𝑧).
The axis 𝑂𝑦 is directed perpendicular to the plane of the ferrimagnet.
Accordingly, the axes 𝑂𝑥 and 𝑂𝑧 define its plane. The site indices
for other two 𝐹 - and 𝐺-sublattices with 𝑆 = 1∕2 are indicated by 𝑓
and 𝑔, and the vector spin operators by 𝐒𝑓 and 𝐒𝑔 , respectively. The
energy operator 𝐻𝑒𝑥𝑐ℎ describes the exchange interaction between a
spin-1 subsystem and two spin-1∕2 subsystems, as well as the exchange
interaction between two spin-1∕2 subsystems. The intensity of these
antiferromagnetic interactions is determined by integrals 𝐼 and 𝐽 ,
respectively. Curly brackets under the three sum symbols in (2) mean
that the summation is carried out only over the nearest sites and each
pair of sites is counted only once.

3. 𝑺𝑼 (𝟐) transformation of the Hamiltonian

For different sublattices the Lande 𝑔-factors are different and the
existence, for instance, of a compensation point for the total mechanical
moment does not mean that the total magnetic moment is also equal
to zero at this point [43]. However in what follows we will assume
that all moments have the same, purely spin (not orbital) nature, and
therefore 𝑔-factors in all sublattices are equal to each other (𝑔 = 2).
This allows to omit for simplicity the multiplier 𝑔𝜇𝐵 in the equation
𝐑 = −𝑔𝜇𝐵⟨𝐒⟩, relating magnetic 𝐑 and spin ⟨𝐒⟩ moments, and to
determine the equilibrium magnetization vectors in each sublattice in
the units of 𝑔𝜇 as 𝐑 = ⟨𝐒 ⟩ (𝐴 = 𝐿, 𝐹 and 𝐺), bearing of course in
𝐵 𝐴 𝐴
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Fig. 2. Planar magnetic structure of the SU3-F. All spins lie in the 𝑧𝑂𝑥 plane which is
the easy-plane. Rotation of the plane of vectors 𝐑𝐹 and 𝐑𝐺 is supposedly unfavorable
due to indirect effect of the SIA on the spins in the 𝐹 - and 𝐺-sublattices (see discussion
in the main text).

Fig. 3. Rotation of local coordinate axes under unitary transformation (3). In 𝐹 - and
𝐺-sublattices with 𝑆 = 1∕2, the 𝑂𝑧-axes are rotated at the angles −𝜃 and 𝜃 and
take new positions 𝑂𝑧′ and 𝑂𝑧′′ along equilibrium sublattice magnetizations 𝐑𝐹 and
𝐑𝐺 , respectively. The 𝑂𝑧 axis in the 𝐿-sublattice with 𝑆 = 1 is invariant under the
transformation (3).

mind that, due to the minus sign, the true direction of magnetization
is the opposite. The latter circumstance is not essential in the absence
of magnetic field.

The easy-plane anisotropy suggests that the magnetization vector
𝐑𝐿 of 𝐿-sublattice lies in the 𝑧𝑂𝑥 plane (i.e. perpendicular to the
anisotropy axis 𝑂𝑦). We choose the direction of the 𝑂𝑧-axis along the
vector 𝐑𝐿 (Fig. 2). At the same time, due to antiferromagnetic exchange
interaction between the spins of all three sublattices, the magnetic
structure must be planar. It is seen that, at least at the mean-field level,
the energy of the SU3-F is invariant with respect to rotation of the plane
of vectors 𝐑𝐹 and 𝐑𝐺 around 𝑂𝑧-axis as is shown in Fig. 2. It means that
the vectors 𝐑𝐹 and 𝐑𝐺 do not necessarily have to lie in the 𝑧𝑂𝑥-plane.
Nevertheless, our assumption is that spins in the 𝐹 - and 𝐺-sublattices
can feel the SIA indirectly, via the 𝐿-subsystem, in higher orders of
perturbation theory, and this ‘‘feeling’’ will compel the vectors 𝐑𝐹 and
𝐑𝐺 to lie in the 𝑧𝑂𝑥-plane. We however will not be concerned with
the higher-order corrections in the present study and will consider the
chosen orientation of the vectors 𝐑𝐹 and 𝐑𝐺 as spontaneous breaking
of rotational symmetry. This point will be essential when discussing
spectral properties of the SU3-F in Section 10.

In order to study the ground state and energy spectrum of the SU3-
F, we, first of all, carry out 𝑆𝑈 (2)-transformation of the Hamiltonian,
which is well known in the theory of non-collinear antiferromagnets
and which corresponds to a change in local coordinate axes. In our case,
this is achieved by rotating the original coordinate system by an angle
of 𝜃(−𝜃) around the 𝑂𝑦 axis for ions from 𝐺-(𝐹 -) sublattice in such a
way that the new axis 𝑂𝑧′′(𝑂𝑧′) is oriented along the vector of equilib-
rium magnetization 𝐑 (𝐑 ) as is shown in Fig. 3. The aforesaid means
3

𝐺 𝐹
performing the following 𝑆𝑈 (2)-transformation of the Hamiltonian

𝐻 → 𝐻(𝜃) = 𝑈2(𝜃)𝐻 𝑈†
2 (𝜃) (3)

where the unitary operator is

𝑈2(𝜃) =
∏

𝑓∈𝐹
exp

(

−𝑖𝜃𝑆𝑦𝑓
)

∏

𝑔∈𝐺
exp

(

𝑖𝜃𝑆𝑦𝑔
)

. (4)

The operator 𝐻(𝜃) can be written explicitly using the transformation
laws for spin operators (see Appendix A):

𝑆𝑥𝑔 → 𝑆𝑥𝑔 cos 𝜃 + 𝑆
𝑧
𝑔 sin 𝜃, 𝑆𝑦𝑔 → 𝑆𝑦𝑔 ,

𝑆𝑧𝑔 → 𝑆𝑧𝑔 cos 𝜃 − 𝑆
𝑥
𝑔 sin 𝜃, (5)

𝑆𝑥𝑓 → 𝑆𝑥𝑓 cos 𝜃 − 𝑆
𝑧
𝑓 sin 𝜃, 𝑆𝑦𝑓 → 𝑆𝑦𝑓 ,

𝑆𝑧𝑓 → 𝑆𝑧𝑓 cos 𝜃 + 𝑆
𝑥
𝑓 sin 𝜃. (6)

As a result we get:

𝐻𝑒𝑥𝑐ℎ(𝜃) = 𝐽
∑

{𝑓𝑔}

[

sin 2𝜃
(

𝑆𝑥𝑓𝑆
𝑧
𝑔 − 𝑆

𝑧
𝑓𝑆

𝑥
𝑔

)

+𝑆𝑦𝑓𝑆
𝑦
𝑔 + cos 2𝜃

(

𝑆𝑥𝑓𝑆
𝑥
𝑔 + 𝑆𝑧𝑓𝑆

𝑧
𝑔

)]

+ 𝐼
∑

{𝑓𝑙}

[

sin 𝜃
(

𝑆𝑥𝑓𝑆
𝑧
𝑙 − 𝑆

𝑧
𝑓𝑆

𝑥
𝑙

)

+ 𝑆𝑦𝑓𝑆
𝑦
𝑙

+ cos 𝜃
(

𝑆𝑥𝑓𝑆
𝑥
𝑙 + 𝑆𝑧𝑓𝑆

𝑧
𝑙

)]

+ 𝐼
∑

{𝑔𝑙}

[

sin 𝜃
(

𝑆𝑧𝑔𝑆
𝑥
𝑙 − 𝑆𝑥𝑔𝑆

𝑧
𝑙

)

+ 𝑆𝑦𝑔𝑆
𝑦
𝑙

+ cos 𝜃
(

𝑆𝑥𝑔𝑆
𝑥
𝑙 + 𝑆𝑧𝑔𝑆

𝑧
𝑙

)]

. (7)

The anisotropy energy operator remains unchanged 𝐻𝐴(𝜃) = 𝐻𝐴.

4. Ground state of the 𝑺𝑼 (𝟑) ferrimagnet

The operator 𝐻𝐴, being quadratic in spin variables, describes
quadrupole field effects. Accordingly, 𝐻𝐴 initiates participation of
quadrupole degrees of freedom in the formation of static and dynamic
properties the SU3-F. For one- and two-sublattice magnetic systems
manifestation of quantum effects due to 𝐻𝐴 has been discussed in many
papers [2,3,7,8,11,12]. In this section, we qualitatively, on the mean-
field level, consider impact of quantum effects on the ground state
structure of the three-sublattice anisotropic SU3-F.

First of all, we note that according to the Ref. [8], in the presence
of SIA accounted by the operator 𝐻𝐴, the ground state of the magnetic
ion in the 𝐿-sublattice should be looked for in the form

|𝜓⟩ = cos 𝛼 |+1⟩ + sin 𝛼 |−1⟩, (8)

where ket-vectors in the right hand side are eigenstates of the spin-
1 operator 𝑆𝑧𝑙 on the 𝑙-site (𝑆𝑧𝑙 |𝑛⟩ = 𝑛|𝑛⟩, 𝑛 = −1, 0,+1) and 𝛼 is
a variational parameter. Note, that due to a not-small SIA the state
|0⟩ drops out of the variational function |𝜓⟩ [8]. Then, taking into
account (7), for the energy of SU3-F per unit cell in the mean field
approximation, we obtain

𝐸(𝜃, 𝛼) = 𝐽0𝑆
2 cos 2𝜃 + 2𝐼0𝑆 cos 𝜃 cos 2𝛼

+𝐷 (1 − sin 2𝛼) ∕2, (9)

where 𝐽0 = 3𝐽 , 𝐼0 = 3𝐼 and 𝑆 = 1∕2. In the expression (9), the first two
terms describe contributions of the exchange interaction of spins from
different sublattices, and the last term is due to SIA. When writing (9),
it was also taken into account that the equilibrium mean-field value of
the 𝐿-sublattice magnetization is

𝑅𝑀𝐹
𝐿 = ⟨𝜓|𝑆𝑧𝑙 |𝜓⟩ = cos 2𝛼. (10)

This value may differ significantly from the nominal one due to quan-

tum effects.



Journal of Magnetism and Magnetic Materials 594 (2024) 171906A.S. Martynov and D.M. Dzebisashvili

a

s

𝑅

I

𝛼

S
𝐹
e
s
(

m
f
c
i
s

5
s

S
f
d
f
o

𝑆

i

𝐻

a
e
f
t

𝑆

w
o

𝐻

𝛼
n

𝑋

W
t
t
t

|

T

It is essential that the average value of the quadrupole moment
operator [44]

𝑄̂𝑦𝑦 = 3
(

𝑆𝑦𝑙
)2 − 2 (11)

in the state (8)

𝑄𝑀𝐹 = ⟨𝜓|𝑄̂𝑦𝑦|𝜓⟩ = 3(1 − sin 2𝛼)∕2 − 2 (12)

depends on the 𝛼 parameter. This means that in SU3-F the quadrupole
moment becomes an additional (relative to the spin) degree of freedom
affecting both the static properties of the system and its dynamic
characteristics.

At 𝐼, 𝐽 > 0 in the isotropic limit (𝐷 = 0) it follows from the
expression (9) that:

𝛼 = 0, 𝜃 = 𝜋, if 𝐼0 ⩾ 2𝐽0𝑆,

𝛼 = 0, cos 𝜃 = −
𝐼0

2𝐽0𝑆
, if 𝐼0 ⩽ 2𝐽0𝑆. (13)

For 𝐷 > 0, there is a critical value

𝐷𝑐 = 2𝐼20∕𝐽0 (14)

such that for 𝐷 < 𝐷𝑐 the equilibrium values of the parameters 𝛼 and 𝜃
re determined by the expressions

in 2𝛼 = 𝐷∕𝐷𝑐 , cos 𝜃 = −(𝐼0∕2𝐽0𝑆) ⋅ 𝑅𝑀𝐹
𝐿 ,

𝑀𝐹
𝐿 =

√

1 − (𝐷∕𝐷𝑐 )2. (15)

f 𝐷 > 𝐷𝑐 , then

= 𝜋∕4, 𝜃 = 𝜋∕2, 𝑅𝐿 = 0. (16)

uch a solution corresponds to a configuration in which the spins in the
- and 𝐺-sublattices are ordered antiferromagnetically with respect to
ach other, whereas the ions in the 𝐿-sublattice are in a ‘‘non-magnetic’’
tate, but with 𝑄𝑀𝐹 = −2, i.e. in a quadrupole antiferromagnetic phase
QAFM).

It is important to note that quantum effects in SU3-F can also
anifest itself when 𝐷 ≪ 𝐼0 ≪ 𝐽0, i.e. even at weak anisotropy. This

ollows from Eq. (14). It can be seen that for 𝐼0 ≪ 𝐽0, the value of 𝐷𝑐
an be significantly less than 𝐼0. This circumstance distinguishes SU3-F
nto a special class of quantum magnets in which quantum effects can
how themselves not only at strong SIA.

. Linearized Holstein–Primakoff transformation for 𝑭 - and 𝑮-
ublattices

The next step towards calculation of the energy spectrum in the
U3-F in the spin-wave approximation is to express the spin operators
rom 𝐹 - and 𝐺-sublattices in terms of Bose operators. Since the spin
ynamics in 𝐹 - and 𝐺-subsystems involves only dipole degrees of
reedom, the Holstein-Primakoff representation can be used for the
perators 𝑆𝛼𝑓 and 𝑆𝛼𝑔 (𝛼 = ±, 𝑧):

+
𝑓 =

√

2𝑆 − 𝑎+𝑓 𝑎𝑓 𝑎𝑓 , 𝑆𝑧𝑓 = 𝑆 − 𝑎+𝑓 𝑎𝑓 ,

𝑆+
𝑔 =

√

2𝑆 − 𝑏+𝑔 𝑏𝑔 𝑏𝑔 , 𝑆
𝑧
𝑔 = 𝑆 − 𝑏+𝑓 𝑏𝑔 . (17)

Here Bose-operators 𝑎𝑓 (𝑎+𝑓 ) and 𝑏𝑔(𝑏+𝑔 ) describe transitions between the
states |↑′⟩ ↔ |↓′⟩ and |↑′′⟩ ↔ |↓′′⟩ with definite spin projections along
the new quantization axes 𝑂𝑧′ and 𝑂𝑧′′ respectively (see Fig. 4a,b).

In terms of new variables, the operator 𝐻(𝜃) with quadratic accu-
racy in operators 𝑎𝑓 and 𝑏𝑔 has the form:

𝐻(𝜃) =
∑

𝑙
𝐻0(𝑙)

+ 𝐼
∑

{

cos 𝜃

(
√

𝑆
2
(𝑎𝑓 + 𝑎+𝑓 )𝑆

𝑥
𝑙 − 𝑎+𝑓 𝑎𝑓𝑆

𝑧
𝑙

)

4

{𝑓𝑙} |
+ sin 𝜃

(
√

𝑆
2
(𝑎𝑓 + 𝑎+𝑓 )𝑆

𝑧
𝑙 + 𝑎

+
𝑓 𝑎𝑓𝑆

𝑥
𝑙

)

+ 1
𝑖

√

𝑆
2
(𝑎𝑓 − 𝑎+𝑓 )𝑆

𝑦
𝑙

}

+ 𝐼
∑

{𝑔𝑙}

{

cos 𝜃

(
√

𝑆
2
(𝑏𝑔 + 𝑏+𝑔 )𝑆

𝑥
𝑙 − 𝑏+𝑔 𝑏𝑔𝑆

𝑧
𝑙

)

− sin 𝜃

(
√

𝑆
2
(𝑏𝑔 + 𝑏+𝑔 )𝑆

𝑧
𝑙 + 𝑏

+
𝑔 𝑏𝑔𝑆

𝑥
𝑙

)

+ 1
𝑖

√

𝑆
2
(𝑏𝑔 − 𝑏+𝑔 )𝑆

𝑦
𝑙

}

+ 𝐽
∑

{𝑓𝑔}

{

cos 2𝜃
(

𝑆2 − 𝑆𝑎+𝑓 𝑎𝑓 − 𝑆𝑏+𝑔 𝑏𝑔

+ 𝑆
2
(𝑎𝑓 + 𝑎+𝑓 )(𝑏𝑔 + 𝑏

+
𝑔 )
)

− 𝑆
2
(𝑎𝑓 − 𝑎+𝑓 )(𝑏𝑔 − 𝑏

+
𝑔 )

+𝑆
√

𝑆
2
sin 2𝜃

(

𝑎𝑓 + 𝑎+𝑓 − 𝑏𝑔 − 𝑏+𝑔
)

}

, (18)

where the single-site operator

𝐻0(𝑙) = 𝐷
(

𝑆𝑦𝑙
)2 + 𝐻̄ 𝑆𝑧𝑙 (19)

from 𝐿-sublattice determines the non-equidistant energy levels of 𝑙-
ons. Effective field

̄ = 2𝐼0𝑆 cos 𝜃, (20)

s noted above, may turn out to be small as compared to the anisotropy
nergy and then the non-diagonality of 𝐻0(𝑙) becomes a significant
actor. To take this circumstance into account, we take advantage of
he Hubbard operators representation for spin operators 𝑆𝛼𝑙 (𝛼 = ±, 𝑧)

+
𝑙 =

√

2
(

𝑋1,0
𝑙 +𝑋0,−1

𝑙

)

, 𝑆−
𝑙 =

(

𝑆+
𝑙
)+ ,

𝑆𝑧𝑙 = 𝑋1,1
𝑙 −𝑋−1,−1

𝑙 , (21)

here 𝑋𝑛,𝑚
𝑙 = |𝑛, 𝑙⟩⟨𝑚, 𝑙|, and the ket vectors are the eigenvectors of the

perator 𝑆𝑧𝑙 : 𝑆𝑧𝑙 |𝑛, 𝑙⟩ = 𝑛|𝑛, 𝑙⟩ (𝑛 = −1, 0,+1).
In the Hubbard operators representation, we get

0(𝑙) =
(𝐷
2

− 𝐻̄
)

𝑋−1,−1
𝑙 +𝐷𝑋00

𝑙

+
(𝐷
2

+ 𝐻̄
)

𝑋1,1
𝑙 − 𝐷

2

(

𝑋1,−1
𝑙 +𝑋−1,1

𝑙

)

. (22)

The last term in Eq. (22) involves quadrupole degrees of freedom into
dynamics.

6. 𝑺𝑼 (𝟑) transformation of the Hamiltonian

To diagonalize the operator 𝐻0(𝑙) we use the approach developed
in [45]. The idea of this approach is to employ the unitary operator

𝑈1,−1(𝛼, 𝑙) = exp
{

𝛼 𝛤1,−1(𝑙)
}

, (23)

with generator 𝛤1,−1(𝑙) = 𝑋1,−1
𝑙 −𝑋−1,1

𝑙 and a real variational parameter
, to express the Hubbard operators 𝑋𝑛𝑚

𝑙 (𝑛, 𝑚 = −1, 0,+1) through the
ew ones as (see Appendix B):
𝑛𝑚
𝑙 = 𝑈1̃,−1̃(𝛼, 𝑙)𝑋

𝑛̃𝑚̃
𝑙 𝑈+

1̃,−1̃
(𝛼, 𝑙). (24)

hen writing this expression the equality 𝑈1̃,−1̃(𝛼, 𝑙) = 𝑈1,−1(𝛼, 𝑙) was
aken into account. The new Hubbard operators 𝑋 𝑛̃𝑚̃

𝑙 are defined in
erms of new states: 𝑋 𝑛̃𝑚̃

𝑙 = |𝑛̃, 𝑙⟩⟨𝑚̃, 𝑙|, where the new states, according
o Eq. (B.2), are expressed via the initial ones as follows

𝑛̃, 𝑙⟩ = 𝑈1,−1(−𝛼, 𝑙)|𝑛, 𝑙⟩. (25)

aking into account Eq. (B.1) we get
̃
+1⟩ = cos 𝛼 |+1⟩ + sin 𝛼 |−1⟩,
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|0̃⟩ = |0⟩,

|−1̃⟩ = cos 𝛼 |−1⟩ − sin 𝛼 |+1⟩. (26)

It is seen that the state |+1̃⟩ is nothing but the state |𝜓⟩ in En. (8) that
was guessed in Ref. [8].

With regard to the Hamiltonian (18), the substitution of Eq. (24) for
Hubbard operators can be represented formally as
𝑆𝑈 (3)-transformation (see Ref. [45]):

𝐻(𝜃) → 𝐻(𝜃, 𝛼) = 𝑈3(𝛼)𝐻(𝜃)𝑈†
3 (𝛼), (27)

with the unitary operator:

𝑈3(𝛼) =
∏

𝑙∈𝐿
𝑈1,−1(𝛼, 𝑙). (28)

Eqs. (24) with right hand side evaluated explicitly for different
indices 𝑛 and 𝑚 are summarized in Eq. (B.6). Substituting these expres-
sions into Eq. (22) and requiring the coefficients for non-diagonal new
Hubbard operators to vanish, we obtain the following diagonal form
for the transformed single-site Hamiltonian:

𝐻0(𝑙, 𝛼) = 𝜀−1𝑋
−1̃,−1̃
𝑙 + 𝜀0𝑋 0̃0̃

𝑙 + 𝜀1𝑋 1̃1̃
𝑙 , (29)

where

𝜀−1 = 𝐷
2
(1 + sin 2𝛼) + |𝐻̄| cos 2𝛼,

𝜀0 = 𝐷,

𝜀1 = 𝐷
2
(1 − sin 2𝛼) − |𝐻̄| cos 2𝛼. (30)

The equation for determining angle 𝛼 turns out to be trivial:
𝐷 cos 2𝛼 = −2𝐻̄ sin 2𝛼, and expressions for trigonometric functions of
interest are as follows

sin 𝛼 =

√

1
2
−

|𝐻̄|

𝜈
, sin 2𝛼 = 𝐷

𝜈
,

cos 𝛼 =

√

1
2
+

|𝐻̄|

𝜈
, cos 2𝛼 =

2|𝐻̄|

𝜈
,

𝜈 =
√

𝐷2 + 4𝐻̄2. (31)

Given these expressions, the eigenvalues (30) of the single-site Hamil-
tonian 𝐻0(𝑙, 𝛼) can be rewritten as:

𝜀−1 =
𝐷 + 𝜈
2

, 𝜀0 = 𝐷, 𝜀1 =
𝐷 − 𝜈
2

. (32)

When 𝐻̄ = 0 the energy 𝜀1 = 0 and 𝜀−1 = 𝜀0 = 𝐷.
The expression for transformed total Hamiltonian (27), obtained as

a result of substituting Eqs. (24) (or rather Eqs. (B.6)) into the operator
𝐻(𝜃) as it was done above for 𝐻0(𝑙), is not shown here due to its
bulkiness, but in the next Section we write it out after introducing the
Bose operators acting in the Hilbert subspace of 𝐿-sublattice.

7. Bosonization of the 𝑳 subsystem

The single-site Hamiltonian (29) describes a three-level system in
terms of the new Hubbard operators (Fig. 4c). At low temperatures it
is more convenient to take advantage of Bose operators description of
the Hamiltonian instead of Hubbard ones due to rather complicated
commutation relations of the latter. To this end, following the Refs. [7,
11,46] we introduce two new kinds of bosons (𝑐 and 𝑑). Creation of
a boson at the site 𝑙, by means of the Bose operators 𝑐+𝑙 or 𝑑+𝑙 , imply
transition of the three-level system from the ground state |+1̃⟩ to the
excited state |0̃⟩ = 𝑐+𝑙 |+1̃⟩ or |−1̃⟩ = 𝑑+𝑙 |+1̃⟩, respectively. The states
with a larger number of bosons are cut off as non-physical by the metric
operator.

The new Hubbard operators 𝑋 𝑝̃𝑞 (𝑝, 𝑞 = 1, 0,−1), according to
Refs. [7,46], are expressed in terms of boson operators as follows:

𝑋 0̃,1̃ = 𝑐+, 𝑋 1̃,0̃ = (1 − 𝑐+𝑐 − 𝑑+𝑑) 𝑐,

𝑋−1̃,1̃ = 𝑑+, 𝑋 1̃,−1̃ = (1 − 𝑐+𝑐 − 𝑑+𝑑) 𝑑,
5

Fig. 4. Energy diagrams describing the action of Bose-operators: (a) operator 𝑎+𝑓 in
𝐹 -sublattice; (b) operator 𝑏+𝑓 in 𝐺-sublattice; (c) operators 𝑐+𝑓 and 𝑑+𝑓 in the three-level
system of 𝐿-sublattice described by the Hamiltonian 𝐻0(𝑙, 𝛼). Definitions of all the states
and energies used are given after Eq. (17) and in Eqs. (26), (32), (35).

𝑋 1̃,1̃ = (1 − 𝑐+𝑐 − 𝑑+𝑑), 𝑋 0̃,0̃ = 𝑐+𝑐,

𝑋−1̃,−1̃ = 𝑑+𝑑, 𝑋 0̃,−1̃ = 𝑐+𝑑, 𝑋−1̃,0̃ = 𝑑+𝑐. (33)

Using these expressions together with Eqs. (B.7), relating the spin
and Hubbard operators, the transformed Hamiltonian (27) can be
represented in the form:

𝐻 = 𝐸𝐺 + 𝐸𝑐
∑

𝑙
𝑐+𝑙 𝑐𝑙 + 𝐸𝑑

∑

𝑙
𝑑+𝑙 𝑑𝑙

− 𝐻̃
∑

𝑓
𝑎+𝑓 𝑎𝑓 − 𝐻̃

∑

𝑔
𝑏+𝑔 𝑏𝑔

+ 𝐽𝑆
2

∑

{𝑓𝑔}

(

cos 2𝜃 (𝑎𝑓 + 𝑎+𝑓 )(𝑏𝑔 + 𝑏
+
𝑔 )

− (𝑎𝑓 − 𝑎+𝑓 )(𝑏𝑔 − 𝑏
+
𝑔 )
)

+ 𝐼
√

𝑆
2

∑

{𝑓𝑙}

(

𝜙+ cos 𝜃 (𝑎𝑓 + 𝑎+𝑓 )(𝑐𝑙 + 𝑐
+
𝑙 )

−𝜙−(𝑎𝑓 − 𝑎+𝑓 )(𝑐𝑙 − 𝑐
+
𝑙 )

− sin 𝜃 sin 2𝛼 (𝑎𝑓 + 𝑎+𝑓 )(𝑑𝑙 + 𝑑
+
𝑙 )
)

+ 𝐼
√

𝑆
2
∑

{𝑔𝑙}

(

𝜙+ cos 𝜃 (𝑏𝑔 + 𝑏+𝑔 )(𝑐𝑙 + 𝑐
+
𝑙 )

−𝜙−(𝑏𝑔 − 𝑏+𝑔 )(𝑐𝑙 − 𝑐
+
𝑙 )

+ sin 𝜃 sin 2𝛼 (𝑏𝑔 + 𝑏+𝑔 )(𝑑𝑙 + 𝑑
+
𝑙 )
)

, (34)

where

𝐸𝑐 = 𝜀0 − 𝜀1 =
𝐷 + 𝜈
2

, 𝐸𝑑 = 𝜀−1 − 𝜀1 = 𝜈,

𝐻̃ = 𝐽0𝑆 cos 2𝜃 + 𝐼0 cos 𝜃 cos 2𝛼,

𝜙± = (cos 𝛼 ± sin 𝛼)∕
√

2,

𝐸𝐺 = 𝑁(𝜀1 + 𝐽0𝑆2 cos 2𝜃), (35)

and 𝑁 is a number of sites in sublattice.
When writing the expression (34), only terms not higher than the

second degree in Bose operators were left. Besides, the coefficients
before the terms of the first degree were set to zero. This gives the
equation for determining the angle 𝜃:

cos 𝜃 = −𝐼0 cos 2𝛼∕2𝐽0𝑆, (36)

which is consistent with the previously given expressions (10) and (15).
The Eq. (36) together with the Eqs. (31) for cos 2𝛼 and (20) for 𝐻̄ form
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c

8

t

𝐻

𝐽

𝜖

N
t

t
o

9
p

q
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a

s
f

𝑅

f
e
i

𝑅

T
(

𝑛

a
s

d
m
q

i
t

𝑄

s

a system with solutions

cos 2𝛼 =

√

1 −
(

𝐷
𝐷𝑐

)2
, (37)

os 𝜃 = −
𝐼0

2𝐽0𝑆

√

1 −
(

𝐷
𝐷𝑐

)2
, (38)

coinciding with that of (15) obtained earlier in the mean field approx-
imation. The value of 𝐷𝑐 (see Eq. (14)) defines the upper bound for
parameter 𝐷 for which there are nontrivial solutions for the angles 𝛼
and 𝜃 corresponding to the canted ferrimagnetic phase. At 𝐷 > 𝐷𝑐 ,
the system enters a quadrupole antiferromagnetic phase (see below) in
which angles stay constant and equal: 𝛼 = 𝜋∕4, 𝜃 = 𝜋∕2.

. The dispersion equation

In the quasi-momentum representation, the Hamiltonian (34) takes
he compact form:

=
∑

𝑘

{

𝐸𝑐 𝑐
+
𝑘 𝑐𝑘 + 𝐸𝑑 𝑑

+
𝑘 𝑑𝑘 − 𝐻̃𝑎

+
𝑘 𝑎𝑘 − 𝐻̃𝑏

+
𝑘 𝑏𝑘

+ 𝐼−
[

𝛾𝑘𝑎𝑘𝑐−𝑘 + 𝛾∗𝑘𝑎
+
𝑘 𝑐

+
−𝑘 + 𝛾

∗
𝑘𝑏𝑘𝑐−𝑘 + 𝛾𝑘𝑏

+
𝑘 𝑐

+
−𝑘
]

+ 𝐼+
[

𝛾∗𝑘𝑎
+
𝑘 𝑐𝑘 + 𝛾𝑘𝑐

+
𝑘 𝑎𝑘 + 𝛾𝑘𝑏

+
𝑘 𝑐𝑘 + 𝛾

∗
𝑘 𝑐

+
𝑘 𝑏𝑘

]

+ 𝐼𝑑
[

𝛾∗𝑘𝑏𝑘𝑑−𝑘 + 𝛾𝑘𝑏
+
𝑘 𝑑

+
−𝑘 − 𝛾𝑘𝑎𝑘𝑑−𝑘 − 𝛾

∗
𝑘𝑎

+
𝑘 𝑑

+
−𝑘

+ 𝛾𝑘𝑏
+
𝑘 𝑑𝑘 + 𝛾

∗
𝑘𝑑

+
𝑘 𝑏𝑘 − 𝛾

∗
𝑘𝑎

+
𝑘 𝑑𝑘 − 𝛾𝑘𝑑

+
𝑘 𝑎𝑘

]

+ 𝐽−
[

𝛾∗𝑘𝑎𝑘𝑏−𝑘 + 𝛾𝑘𝑎
+
𝑘 𝑏

+
−𝑘
]

+𝐽+
[

𝛾𝑘𝑎
+
𝑘 𝑏𝑘 + 𝛾

∗
𝑘𝑏

+
𝑘 𝑎𝑘

]}

+ 𝐸𝐺 , (39)

where

𝐼± = 𝐼0

√

𝑆
2
(𝜙+ cos 𝜃 ± 𝜙−),

𝐼𝑑 = 𝐼0

√

𝑆
2

sin 𝜃 sin 2𝛼, (40)

± = 𝐽0
𝑆
2
(cos 2𝜃 ± 1),

𝛾𝑘 = 1
3
∑

𝛿
𝑒𝑖𝑘𝛿 = 1

3

(

2 cos
𝑘𝑧
2
𝑒
𝑖 𝑘𝑥
2
√

3 + 𝑒
−𝑖 𝑘𝑥√

3

)

.

In the last expression, the vector 𝛿 runs over three values {𝜉, −
𝜁, 𝜁 − 𝜉} (Fig. 1). These three vectors connect each site of 𝐿(𝐹 (𝐺))-
sublattice with three nearest sites from 𝐹 (𝐺(𝐿))-sublattice. Similarly,
three vectors −𝛿 connect each site of 𝐿(𝐹 (𝐺))-sublattice with three
nearest sites from 𝐺(𝐿(𝐹 ))-sublattice.

To calculate the spectrum of collective spin excitations, we intro-
duce the matrix retarded Green’s function ⟨⟨𝐗†

𝑘|𝐗𝑘⟩⟩𝜔, where

𝐗𝑘 = (𝑎+𝑘 , 𝑏
+
𝑘 , 𝑐

+
𝑘 , 𝑑

+
𝑘 , 𝑎−𝑘, 𝑏−𝑘, 𝑐−𝑘, 𝑑−𝑘).

By writing out the equations of motion for this function and requiring
the existence of nontrivial solutions, we obtain the dispersion equation:

|

|

|

|

|

𝜔 − 𝐀𝑘 −𝐁𝑘
𝐁𝑘 𝜔 + 𝐀𝑘

|

|

|

|

|

= 0, (41)

where

𝐀𝑘 =

⎛

⎜

⎜

⎜

⎜

⎝

−𝐻̃ 𝐽+𝛾𝑘 𝐼+𝛾∗𝑘 −𝐼𝑑𝛾∗𝑘
𝐽+𝛾∗𝑘 −𝐻̃ 𝐼+𝛾𝑘 𝐼𝑑𝛾𝑘
𝐼+𝛾𝑘 𝐼+𝛾∗𝑘 𝐸𝑐 0
−𝐼𝑑𝛾𝑘 𝐼𝑑𝛾∗𝑘 0 𝐸𝑑

⎞

⎟

⎟

⎟

⎟

⎠

, (42)

and

𝐁𝑘 =

⎛

⎜

⎜

⎜

⎜

0 𝐽−𝛾𝑘 𝐼−𝛾∗𝑘 −𝐼𝑑𝛾∗𝑘
𝐽−𝛾∗𝑘 0 𝐼−𝛾𝑘 𝐼𝑑𝛾𝑘
𝐼−𝛾𝑘 𝐼−𝛾∗𝑘 0 0

∗

⎞

⎟

⎟

⎟

⎟

. (43)
6

⎝

−𝐼𝑑𝛾𝑘 𝐼𝑑𝛾𝑘 0 0
⎠

𝑀

The dispersion equation (41) is an equation of the fourth degree with
respect to 𝜔2, and its solutions represent four branches of the spectrum
of collective spin excitations of the three-lattice SU3-F.

When the value of the SIA-parameter 𝐷 exceeds the critical value
𝐷𝑐 , the SU3-F turns out to be in the QAFM phase, and Eq. (41) is
significantly simplified. In this case, for the four branches of spin-wave
excitations the following analytical expressions can be obtained:

𝜖1(𝑘) = 𝐽0𝑆
√

1 − |𝛾𝑘|
2,

2(𝑘) =
√

(

𝜖1(𝑘)2 +𝐷2 − 𝛬2
𝑘
)

∕2,

𝜖3(𝑘) = 𝐷,

𝜖4(𝑘) =
√

(

𝜖1(𝑘)2 +𝐷2 + 𝛬2
𝑘
)

∕2, (44)

where

𝛬2
𝑘 =

√

(𝜖1(𝑘)2 −𝐷2)2 + 8𝑆2𝐼20𝐽0𝐷𝛤𝑘,

𝛤𝑘 = 2 |𝛾𝑘|
2 − 2Re{𝛾𝑘3}. (45)

ote that in Eqs. (44) the third non-dispersive branch 𝜖3(𝑘) describes
he energy of localized 𝑑-boson excitations at 𝐷 > 𝐷𝑐 .

In the following Sections, the obtained expressions are used to de-
ermine the ground state magnetic structure and spectral characteristics
f the SU3-F.

. Ground state magnetic structure. Dipole and quadrupole order
arameters

As it was noted, at large values of SIA, as an order parameter in
uantum magnets should be considered not only the dipole moment
i.e., the magnetic moment of one ion in a separate sublattice), but also
quadrupole moment (11).

The average value of the magnetic moment 𝑅 for 𝐹 - and 𝐺-
ublattices in the spin-wave approximation can be calculated using the
ormula:

= ⟨𝑆𝑧𝑓 ⟩ = ⟨𝑆𝑧𝑔 ⟩ = 𝑆 − 𝑛𝑎, (46)

ollowing from the definitions (17). In the case of 𝐿 sublattice, the
xpression for 𝑅𝐿 = ⟨𝑆𝑧𝑙 ⟩ is obtained from Eq. (B.7) after replacing
n it the Hubbard operators with Bose operators according to (33):

𝐿 = cos 2𝛼 ⋅ (1 − 𝑛𝑐 − 2 𝑛𝑑 ). (47)

he average number of bosons 𝑛𝜌 of type 𝜌 = 𝑎, 𝑏, 𝑐, 𝑑 in Eqs. (46) and
47) is determined by the expression:

𝜌 =
1
𝑁

∑

𝑘
⟨𝜌+𝑘 𝜌𝑘⟩, (48)

nd is calculated by means of spectral theorem applied to the corre-
ponding component of the matrix Green’s function ⟨⟨𝐗†

𝑘|𝐗𝑘⟩⟩𝜔.
It can be seen that the expression (47) for the order parameter 𝑅𝐿

iffers from the expression (10) for 𝑅𝑀𝐹
𝐿 in the mean field approxi-

ation by additional fluctuation terms affecting the magnitude of the
uantum spin reduction in the 𝐿-sublattice.

The expression for the average value of the quadrupole moment (11)
s obtained similarly to formula (47). Sequentially using the represen-
ations (B.7) and (33) to derive the square of the operator 𝑆𝑦𝑙 , we find:

0
2 =

3
2
(1 + 𝑛𝑐 ) −

3
2
sin 2𝛼(1 − 𝑛𝑐 − 2𝑛𝑑 ) − 2. (49)

This expression also differs from the formula (12) for 𝑄𝑀𝐹 , obtained in
the mean field approximation, by the quantum fluctuation corrections.

Another quantity that bears important information is the total mag-
netic moment 𝑀 . It is natural to define it as the projection of the vector
um 𝐑𝐹 + 𝐑𝐺 + 𝐑𝐿 onto the axis 𝑂𝑧:

= 𝑅 + 2𝑅 cos 𝜃. (50)
𝐿
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Fig. 5. (a) Dependencies of the quantities 𝑅𝐿 (red curve), 𝑅 (blue curve), 𝑀 (black
urve) and |𝑄0

2| (green curve) on the parameter 𝐷. For convenience, the value of |𝑄0
2|

as been reduced three times. (b) Dependencies of the boson numbers 𝑛𝜌 (𝜌 = 𝑎, 𝑏, 𝑐, 𝑑)
n the SIA-parameter 𝐷. The exchange integrals ratio is 𝐼∕𝐽 = 0.5. At the same time,
𝑐∕𝐽 = 1.5.

he vector 𝐌 in the chosen coordinate system is always directed along
he 𝑧-axis (Fig. 1).

Calculation of four quantities 𝑅, 𝑅𝐿, 𝑄0
2 and 𝑀 was carried out

t zero temperature. The results of numerical calculations depend
ignificantly on the ratio of the exchange integrals 𝐼 and 𝐽 .

We start with the case of weak exchange coupling 𝐼 . Let us take
∕𝐽 = 1∕2. With this chosen ratio of 𝐼∕𝐽 and with 𝐷 = 0, the
quilibrium angle 𝜃 turns out to be 1200. Thus, all three angles between
hree equilibrium coplanar sublattice magnetizations are equal. This is
ecause the exchange integral 𝐼 , being twice as small as 𝐽 , describes
he interaction between sublattices in one of which the spin is twice as
arge as in another. As a result, the energy of the exchange interactions
etween all three pairs of the three sublattices turns out to be the same.

The dependencies of the total magnetic moment 𝑀 , the quadrupole
oment 𝑄0

2, as well as the moments of the sublattices 𝑅𝐿 and 𝑅 on
he anisotropy parameter 𝐷 at the ratio 𝐼∕𝐽 = 0.5 are shown in
ig. 5a. It can be seen that spins in all three sublattices reveal significant
eduction due to quantum fluctuations. However, while the value of 𝑅
oes not change significantly with an increase in 𝐷, the values of 𝑅𝐿
nd 𝑀 turn to zero at 𝐷 = 𝐷𝑐 according to the square root law. At the
ame time, the angle of 𝜃 decreases from 1200 to 900. In its turn, the
uadrupole moment of the 𝐿-sublattice 𝑄0

2, with increase in the SIA-
arameter, demonstrates monotonic increase (in absolute value, since
0
2 < 0) with saturation at the point 𝐷 = 𝐷𝑐 . Zeroing out of the
arameters 𝑅𝐿 and 𝑀 , as well as saturation of the value 𝑄0

2, means
hat at the point 𝐷 = 𝐷𝑐 the system enters the QAFM phase. In this
ase, the spins of the 𝐿-sublattices are characterized by a quadrupole
rdering and the magnetic moments of the other two sublattices are
qual in modulus and antiparallel.

The described behavior is illustrated in Fig. 5a by two pictograms
hich show the magnetic structure of SU3-F to the left and right of the
7

ritical point 𝐷 = 𝐷𝑐 . Position of this point is indicated by a vertical a
ashed line. Using a red circle instead of an arrow symbolizes turning
𝐿 to zero.

Fig. 5b shows the dependence of the boson numbers of each type
n the magnitude of anisotropy parameter 𝐷. The character of these
ependencies significantly affects the shape of the curves in Fig. 5a. It
an be seen that for 𝐷 = 0 the value of 𝑛𝑐 is finite and 𝑛𝑑 = 0. This

means that due to exchange interactions only the state |0̃⟩ is mixed to
the ground single-ion state |+1̃⟩ (Fig. 4c). On the contrary, for 𝐷 = 𝐷𝑐
he value of 𝑛𝑑 is finite and 𝑛𝑐 = 0. In this case, only the state |−1̃⟩ is

mixed to the ground state |+1̃⟩. It is precisely the sharp decrease in the
number of 𝑛𝑐 in the vicinity of small values of 𝐷 that explains the slight
increase in the parameter 𝑅𝐿 at the origin (the red curve in Fig. 5a). The
numbers of 𝑎 and 𝑏 bosons that determine the spin quantum reduction
in 𝐹 and 𝐺 sublattices depend weakly on the anisotropy parameter 𝐷.

At 𝐷 = 0, an increase in the exchange integral 𝐼 makes the equilib-
rium angle 𝜃 to increase so that at 𝐼 = 𝐽 the angle turns out to be equal
to 1800: the magnetic moments of both 𝐹 - and 𝐺-sublattices in this case
are directed against the 𝑂𝑧 axis and together compensate completely
the magnetic moment of the 𝐿-sublattice (leading to 𝑀 = 0). Note that
this compensation point appears despite the fact that the spins of all
three sublattices undergo quantum reduction. This can be seen from
Fig. 6a, which shows the dependence of the magnetic moments 𝑅𝐿, 𝑅
and 𝑀 on the value of SIA. Comparison of these dependencies with the
similar curves in Fig. 5a shows that increase in 𝐼 leads to: (1) decrease
in the spin quantum reduction in the 𝐹 - and 𝐺-sublattices (blue line);
(2) more pronounced increase in 𝑅𝐿 in the vicinity of the origin (red
line); (3) the most important, the total magnetic moment 𝑀 now turns
to zero at two values of the SIA-parameter: 𝐷 = 0 and 𝐷 = 𝐷𝑐 (black
line in Fig. 6a). In the first case (𝐷 = 0), as was already said, the
magnetic moments of all three sublattices are nonzero. However, while
the moment in the 𝐿-sublattice is oriented along 𝑂𝑧 axis, in the 𝐹 - and
𝐺-sublattices it is oriented against 𝑂𝑧. In this phase, the moments of
the three sublattices completely compensate each other. In the second
case (𝐷 = 𝐷𝑐), we have 𝑅𝐿 = 0 but magnetic moments in 𝐹 - and
𝐺-sublattices are directed opposite to each other and parallel to the
𝑂𝑥 axis, and also add up to 𝑀 = 0. For all intermediate values of
the SIA-parameter, the system is in canted ferrimagnetic phase (see the
pictogram in Fig. 6a), and the total magnetic moment is nonzero and
points along the positive direction of 𝑂𝑧 axis. The quadrupole order
parameter 𝑄0

2, as in the case of 𝐼 < 𝐽 , increases monotonously in
absolute value and at 𝐷 ⩾ 𝐷𝑐 , in the domain corresponding to the
QAFM phase, saturates up to maximum values. A minor difference from
the previous case, shown in Fig. 5a, is due to the fact that now, the
green curve, describing the dependence of 𝑄0

2 on 𝐷, starts at the origin,
so that at 𝐷 = 0 the quadrupole order parameter 𝑄0

2 is zero.
The dependencies of the boson numbers on the anisotropy param-

eter 𝐷 at 𝐼∕𝐽 = 1 are shown in Fig. 6b. It can be seen that an
increase in the exchange integral 𝐼 leads to a decrease in the boson
numbers 𝑛𝑎 and 𝑛𝑏, which, in turn, causes a decrease in the quantum
spin reduction in the 𝐹 - and 𝐺-sublattices. Otherwise, the dependencies
of 𝑛𝜌 (𝜌 = 𝑎, 𝑏, 𝑐, 𝑑) on the SIA-parameter qualitatively repeat similar
curves in Fig. 5b.

The most interesting situation arises when the values of the ex-
change integral 𝐼 are greater than that of 𝐽 . The results of calculations
for 𝐼∕𝐽 = 1.2 are shown in Fig. 7. It can be seen from Fig. 7a that,
unlike the previously considered relations between 𝐼 and 𝐽 , now the
projection 𝑀 of the total moment on the 𝑂𝑧-axis turns out to be
negative when the ratio 𝐷∕𝐷𝑐 ranges from 0.1 to 0.762 (the red dots
on the black curve) and positive (or zero) for 𝐷∕𝐷𝑐 outside of this
nterval. This behavior is explained by the reversal of the magnetic
oments in 𝐹 - and 𝐺-sublattices and the specific 𝐷 dependence of the

oson numbers 𝑛𝜌 (𝜌 = 𝑎, 𝑏, 𝑐, 𝑑), which determine the 𝑅 and 𝑅𝐿 values.
nflection of the curves describing the corresponding dependencies in
igs. 7a and 7b at the point 𝐷∗ ≅ 0.54𝐷𝑐 (blue dots on the abscissa
xes) is due to the sudden decrease in the equilibrium angle 𝜃. This

ngle on the entire interval to the left of the point 𝐷∗ is constant and
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Fig. 6. (a) The dependence of quantities 𝑅𝐿 (red curve), 𝑅 (blue curve), 𝑀 (black
curve) and |𝑄0

2| (green curve) on the parameter 𝐷. (b) The dependence of boson
numbers 𝑛𝜌 (𝜌 = 𝑎, 𝑏, 𝑐, 𝑑) on the parameter of SIA. The ratio of exchange integrals
is 𝐼∕𝐽 = 1. The critical value of SIA: 𝐷𝑐 = 6𝐽 .

Fig. 7. (a) The dependence of quantities 𝑅𝐿 (red curve), 𝑅 (blue curve), 𝑀 (black
curve) and |𝑄0

2| (green curve) on the parameter 𝐷. (b) The dependence of boson
numbers 𝑛𝜌 (𝜌 = 𝑎, 𝑏, 𝑐, 𝑑) on the SIA-parameter. The ratio of exchange integrals is
𝐼∕𝐽 = 1.2. In this case, 𝐷𝑐∕𝐽 = 8.64. The inset in the lower plot demonstrates
dependence of the angle 𝜃 on the SIA-parameter. The magnitude of the anisotropy
parameter 𝐷∗, corresponding to the beginning of canting of the magnetic moments in
𝐹 - and 𝐺-sublattices, is indicated by blue dots on the abscissa axes.
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Fig. 8. Dependencies of the total magnetic moment 𝑀 on the SIA-parameter 𝐷 at
different ratios between the exchange integrals 𝐼 and 𝐽 . The values of 𝐼∕𝐽 are indicated
nearby the corresponding curves.

is equal to 1800, but on the right side of 𝐷∗ — decreases monotonously
and at 𝐷 = 𝐷𝑐 takes the value 900 (see insert on Fig. 7b).

Thus, if for 𝐼 = 𝐽 the collinear spin configuration (when 𝐑𝐿 is
irected along the 𝑂𝑧 axis, and 𝐑𝐹 and 𝐑𝐺 are directed oppositely)

occurred only at one value of 𝐷 equal to zero (see discussion of Fig. 6a),
now, for 𝐼 > 𝐽 , this collinear configuration persists in the whole
range of 𝐷 values from zero to 𝐷∗. The domains corresponding to
the three specified magnetic configurations: collinear ferrimagnetic,
canted ferrimagnetic, and quadrupole antiferromagnetic, are indicated
in Fig. 7a by corresponding pictograms.

The dependence of the quadrupole order parameter 𝑄0
2 on the SIA-

arameter 𝐷 (the green line in Fig. 7a) repeats a similar dependence at
= 𝐽 in Fig. 6a.

Fig. 8 demonstrates the projection 𝑀 of the total magnetization on
he 𝑂𝑧-axis as a function of the anisotropy parameter 𝐷 for several
alues of 𝐼∕𝐽 .

To the right of 𝐷𝑐 , the SU3-F is in the QAFM phase at all the ratios
∕𝐽 . Therefore, for 𝐷 ⩾ 𝐷𝑐 , the projection of 𝑀 is identically zero.
or 𝐼 < 𝐽 , at any value of the parameter 𝐷 from the range [0, 𝐷𝑐 )
nly the canted ferrimagnetic state is implemented (𝜃 < 𝜋). In this
ase, for all values of 𝐷 < 𝐷𝑐 , the projection of 𝑀 is nonzero and
ositive. The minimum value of the exchange integral 𝐼 at which a
ollinear (𝜃 = 0) ferrimagnetic phase occurs is 𝐽 . Moreover, at 𝐼 = 𝐽 ,
his phase occurs only at one point 𝐷 = 0, and it is at this point (from
he entire interval [0, 𝐷𝑐 )) the value of 𝑀 turns out to be zero for the
irst time. With a further increase in the exchange integral 𝐼 , the range

of collinear ferrimagnetic phase increases and is characterized by the
interval [0, 𝐷∗), where the value of 𝐷∗, separating the collinear and
anted phases, can be visually identified as the inflection point on the
ependencies 𝑀(𝐷) (see the three lower curves in Fig. 8, calculated for
∕𝐽 = 1.2, 1.5 and 2). It can also be seen from the figure that at the
oint 𝐷 = 0 the projection 𝑀 of the total magnetization remains equal
o zero for all 𝐼 > 𝐽 .

An important fact following from the analysis of the curves in Fig. 8
onsists in changing the sign of the projection of the total magnetic
oment 𝑀 as soon as the ratio 𝐼∕𝐽 becomes greater than one. The
irection of the moment 𝐌 is reversed not by rotating the vector 𝐌,
ut by reducing its length to zero and then increasing in the opposite
irection. The sign change of 𝑀 may occur at any value of 𝐷 from
0, 𝐷𝑐 ), but not necessarily for the same value of the ratio 𝐼∕𝐽 . As a
esult, the situation discussed above in Fig. 7a for 𝐼∕𝐽 = 1.2 may arise,

in which the sign of 𝑀 changes twice as 𝐷 increases leading in this

way to two compensation points.
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Fig. 9. Spin-wave excitation spectrum at 𝐼∕𝐽 = 0.8 and three anisotropy parameter
values: (a) 𝐷 = 0; (b) 𝐷 = 0.5𝐷𝑐 and (c) 𝐷 = 𝐷𝑐 . In this case 𝐷𝑐∕𝐽 = 3.84. The position
of the points 𝛤 , 𝐾 and 𝑀 is indicated in Fig. 10.

Fig. 10. Brillouin zone of triangular lattice and high-symmetry points.

10. Spin-wave excitation spectrum in SU3-F

Fig. 9 demonstrates the spin-wave spectrum at 𝐼∕𝐽 = 0.8 for three
values of the SIA-parameter: 𝐷∕𝐷𝑐 = 0, 0.5 and 1. The wave vector
𝑘 runs through a triangle formed by the points 𝛤 , 𝐾 and 𝑀 in the
Brillouin zone. The position of these points is shown in Fig. 10.

It can be seen that at 𝐷 = 0 (Fig. 9a) there are two gapless
branches (blue and red) that turn to zero at 𝑘 = 0. The other two
branches (yellow and purple) describe excitations with finite energy
for all wave vectors 𝑘. At the same time, the highest-energy and almost
non-dispersed violet branch corresponds to 𝑑 boson excitations with
energy 𝐸 (35).
9

𝑑

As the anisotropy parameter increases, the yellow (gaped) branch
moves upward (Fig. 9b) and at 𝐷 = 𝐷𝑐 almost merges with the
high-energy purple one (Fig. 9c).

The described behavior of the yellow dispersion curve in Fig. 9
correlates with the change in the angle 𝜃. As was noted in the previous
Section (see also expression (38)) for 𝐼∕𝐽 < 1, the angle 𝜃 is less than
𝜋 for any value of 𝐷. In this case, the excitation spectrum showed
by the yellow curve is gaped for all the values of 𝐷. At 𝐷 = 0, the
angle 𝜃 acquires maximal value and the gap is minimal (Fig. 9a). As
the SIA-parameter increases, the angle 𝜃, in accordance with discussion
in the previous Section, decreases, reaching the minimum value 𝜋∕2 at
𝐷 = 𝐷𝑐 , and the gap, on the contrary, increases and turns out to be
maximal at 𝐷 = 𝐷𝑐 (Fig. 9c).

Given the described correlation between the angle 𝜃 and the gap
width for yellow dispersion curve, we can expect the gap to turn to
zero at 𝜃 = 𝜋. This is possible for 𝐼 ⩾ 𝐽 .

Fig. 11 shows the results of calculations of the spin-wave excita-
tion spectrum at equal exchange integrals (𝐼 = 𝐽 ) for three values
of the anisotropy parameter 𝐷. As noted above, when the exchange
parameters 𝐼 and 𝐽 are equal, the angle 𝜃 is equal to 𝜋 at only one
point: 𝐷 = 0 (see the formula (38)). And it is at this point, as expected,
the yellow dispersion curve turns out to be gapless (Fig. 11a). For any
other values of 𝐷 the gap is finite. The absence of a gap in the yellow
dispersion curve in Fig. 11a is the main feature that distinguishes it
from the similar curve in Fig. 9a. At other (non-zero) parameters of the
SIA, the dispersion curves in Figs. 9 and 11, calculated respectively at
𝐼∕𝐽 = 0.8 and 𝐼∕𝐽 = 1 exhibit similar dynamics with an increase in 𝐷:
two branches remain gapless and one (yellow) goes upward. At 𝐷 = 𝐷𝑐 ,
yellow curve merges with the dispersionless high-energy purple curve
with energy 𝐸𝑑 .

The latter fact means that the excitations described by the yellow
and purple dispersion curves are of the same nature. Since, as noted
above, the purple branch corresponds to the 𝑑-boson excitations, the
yellow one should be associated with the 𝑐-boson excitations. Both
of these boson types are due to excitations in the 𝐿-subsystem (with
𝑆 = 1), which at 𝐷 = 𝐷𝑐 enters the quadrupole phase with 𝑅𝐿 = 0.

The most interesting modification of the dispersion curves with a
change in the parameter 𝐷 occurs at 𝐼∕𝐽 > 1. Fig. 12 shows an example
of such a modification at the ratio of exchange integrals 𝐼∕𝐽 = 1.2. At
zero value of the anisotropy parameter (Fig. 12a), only two of the four
dispersion curves are gapless (there are three such curves in Fig. 11a).
One of them, yellow, is associated with 𝑐-boson excitations, as before,
with an increase in 𝐷 becomes gaped, goes up and, eventually, merges
with the purple disperseless branch describing 𝑑-boson excitations.

The second gapless branch (red in Fig. 12) changes insignificantly
and remains gapless at all values of the SIA-parameter. This branch
corresponds to the Goldstone mode associated with the violation of con-
tinuous symmetry with respect to rotation around the axis 𝑂𝑦 normal
to the plane of the triangular lattice under consideration (Fig. 3).

Peculiar behavior in Fig. 12 is demonstrated by the blue dispersion
curve. At 𝐷 = 0 (Fig. 12a), this curve describes spin-wave excitations
with finite energy for all 𝑘. Let us denote by 𝛥0 the minimum energy
of these excitations at 𝑘 = 0. When the parameter 𝐷 is increased, the
gap 𝛥0 begins to decrease (see Figs. 12b, 12c) and at some value of
𝐷 = 𝐷∗ turns to zero (Fig. 12d). With a further increase in 𝐷, the blue
curve remains gapless for all 𝐷 in the range from 𝐷∗ to 𝐷𝑐 (Figs. 12d,
12e, 12f). The described behavior of the gap 𝛥0 as a function of the
SIA-parameter is shown in Fig. 13.

Transformation of the blue dispersion curve shown in Fig. 12, and
in particular the character of change of the gap width at 𝑘 = 0
(Fig. 13), allow us to conclude that the excitations described by this
curve are associated with the rotation of magnetic moments in 𝐹 - and
𝐺-sublattices around the 𝑂𝑧 axis parallel to the 𝐿-sublattice magnetic
moment (Fig. 3). Indeed, for 𝐷 ∈ (𝐷∗, 𝐷𝑐 ) the system is in canted
ferrimagnetic phase (angle 𝜃 < 𝜋). Since in the ground state under
consideration, the magnetic moments of all spins from the 𝐿 sublattice
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Fig. 11. Spin-wave excitation spectrum at 𝐼 = 𝐽 and three values of the anisotropy
parameter: (a) 𝐷 = 0, (b) 𝐷 = 𝐷𝑐∕2, (c) 𝐷 = 𝐷𝑐 . In this case 𝐷𝑐∕𝐽 = 6. The position of
the points 𝛤 , 𝐾 and 𝑀 is indicated in Fig. 10.

are oriented parallel to each other and along the 𝑂𝑧 axis, the energy of
the system turns out to be invariant with respect to rotation around
the 𝑂𝑧 axis of two vectors 𝐑𝐹 and 𝐑𝐺 by arbitrary but identical
angle. For Hamiltonian, such an invariance, according to the Goldstone
theorem, would mean the existence of a gapless mode associated with
violation of continuous symmetry with respect to rotation about the
𝑂𝑧 axis of the plane formed by this axis and the vectors 𝐑𝐹 and
𝐑𝐺. Since in our case we can only talk about the invariance of the
average energy (not the Hamilton operator) and, moreover, in a specific
canted ferrimagnetic ground state, then the gapless blue dispersion
curve in Fig. 12, at the specified range of 𝐷, is not a Goldstone mode
in the strict sense. Nevertheless, the behavior of this curve obeys the
conditions of the Goldstone theorem. In particular, at 𝐷 < 𝐷∗, when
the system is in ferrimagnetic collinear phase (the moments of all three
sublattices are parallel to the 𝑂𝑧 axis), the ground state does not violate
the specified energy symmetry. Such a statement in respect to the
Hamiltonian, according to the Goldstone theorem, would mean that
there is no need for a corresponding gapless mode. As can be seen
from Figs. 12 and 13, the behavior of the blue dispersion curve exactly
satisfies these requirements.

An important question which cannot be answered unambiguously
within only numerical calculations is the character of 𝑘-dependence of
the blue dispersion curve in the vicinity of the origin (small 𝑘) at values
of 𝐷 close to 𝐷𝑐 . As can be seen from Figs. 9c, 11c and 12f, the band
structure at 𝐷 ∼ 𝐷𝑐 is qualitatively the same for any ratio 𝐼∕𝐽 : there
are two weakly dispersed branches with high energy ∼ 𝐷 (purple and
yellow curves), one Goldstone mode with linear in 𝑘 dispersion (red
curve), and a blue dispersion curve with visually undetectable type of
𝑘-dependence in the vicinity of 𝑘 = 0.
10

𝜖

Fig. 12. Spin-wave excitation spectrum at 𝐼∕𝐽 = 1.2. Anisotropy parameter: (a) 𝐷 = 0;
b) 𝐷 = 0.2𝐷𝑐 ; (c) 𝐷 = 0.4𝐷𝑐 ; (d) 𝐷 = 𝐷∗ = 0.56𝐷𝑐 ; (e) 𝐷 = 0.8𝐷𝑐 ; (f) 𝐷∕𝐷𝑐 = 1. In
his case 𝐷𝑐∕𝐽 = 8.64. The position of the points 𝛤 , 𝐾 and 𝑀 is indicated in Fig. 10.

Fig. 13. The gap 𝛥0 (see the text) as a function of SIA-parameter at 𝐼∕𝐽 = 1.2.

Since the band structure of the SU3-F ceases to change qualitatively
t 𝐷 > 𝐷𝑐 , then to determine the dispersion of the blue curve at
mall 𝑘 we can consider the values of the SIA-parameter from the right
eighborhood of 𝐷𝑐 . In this case, for the corresponding branches of the
pectrum we have analytical expressions (44).

Using these expressions, we obtain the following formula for func-
ion 𝜖2(𝑘)2 (corresponding to the blue branch of the spectrum) up to
he fourth degree in absolute value of the dimensionless wave vector
=
√

𝑘2𝑧 + 𝑘2𝑥:

(

𝜖2(𝑘)
)2 ≃ 𝜌

𝐽 2
0𝑆

2

6
𝑘2

+

[

2 − 𝜌

(

3 + 8
3

(

𝐽0
𝐷

)2 𝐷𝑐
𝐷
𝑆2

)]

𝐽 2
0𝑆

2

96
𝑘4, (51)

where 𝜌 = 1 −𝐷𝑐∕𝐷 is a positive small parameter. It can be seen from
the formula (51) that as long as 𝜌 ≠ 0 (i.e., as long as 𝐷 is greater than
and not equal to 𝐷𝑐), the dependence of 𝜖2(𝑘) on 𝑘 is linear: 𝜖2(𝑘) ≃
(𝐽0𝑆

√

𝜌∕6) 𝑘. But as soon as 𝜌 turns to zero (for 𝐷 = 𝐷𝑐), the spectrum
(𝑘) turns out to be quadratic for small 𝑘: 𝜖 (𝑘) ≃ (𝐽 𝑆∕4

√

3) 𝑘2.
2 2 0
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Obviously, when 𝐷 tends to 𝐷𝑐 from the left, the spectrum 𝜖2(𝑘) is
modified in a similar way.

11. Concluding remarks

In the present paper, the magnetic and spectral properties of the
three-sublattice mixed spin SU(3)-ferrimagnet on triangular lattice at
zero temperature have been studied. The magnitude of spins in one
(𝐿-) sublattice is 𝑆 = 1, and in the other two, 𝐹 - and 𝐺-sublattices, is
𝑆 = 1∕2. As it should be in any ferrimagnet, the exchange interaction
between spins from different sublattices is of antiferromagnetic type.
The important feature of the system under consideration is due to
the single-ion easy plane anisotropy in the spin-1 𝐿-sublattice. This
anisotropy can be strong enough to make the SU(3)-ferrimagnet enter
the quadrupole phase. As it is known, in this case, three rotation group
generators are not enough to describe static and dynamic properties
and it is necessary to include extra (in general, all 𝑛2 − 1) operators
from the 𝑆𝑈 (𝑛) algebra, where 𝑛 = 2𝑆 + 1. It is this circumstance
hat encouraged us to denote the system in question as the quantum
U(3)-ferrimagnet.

The spectral properties of the SU3-F have been studied within the
pin-wave approximation employing Holstein-Primakov representation
or spin-1/2 operators from 𝐹 - and 𝐺-sublattices. For spin-1 operators
rom 𝐿-sublattice, due to the comment made above, this representation
s incorrect if the constant of the single-ion anisotropy 𝐷 is not small
ompared to the exchange integral 𝐼 . In this regime, a strong quantum
luctuations occur in the 𝐿-sublattice. If there is nothing that prevents
uantum effects, for instance, an effective field on the anisotropic
on [18], the average spin can be reduced down to zero: 𝑅𝐿 = ⟨𝑆𝑧𝑙 ⟩ =
0. The three-sublattice ferrimagnet considered in this study has the
remarkable property that the effective field on the 𝐿-sublattice ion,
created by antiferromagnetically coupled moments from two isotropic
spin-1/2 𝐹 - and 𝐺-sublattices, is significantly reduced and, therefore,
does not prevents the quantum spin reduction on 𝐿-sublattice ions.

To correctly account for the SU(3) algebra of operators acting in the
𝐿-subsystem Hilbert space, the Hubbard operators representation has
been used [47], and bosonization of the Hubbard operators (after the
unitary transformation [8,45], diagonalizing the single-ion part of the
Hamiltonian) has been carried out according to the recipe suggested in
Refs. [7,46].

Numerical calculations of the magnetic structure have given the
following picture. At 𝐷 = 0, the magnetic moments of the three
sublattices 𝐑𝐿, 𝐑𝐹 and 𝐑𝐺 form a planar structure shown in Fig. 3.
The initial (i.e., at 𝐷 = 0) angle 𝜃 depends on the ratio of the exchange
integrals 𝐼 and 𝐽 . At 𝐼 < 𝐽 it is less than 𝜋, and at 𝐼 ⩾ 𝐽 the initial
angle 𝜃 = 𝜋. Accordingly, in the first case (𝐼 < 𝐽 ), the system is in
a canted ferrimagnetic phase (with total magnetization 𝑀 > 0) and
in the second case (𝐼 ⩾ 𝐽 ) – in a collinear ferrimagnetic phase when
the magnetic moment 𝐑𝐿 is directed along the 𝑂𝑧 axis, 𝐑𝐹 and 𝐑𝐺 –
against, but the total magnetization 𝑀 = 0, what actually means that
this is the first compensation point.

As the SIA-parameter increases, the angle 𝜃 decreases, and when the
parameter 𝐷 reaches the critical value 𝐷𝑐 = 2𝐼20∕𝐽0, the angle 𝜃 takes
the value of 𝜋∕2, and spins in the 𝐹 - and 𝐺-sublattices turns out to be
oriented strictly opposite each other and parallel to the 𝑂𝑥 axis. At the
same time, the 𝐿-subsystem enters a singlet non-magnetic state with
𝑅𝐿 = 0, but with a non-zero quadrupole order parameter 𝑄0

2 (49). This
means that at 𝐷 = 𝐷𝑐 SU3-F enters the quadrupole antiferromagnetic
phase.

Dependence of the total magnetization 𝑀 on the anisotropy param-
eter 𝐷 is also determined by the ratio of the exchange integrals 𝐼∕𝐽 .
The calculation results for different values of 𝐼∕𝐽 are shown in Fig. 8.
The most interesting is the dependence of 𝑀 on 𝐷 for 𝐼∕𝐽 = 1.2.
As shown in Fig. 7a by black curve the total magnetization 𝑀 turns
to zero not only at the boundaries of the interval [0, 𝐷𝑐 ], but also at
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two intermediate points and, accordingly, with an increase in 𝐷 within
the specified interval, the value of 𝑀 changes the sign twice. In this
case, four compensation points are actually observed with change in the
parameter D: two on the boundaries and two inside the interval [0, 𝐷𝑐 ].
Compensation behavior is interesting both from the experimental point
of view and from the technological one. For this reason the SU(3)-
ferrimagnet under consideration with the exchange parameter ratio
𝐼 ≳ 𝐽 can be considered as promising for practical applications.

The relationship 𝐼 > 𝐽 for the exchange integrals is also interesting
because in this case with an increase in the SIA-parameter all three
types of magnetic structure in SU3-F are successively implemented
(see Fig. 7a): (1) collinear ferrimagnetic (at 𝐷 ∈ [0, 𝐷∗]); (2) canted
ferrimagnetic (at 𝐷 ∈ (𝐷∗, 𝐷𝑐 )); (3) quadrupole antiferromagnetic (at
𝐷 ⩾ 𝐷𝑐).

The spin-wave excitation spectrum of the SU3-F, as calculations
have shown, is determined by four branches (Figs. 9, 11 and 12). Two
of them (yellow and purple) are associated with excitations in the spin-
1 subsystem. One of these two branches (purple) is dispersionless and
is always separated by a gap. The second one (yellow) turns to zero at
𝛤 point of the Brillouin zone only at 𝐼 ⩾ 𝐽 and 𝐷 = 0. For all other
parameters of the model this branch is characterized by a gap, the value
of which is larger the larger is the anisotropy parameter 𝐷. At 𝐷 → 𝐷𝑐 ,
the yellow and purple dispersion curves practically merge.

The other two of the four branches of the spin wave spectrum (blue
and red in Figs. 9, 11 and 12) are low-energy. The red branch represents
the Goldstone mode associated with the rotational (around the 𝑂𝑦 axis)
symmetry of the Hamiltonian which is always broken in the considered
ordered phase.

The blue dispersion curve describes excitations due to rotation of
the spins in the 𝐹 - and 𝐺-sublattices about the 𝐿-sublattice magnetic
moment direction (i.e., about 𝑂𝑧 axis). This conclusion is inferred from
the analysis of change in the gap 𝛥0 in the spectrum described by
the blue curve with an increase in the SIA-parameter at the ratio of
exchange integrals 𝐼∕𝐽 > 1 (Fig. 13). For 𝐷 less than a certain value
𝐷∗ the gap 𝛥0 is finite, and SU3-F is in collinear ferrimagnetic phase
(𝜃 = 𝜋). As soon as 𝐷 gets larger than 𝐷∗, the 𝐹 - and 𝐺-sublattice mag-
netization vectors start canting (𝜃 < 𝜋), and the gap 𝛥0 turns to zero.
Strictly speaking the Goldstone theorem is not applicable here, because
requiring the magnetization canting in the 𝐹 - and 𝐺-sublattices to occur
precisely in the 𝑧𝑂𝑥 plane (and not in any other plane containing the
𝑂𝑧 axis), we brake symmetry (with respect to rotation of the vectors 𝐑𝐹
and 𝐑𝐺 about the 𝑂𝑧 axis) of not the Hamiltonian (it does not have such
a symmetry), but its average value — the energy functional, provided
that the vector of 𝐿-sublattice average magnetization 𝐑𝐿 is parallel to
the 𝑂𝑧 axis. Nevertheless, it can be seen from Figs. 12 and 13 that
as soon as magnetization canting occurs in the 𝐹 - and 𝐺-sublattices
(i.e. the symmetry of the ground state turns out to be lower than that
of the energy functional), the blue curve immediately becomes gapless,
i.e. behaves like a Goldstone mode.

With regard to the above arguments, it is necessary to exercise some
caution, because when making a statement about invariance of the
energy of the system with respect to the rotation of the vectors 𝐑𝐹 and
𝐑𝐺 about the direction 𝐑𝐿, it should be remembered that we mean the
energy of the system calculated in the spin-wave approximation. Taking
into account quantum fluctuations can probably break this invariance.

Another important feature of the blue dispersion curve is related to
the modification of its wave vector dependence at the point 𝐷 = 𝐷𝑐 : if
away from this point the 𝑘-dependence of the blue curve is linear, then
at the very point 𝐷 = 𝐷𝑐 it turns out to be quadratic.

Note also that the set of parameters 𝐼 = 𝐽 and 𝐷 = 0 is the only one
at which the three lower branches of spin-wave excitations are gapless
(see Fig. 11a), at all other parameters of the model, the number of
gapless branches is less than three.

In conclusion we will make one more important general comment.
In 𝑆𝑈 (3)-ferrimagnets the need to involve quadrupole degrees of free-
dom may arise even when the magnitude of the single-ion anisotropy is

much smaller than that of exchange interactions, i.e. even in the regime
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Fig. 14. Two coordinate frames related to each other by rotation about 𝑂𝑦-axis by an
angle 𝜃. Note that the axes 𝑂𝑦 and 𝑂𝑦′ coincide.

of weak anisotropy. Indeed, the condition of not smallness of the SIA
means that 𝐷 ∼ 𝐷𝑐 = 2𝐼20∕𝐽0. But at 𝐼0 ≪ 𝐽0, this condition can be
satisfied even for 𝐷 much smaller than 𝐼0. Thus for the quantum effects
due to SIA to be manifested the parameter 𝐷 can be small compared
to the exchange integral 𝐼 . This circumstance assigns a special role to
the 𝑆𝑈 (3)-ferrimagnets.
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Appendix A. SU(2) transformation for spin operators

We want to express the spin operators in one coordinate frame,
𝑂𝑥𝑦𝑧, in terms of spin operators in another one, 𝑂𝑥′𝑦′𝑧′, obtained by
rotating the first frame about 𝑂𝑦-axis (see Fig. 14). For definiteness
consider the spin operator 𝑆𝑧 which measures the spin projection along
𝑂𝑧-axis in the first coordinate frame. Rotating the operator 𝑆𝑧 about
𝑂𝑦-axis by an angle 𝜃 we get a spin operator 𝑆𝑧′ measuring spin
projection along 𝑂𝑧′-axis. Mathematically, this rotation corresponds to
the unitary transformation: 𝑆𝑧′ = 𝑒−𝑖𝜃𝑆𝑦𝑆𝑧𝑒𝑖𝜃𝑆𝑦 (see, for example, [48]).
Given that 𝑆𝑦′ ≡ 𝑆𝑦 it can be rewritten as

𝑆𝑧 = 𝑒𝑖𝜃𝑆
𝑦
𝑆𝑧

′
𝑒−𝑖𝜃𝑆

𝑦
= 𝑒𝑖𝜃𝑆

𝑦′
𝑆𝑧

′
𝑒−𝑖𝜃𝑆

𝑦′

= 𝑆𝑧
′
cos 𝜃 − 𝑆𝑥

′
sin 𝜃,

which, after replacing, for simplicity, 𝑧′ → 𝑧 and 𝑥′ → 𝑥 is the third
equality in (5). The first equality in (5) is obtained in a similar way.
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Appendix B. SU(3) transformations for hubbard and spin opera-
tors

Let us define a generator of the 𝑆𝑈 (𝑁) algebra as 𝛤𝑛𝑚 = 𝑋𝑛𝑚 −𝑋𝑚𝑛

with 𝑛 and 𝑚 (𝑛 ≠ 𝑚) being the numbers of two certain states in the
Hilbert space under consideration. Following Ref. [45], write down the
unitary operator (28) for one particular site as follows (site index is
omitted):

𝑈𝑛𝑚(𝛼) = exp
{

𝛼𝛤𝑛𝑚
}

=

= 1 + (cos 𝛼 − 1) (𝑋𝑛𝑛 +𝑋𝑚𝑚) + sin 𝛼 𝛤𝑛𝑚. (B.1)

The new Hubbard operators 𝑋𝑟𝑠̃ = |𝑟⟩⟨𝑠̃|, defined in terms the new
states

|𝑟⟩ = 𝑈𝑛𝑚(−𝛼)|𝑟⟩, (B.2)

can be expressed via the initial Hubbard operators 𝑋𝑟𝑠 = |𝑟⟩⟨𝑠| by
means of the unitary transformation

𝑋𝑟𝑠̃ = 𝑈𝑛𝑚(−𝛼)𝑋𝑟𝑠𝑈+
𝑛𝑚(−𝛼). (B.3)

Since by definition (B.1) the operator 𝑈𝑛𝑚(𝛼) commutes with the
generator 𝛤𝑛𝑚, we have

𝛤𝑛̃𝑚̃ = 𝑈𝑛𝑚(−𝛼)𝛤𝑛𝑚𝑈+
𝑛𝑚(−𝛼) = 𝛤𝑛𝑚, (B.4)

Inverting Eq. (B.3), i.e. expressing initial operator 𝑋𝑟𝑠 via the new one
𝑋𝑟𝑠̃, and accounting for the equality 𝑈𝑛̃𝑚̃(𝛼) = 𝑈𝑛𝑚(𝛼), following from
Eq. (B.4), we get

𝑋𝑟𝑠 = 𝑈𝑛𝑚(𝛼)𝑋𝑟𝑠̃𝑈+
𝑛𝑚(𝛼)

= 𝑈𝑛̃𝑚̃(𝛼)𝑋𝑟𝑠̃𝑈+
𝑛̃𝑚̃(𝛼), (B.5)

which is the desired expression.
The right hand side of (B.5) can be evaluated explicitly for particular

𝑟 and 𝑠:

𝑋𝑛𝑛 = cos2 𝛼 𝑋 𝑛̃𝑛̃ + sin2 𝛼 𝑋𝑚̃𝑚̃

− 1
2
sin 2𝛼

(

𝑋 𝑛̃𝑚̃ +𝑋𝑚̃𝑛̃) ,

𝑋𝑚𝑚 = cos2 𝛼 𝑋𝑚̃𝑚̃ + sin2 𝛼 𝑋 𝑛̃𝑛̃

+ 1
2
sin 2𝛼

(

𝑋 𝑛̃𝑚̃ +𝑋𝑚̃𝑛̃) ,

𝑋𝑛𝑚 = cos2 𝛼 𝑋 𝑛̃𝑚̃ − sin2 𝛼 𝑋𝑚̃𝑛̃

+ 1
2
sin 2𝛼

(

𝑋 𝑛̃𝑛̃ −𝑋𝑚̃𝑚̃) ,

𝑋𝑚𝑛 = cos2 𝛼 𝑋𝑚̃𝑛̃ − sin2 𝛼 𝑋 𝑛̃𝑚̃

+ 1
2
sin 2𝛼

(

𝑋 𝑛̃𝑛̃ −𝑋𝑚̃𝑚̃) ,

𝑋𝑛𝑝 = cos 𝛼 𝑋 𝑛̃𝑝̃ − sin 𝛼 𝑋𝑚̃𝑝̃,

𝑋𝑝𝑛 = cos 𝛼 𝑋 𝑝̃𝑛̃ − sin 𝛼 𝑋 𝑝̃𝑚̃,

𝑋𝑝𝑚 = cos 𝛼 𝑋 𝑝̃𝑚̃ + sin 𝛼 𝑋 𝑝̃𝑛̃,

𝑋𝑚𝑝 = cos 𝛼 𝑋𝑚̃𝑝̃ + sin 𝛼 𝑋 𝑛̃𝑝̃,

𝑋𝑝𝑞 = 𝑋 𝑝̃𝑞 , (𝑝, 𝑞 ≠ 𝑛, 𝑚). (B.6)

In our case the spin 𝑆 = 1 and the indices 𝑛 and 𝑚 take the
values 1, 0,−1. Using relevant expressions from (B.6) in the Eq. (21)
the transformation laws for spin operators can be easily obtained

𝑆𝑥(𝛼) = 1
√

2
(cos 𝛼 + sin 𝛼)

(

𝑋 1̃,0̃ +𝑋 0̃,1̃
)

+ 1
√

2
(cos 𝛼 − sin 𝛼)

(

𝑋−1̃,0̃ +𝑋 0̃,−1̃
)

,

𝑆𝑦(𝛼) = 𝑖
√

2
(sin 𝛼 − cos 𝛼)

(

𝑋 1̃,0̃ −𝑋 0̃,1̃
)

+ 𝑖
√

2
(cos 𝛼 + sin 𝛼)

(

𝑋−1̃,0̃ −𝑋 0̃,−1̃
)

,

𝑆𝑧(𝛼) = cos 2𝛼
(

𝑋 1̃,1̃ −𝑋−1̃,−1̃
)

− sin 2𝛼
(

𝑋 1̃,−1̃ +𝑋−1̃,1̃
)

. (B.7)
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