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ABSTRACT
Metal nanoparticle (NP) complexes lying on a single-layer graphene surface are studied with a developed original hybrid quantum–classical
theory using the Finite Element Method (FEM) that is computationally cheap. Our theory is based on the motivated assumption that the
carrier charge density in the doped graphene does not vary significantly during the plasmon oscillations. Charge transfer plasmon (CTP)
frequencies, eigenvectors, quality factors, energy loss in the NPs and in graphene, and the absorption power are aspects that are theoretically
studied and numerically calculated. It is shown the CTP frequencies reside in the terahertz range and can be represented as a product of two
factors: the Fermi level of graphene and the geometry of the NP complex. The energy losses in the NPs are predicted to be inversely dependent
on the radius R of the nanoparticle, while the loss in graphene is proportional to R and the interparticle distance. The CTP quality factors are
predicted to be in the range ∼10 − 100. The absorption power under CTP excitation is proportional to the scalar product of the CTP dipole
moment and the external electromagnetic field. The developed theory makes it possible to simulate different properties of CTPs 3–4 orders
of magnitude faster compared to the original FEM or the finite-difference time domain method, providing possibilities for predicting the
plasmonic properties of very large systems for different applications.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0178247

INTRODUCTION

Recent innovations in nanotechnology and photonics show
that Terahertz (THz) radiation (300 GHz to 30 THz frequencies,
or 1 mm–30 μm wavelength) can be considered in many appli-
cations.1 The THz research relies on the unique ability of this
radiation to penetrate through different materials with little atten-
uation, such as paper, plastic, clothes, wood, and ceramics, which
are usually opaque at optical wavelengths. THz radiation can be
used to accurately detect many molecules of interest based on dis-
tinctive rotational/vibrational resonances in its frequency region.2

Thus, THz technology has become of use in a wide variety of appli-
cations, such as for detection of drugs and explosives, for security
screening, in spectroscopy and imaging communication technology,
in biology and medical sciences,3 for quality control of different
agricultural products, and for global environmental monitoring.4
THz imaging devices can be used for nondestructive testing for hid-
den object detection, which is harmless for humans in contrast to x
rays.

Despite significant recent progress, the key challenge limiting
the widespread adoption of these technologies remains in the devel-
opment of practical THz optoelectronic devices, especially radiation
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sources. It is well known that, while the THz spectral region lies
at the boundary between the traditional domains of photonics and
microwave electronics, device concepts borrowed from either disci-
pline cannot be readily extended to THz frequencies. In particular,
microwave sources are generally restricted to operation frequencies
below ∼1 THz because of the small size of elements, which is typical
for magnetrons or because of the limitations of the main materials
for traditional semiconductors, such as low mobility and saturation
velocity.5 On the other hand, THz quantum cascade lasers (QCLs)
established using gallium arsenide quantum wells show a relatively
good performance.6 However, their spectral range is restricted to
a limited portion of the THz spectrum (currently 1.2–5.4 THz)
due to strong GaAs lattice absorption at frequencies outside this
band.

Additionally, their operating temperatures are fundamentally
limited to ∼200 K, so cooling is required for high-performance
operation, which strongly restricts their portability and integra-
tion into practical systems.7 So, at present, the most practical THz
spectroscopy and imaging systems are based on photoconductive
antennas for THz wave generation.8 However, the operation of these
devices requires an ultrafast laser source (usually fiber based or
Ti:sapphire), which leads to essential increases in their size, power
consumption, complexity, and cost.

For the past several years, significant research efforts have
reported graphene as a very promising material for THz optoelec-
tronics and other applications. In Ref. 9, it was pointed out that
graphene plasmons provide a suitable alternative to noble-metal
plasmons. This is a consequence of the fact that these plasmons
exhibit a much tighter confinement and long propagation distances
in comparison with noble-metal plasmons. This makes it possible to
use graphene as a platform for strongly enhanced light–matter inter-
actions and to construct single-molecule plasmon devices. Graphene
began to be considered as such a plasmon material due to its unique
properties—a gapless and linear energy dispersion near the Dirac
points. This feature covers the entire THz and infrared regions.10–12

Theoretical and experimental studies have shown that relaxation
dynamics of hot carriers in graphene exhibits an unusual twofold
nature: They rapidly (τ ≤ 100 fs) thermalize the longitudinal distri-
bution relative to the Dirac point, while a noncollinear scattering
is much slower (τ ∼ ps) when low energy optical phonons are
excited.13,14 The long scattering time is very promising for infrared
and THz devices based on hot carrier effects, which implies that
graphene possesses ballistic electronic transport over μm-scale dis-
tances with a record large room-temperature mobility,14–16 making
graphene a very perspective material for THz sources based on
coherent carrier dynamics.17 It has been predicted that the graphene
conductivity μ can reach a value as high as 200 000 cm2

/Vs, which
is the highest value reported in the literature.14 This μ value was
obtained at electron densities of n = 2 × 1011 cm−2 in a single layer
graphene sample suspended at 150 nm above a Si/SiO2 gate elec-
trode. At the same time, for unsuspended devices, a mobility of
25 000 cm2

/Vs has been reached, which is close to the highest car-
rier mobility μ > 104 cm2

/Vs at room temperature mentioned in the
literature.18

A very important and interesting graphene feature, discussed
in this work, is the existence of graphene plasmonic resonances at
THz or mid-infrared frequencies, something that is very different
from the traditional plasmonic nanostructures based on noble met-

als having plasmons in the visible or near-infrared excitations.11,19,20

Graphene plasmon polaritons (GPPs), having a strong field confine-
ment and large propagation lengths, are effectively tunable using
gate voltage to control the free carrier density, which is particularly
attractive for optoelectronic device applications.21

Using the fact that in the THz or mid-infrared frequency range,
the intraband contribution to the optical conductivity σintra(ω, E f )

of graphene is much higher than the interband one, i.e., using the
Drude approximation,22 it has been shown that the graphene plas-
mon frequency depends on the square root (ω ∼√q) of the plasmon
wave vector q. For the discussed frequency range, this means that the
graphene plasmon wave vector q is about two orders of magnitude
larger than q0 of free space photons. It leads to a significant confine-
ment of variable electrical and magnetic fields in the graphene. At
the same time, although it is difficult to obtain an effective energy
transfer from electromagnetic field (EMF) to graphene, regular grat-
ings of metal nanoparticles (NPs) on graphene surfaces have been
used for this purpose. However, available information about such
systems describes situations where the size of the NPs and the array
period matches λ ∼ μm,23 which makes it possible to excite plasmons
in graphene with the corresponding wavelength and frequencies of
a few terahertz.

In this work, we consider systems of metal NPs of nanome-
ter size, lying on the single layer graphene, as shown in Fig. 3. We
show that in these systems, charge transfer plasmons (CTPs) can be
excited when charges periodically oscillate between the NPs, causing
a periodic change of a potential energy of charged NPs and periodic
change of a kinetic energy of charges moving in the graphene.

DFTB/NEGF INVESTIGATION OF SYSTEMS
CONSISTING OF METAL NANOPARTICLES
LYING ON GRAPHENE

It is necessary to certify that there is sufficient conductivity
between the nanoparticle and the graphene. For this purpose, a
precise simulation of the graphene–NP contact transmission was
carried out using the non-equilibrium Green’s function (NEGF)
method,24 which is available in the DFTB+ software package.25

All calculations were carried out using the SCC-DFTB method26

and the auorg set of parameters26,27 for the description of inter-
atomic interactions. Since the magnetic properties of the system are
beyond the scope of our study, spin polarization was not consid-
ered in our calculations. Geometry optimization, when performed,
was carried out for an energy gradient threshold of 1 × 10−4 a.u.,
taking into account the dispersion interaction by using the DFT-D3
approach.28,29

The considered “electrode–NP–graphene–NP–electrode” sys-
tem was generated consisting of two semi-infinite gold electrodes
(blue atoms) connected to gold nanoparticles (red atoms) in contact
with the graphene, as shown in Fig. 1. The procedure of this system
creation included a few steps.

In the first step, we simulated graphene considering a unit
cell containing two atoms. Its geometry was optimized, and as a
result, the following parameters were obtained: a = b = 2.47 Å,
γ = 120○, which only slightly differ from the well-known values (a = b
= 2.46 Å). Since the cell was located in the xy plane, and the cal-
culations from a technical point of view assume periodicity in 3D
space, a constant vacuum gap of 60 Å long was set along the z axis
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FIG. 1. Geometry of the “electrode–NP–graphene–NP–electrode” system.

in order to avoid the interaction of atoms with their images from
neighboring cells along the direction perpendicular to the surface.
In fact, this means that c = 60 Å and α = β = 90○. Next, a rect-
angular graphene supercell, containing 1032 atoms, was created by
translating along the x and y directions of the graphene unit cell. The
supercell had the following parameters: a = 51.34 Å, b = 51.87 Å, and
angle γ = 90○.

In the second step, a preliminary optimized cuboctahedral gold
nanoparticle consisting of 309 atoms, oriented with a square face
toward the graphene surface, was placed above the center of the
graphene fragment. After that, the positions of all carbon and gold
atoms were relaxed, taking into account the periodic conditions.
Since a vacuum gap of 60 Å was specified along the z direction,
c = 60 Å and α = β = 90○. The key aim of this step was to optimize the
position of the atoms at the site of contact between the nanoparticle
and the graphene.

In the third step, a gold electrode in the form of four gold lay-
ers was added to the top of the gold nanoparticle. It was extracted
from the corresponding crystal with known crystal parameters (a = b
= c = 4.0782 Å; α = β = γ = 90○). In further calculations of the trans-
mission coefficient, this electrode was considered semi-periodic, i.e.,
it was, in fact, a cylinder, whose diameter was approximately equal
to the diameter of the nanoparticle, and had a periodicity upward
from the nanoparticle along the z direction. In this case, it was
placed in such a way that the distance from the bottom face to the
top face of the nanoparticle was equal to the distance between the
corresponding gold layers in the crystal.

In the fourth and final step, the entire resulting
“graphene–NP–electrode” system was translated once along
the x axis to ultimately construct a model of a device con-
taining graphene connected to nanoparticles with attached
electrodes—“electrode–NP–graphene–NP–electrode.” Since this
model was considered a cluster without periodic conditions, the bro-
ken chemical bonds along the edges of the graphene fragment were
closed by hydrogen atoms, whose positions also were optimized.
As a result, the entire system, not counting electrodes, consisted of
2064 carbon atoms, 618 gold atoms, and 138 hydrogen atoms. NPs
were connected with the graphene surface by a square facet so that
one of its diagonals was parallel to the line connecting the center
projections of the NPs. The length of the facet diagonal was equal
15.59 Å, so we can assume that the area of the NP–graphene contact
spot is equal to 121.5 Å2.

After constructing the “electrode–NP–graphene–NP–electrode”
geometry, the energy dependence of transmittance T(E) through
the system was calculated using the NEGF method (see Fig. 2).
For that, the energy range (E fermi − 0.6 eV . . .E fermi + 0.6 eV)

FIG. 2. Conductivity T(E) of the “electrode–NP–graphene–NP–electrode” system.

was divided into intervals of 0.001 eV. This interval is ∼20 times
smaller than kbT at room temperature, which guarantees a correct
calculation of the integral and the system conductivity G at this
temperature [see Eq. (1) below].

To find the total conductivity of the NP–graphene interface
Gi, we assume that this conductivity is determined by twice the
total conductivity of the “electrode–NP–graphene–NP–electrode”
system G. To calculate it, the following formula based on
the Landauer formalism30 within the linear approximation was
used:

G =
I

ϕ2 − ϕ1
=

2e2

h

∞

∫
−∞

T(E)
∂ f0(E, T)

∂E
dE, (1)

where the Fermi function reads f0(E, T) = [ 1
exp ((E−μ)/kbT)+1 ]μ=Efermi

.

Using the above equation, the total NP–graphene interface con-
ductivity Gi ≃ 0.48 2e2

h in conductivity quantum values was found,
which means that the conductivity is sufficiently good even for such
a small NP–graphene contact spot. Therefore, we can assume that
with an increase in the NP size and the corresponding contact spot
increase, the Gi value will be increased proportionally. That is why
in further calculations, we do not consider the resistance of the
NP–graphene interface but only take into account the conductivity
of the graphene.

THEORY OF CHARGE TRANSFER PLASMONS
IN NP–GRAPHENE COMPLEXES

In this work, we further develop the hybrid quantum–classical
model first used in Refs. 31 and 32. This model described CTPs
in systems with metal nanoparticles connected by bridges (link-
ers) consisting of a narrow conductive molecular polymer chain
and where the conductive carriers move in a ballistic mode. The
harmonically changing current of the ballistically moving carriers
accumulate kinetic energy, which is periodically pumped into the
potential energy of charged nanoparticles. The kinetic energy of the
bridge Ekin can be written as a sum over electrons in the conduc-

tion band: Ekin = ∑k,n nk,n
h̵2k2

k,n
2m∗ , where nk,n denotes the occupation

degrees of electrons having quasi-momentum kk and band number
n and m∗ is the carrier effective mass. Here, a parabolic dependence
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of the electron’s kinetic energy from kk is assumed. Under the influ-
ence of a weak electric field, the carriers are excited only near the
Fermi level, so the kinetic energy derivative reads as follows: dEkin

dt

= nf
h̵k
m∗ [

d(h̵k)
dt ]k=k f

. In the present work, we extend this model for

systems where metal NPs lie on a graphene sheet, i.e., they are con-
nected by an infinitely extended and conductive medium. Similar
to the previous model, the free carriers move in the graphene mainly
ballistically, while maintaining the original charge density during the
CTP excitations. The presence of a conductive surface leads to the
appearance of a continuum of paths for charge movement between
the NPs, which fundamentally distinguishes this model from the
previous model.

In view of the consideration of the terahertz frequency range,
which is much smaller than the optical range, it is natural to
use the quasi-stationary approximation. In this approximation, the
Maxwell bias current is much smaller than the conduction current
∣∂D
∂t ∣≪ ∣ j(r)∣, so the charges in the graphene and in the volume

of nanoparticles can be neglected. In addition, unlike in the previ-
ous model, the free carriers in a single-layer graphene are massless
fermions near the Dirac cones.33,34

As the basis of a model being developed for describing plas-
mons, like the previous model, we assume the conservation of the
total energy Etot = Epot + Ekin of an NP–graphene system. So, the
main equation is as follows:

dEtot

dt
=

dEpot

dt
+

dEkin

dt
= 0. (2)

The total energy consists of the electrostatic energy of inter-
action between charged nanoparticles Epot = ENP and the kinetic
energy of the nonequilibrium charges in graphene. Here, we assume
that the equilibrium charge density in graphene ρequil(r), arising due
to its doping or gating, does not change and that it is much higher
than the nonequilibrium density ρnonequil(r) under the plasmon
excitations,

ρequil(r) = const ≫ ρnonequil(r).

To prove this contention, one can consider the continu-
ity equation, which can be written for harmonic oscillations as
∇⃗j⃗(r) = −e∂ρ(r)

∂t = −ieωρ(r), where j⃗(r) is the current density in
graphene, ρ(r) is the charge density there, and ω is the CTP
oscillation frequency. Because the density is the sum of the
static equilibrium, and changing nonequilibrium densities ρ(r)
= ρequil + ρnonequil(r) and presenting j⃗ as the product of ρ(r) and
a carriers group velocity V group, one can rewrite this equation
as ∇⃗(ρequil + ρnonequil(r))V⃗group(r)) = −iω(ρnonequil(r). Because of a
low density of states (DOS) of graphene near the Dirac points, the
carrier’s effective group velocity Veff is much smaller than V fermi

≃ 106 m/s,35 where Veff ≃ 1.4 × 105 m/s has been measured. Using
estimation ∇⃗ ∼ 1

L , where L is the system size, one can obtain (ρequil

+ ρnonequil(r)) ∼ ωL
Veff

ρnonequil. For a characteristic plasmon frequency
of ν = 15 THz and L = 100 nm, one can estimate ρnonequil(r)
∼ 0.014ρequil, which proves the assumption that the charge density
in graphene is not changed because of the CTPs.

Thus, we assume that the graphene possesses only the kinetic
energy of the nonequilibrium carriers, while its potential energy can

be omitted: EGraphene = EKin. As in the section describing CTPs in sys-
tems of metal nanoparticles joined by conductive linkers, we assume
that there are metal nanoparticles at the points with coordinates Ri,
of which the charge during the plasmon oscillations changes accord-
ing to the following harmonic law Qi(t) = Qie

iωt , where Qi is the
amplitude of charge in a point having coordinates Ri. Although
all charges have the same oscillating factor eiωt , their amplitudes
Qi may be different. Due to the fact that the nanoparticles lie on
the graphene surface, this charge flows over the graphene surface
between the nanoparticles while storing the kinetic energy, which
also changes according to the harmonic law. Here and in the fol-
lowing, we assume that the radius of all particles is R and that each
particle has a contact spot of radius R0 with graphene, outside of
which the current flowing from the nanoparticle spreads over the
graphene surface, as shown in Fig. 3.

Under these assumptions, the potential energy time derivative
is as follows:

dEpot

dt
=

d
dt

⎡
⎢
⎢
⎢
⎢
⎣

∑
i

Q2
i

2R
+∑

i<j

QiQj

∣Ri − Rj ∣

⎤
⎥
⎥
⎥
⎥
⎦

= 2iω
⎡
⎢
⎢
⎢
⎢
⎣

∑
i

Q2
i

2R
+∑

i<j

QiQj

∣Ri − Rj ∣

⎤
⎥
⎥
⎥
⎥
⎦

= iω∑
i,j

Ai,jQiQj ,

Ai,j =
δi,j

R
+

2
∣Ri − Rj ∣i≠j

. (3)

The time derivative of the density kinetic energy of induced carriers
in graphene is determined by the external work A of electrostatic
forces on these carriers,36 taken with the opposite sign,

dEkin

dVdt
= −

1
2

j(r, ω)E∗∥ (r, ω) = −
1
2

σ(ω, μ, T)∣E∥(r, ω)∣2. (4)

Here, σ(ω, μ, T) is the conductivity of graphene, dependent on
frequency ω, chemical potential μ, and temperature T. This value
can be derived from the Kubo formula37 expressing the conductiv-
ity as the sum of intraband and interband contributions: σ(ω, μ, T)
= σintra + σinter . For gated or highly doped graphene (μ≫ kT), the
chemical potential can be expressed as μ ≃ E f . In this case, the
intraband graphene conductivity has the Drude-like form,38

σintra(ω, E f ) =
e2E f

πh̵2
i

ω + iτ−1 , (5)

FIG. 3. NP on the graphene; r is defined as the projection of NP center onto the
graphene plane, R is the NP radius, θ is the angle between r and the radius of the
vector coming out of the NP’s center.
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where τ is the relaxation time of the free carriers momentum.
Similarly, the σ interband contribution is37,39

σinter(ω, E f ) =
e2

4h̵
[Θ(h̵ω − 2E f ) +

i
π

ln∣
h̵ω − 2E f

h̵ω + 2E f
∣], (6)

where Θ(⋅ ⋅ ⋅) is the step function and the graphene Fermi level is

E f = h̵Vf
√

πρ, (7)

and the Fermi level speed is V f = 108 cm/s. Following the equa-
tions above and the graphene optical absorption experiment,40 it is
easy to find that the intraband graphene conductivity σintra dom-
inates in the far-infrared (FIR) and THz regions, while in the
visible (VIS) and near-infrared (NIR) regions, it is dominated by
the interband σinter conductivity. By this reason, in solving Eq. (4),
we replaced the graphene total conductivity with its intraband
conductivity (5).

Hereafter, the quantities denoted by the indices ∥ and �
represent the longitudinal and normal projections with respect
to the graphene plane, respectively. To determine the total
derivative of the kinetic energy, it is necessary to integrate (8)
over the area occupied by graphene Ω, which we take to be
infinite,

dEkin

dt
= −

1
2

σintra(ω, E f )∫
Ω

∣E∥(r, ω)∣2d2r

= −
1
2

σintra(ω, E f )∫
Ω

∇⃗∥ ⋅ (φ(r)∇⃗∥φ(r)) d2r. (8)

It should be noted that the region Ω does not include circles of radius
R0 (see Fig. 3 and its caption). For 2D integral calculations, it is nat-
ural to use the 2D divergence theorem, which is a generalization of
the 3D Gauss–Ostrogradsky theorem for the case of 2D space.41 The
2D divergence theorem states that the flux of F⃗ through the bound-
ary curve C is the same as the double integral of div(F⃗) over the full
region R,

∫

C

F⃗n⃗ ds = ∫∫
R

∇⃗ ⋅ F⃗ d2r. (9)

For 2D integral calculation in (8), one can use the following
identity:

∫∫

Ω

(∇⃗∥φ(r)) ⋅ (∇⃗∥φ(r))d
2r ≡ ∫∫

Ω

∇⃗∥ ⋅ (φ(r)∇⃗∥φ(r))d
2r

− ∫∫

Ω

φ(r)(∇⃗2
∥φ(r))d

2r. (10)

To calculate the second term on the right-hand side of Eq. (10),
one can use the Poisson equation, ∇⃗ 2φ(r) = ∇⃗2

∥φ(r) + ∇⃗
2
�φ(r)

= −4πρ(r). So, the second term of (10) is proportional to const ⋅
∫∫
Ω

φ(r)d2r and must be equal to zero due to the electroneutrality

of the system. The second argument here is that when calculating
this contribution, the second derivatives of the potential ∇⃗2

∥φ(r)
= ( d2

dx2 +
d2

dy2 )φ(r) in the graphene plane are much smaller than the

contribution ∇⃗2
�φ(r) = d2

dz2 φ(r) due to the fact that the graphene
thickness is much smaller than the scale of the lateral changes of

the potential; therefore, the last term in (10) is ∣∫∫
Ω

φ(r)∇⃗2
∥φ(r)d

2r∣

≪ ∣∫∫
Ω

φ(r)(∇⃗2
∥ + ∇⃗

2
�)φ(r)d2r∣ = 4π ∫∫

Ω
φ(r)ρ(r))d2r ≡ Epot and can

be omitted. To calculate the first term on the right-hand side of (10),
we use the following equation:

∫∫

Ω

(∇⃗∥φ(r)) ⋅ (∇⃗∥φ(r))d
2r ≡ ∫∫

Ω

∇⃗∥ ⋅ (φ(r)∇⃗∥φ(r))d
2r

= ∫

C

φ(r)∇⃗∥φ(r)ds, (11)

where the contour border C consists of circles of radius R0 around
the center of contact NP–graphene. Remembering that the potential
is created by charged nanoparticles with coordinates Qi(Ri) and tak-
ing into account that the electric field Eρ∥(r) = −∇⃗∥φ(r), Eq. (11) is
transformed as

∫

C

φ(r)∇⃗∥φ(r)ds = −∑
k

2π

∫

0

n⃗(r − Rk)φ(r)∇⃗∥(φ(r)dϕ

=∑
k

2π

∫

0

n⃗(r − Rk)

×∑
ij
[

Qi

∣r − Ri∣

Qj

∣r − Rj ∣
2

r⃗ − R⃗j

∣r − Rj ∣
]dϕ, (12)

where any normalized vector n⃗(R) = R⃗
∣R∣ and integration takes place

over the angle ϕ for circles of fixed radius R0. Shifting the origin to
the point Rk, Eq. (8) is transformed as

dEkin

dt
= −

1
2

σintra(ω, E f )∑
k

2π

∫

0

n⃗(r)∑
ij

QiQj(r⃗ − R⃗jk)

∣r − Rik∥r − Rjk∣
3 dϕ, (13)

where R⃗ jk = R⃗ j − R⃗k. Due to the fact that when integrating the
radius vector r⃗ changes in circles of a radius R0 and assum-
ing R0 ≪ ∣R⃗ jk∣, one can use the Taylor series expansion: 1

∣r−R jk ∣
3

= 1
∣R jk ∣

3 [1 +
3r⃗n⃗jk
∣R jk ∣
], where n⃗jk =

R⃗jk
∣R jk ∣

. Using this expansion, Eq. (13) is
transformed as

dEkin

dt
= −σintra(ω, E f )∑

i,j
Bi,jQiQj , (14)

where the symmetrical matrix Bi,j is defined as

Bi,j = ∑
k≠i≠j

R0

RikR3
jk
[−π + cos (R⃗ik, R⃗jk)(

3πR2
0

RikRjk
− π

Rjk

Rik
)]

i⇄j

+ ∑
k=i≠j

−π
R3

jk

RRRRRRRRRRRi⇄j

∑
k=j≠i

2π
RikR2

0
∣

i⇄j
+ ∑

k≠i=j

−2πR0

R4
ik
+ ∑

k=i=j

2π
R3

0
. (15)
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TABLE I. CTP frequencies νi , dipole corrections of the frequencies Δνdip, and normalized absorption coefficients (W x,y
ext , dPx,y

ext ) are calculated by two methods. W x,y
ext are

calculated by using Eq. (28), and dPx,y
ext are calculated by using Eq. (29).

x y x y
Wx

ext Wy
ext Wx

ext Wy
ext

Mode ν, 1013 Hz Δνdip, 1011 Hz dPx
ext dPy

ext Mode ν, 1013 Hz Δνdip, 1011 Hz dPx
ext dPy

ext

Dimer Circle 12

1 1.26 1.53 1.0000 0.0000 1 1.32 2.77 0.0000 0.0000
1.0000 0.0000 0.0000 0.0000

Square 2 1.31 2.46 0.0000 0.0000
0.0000 0.0000

1 1.31 2.60 0.0000 0.0000 3 1.31 2.46 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000

2 1.23 0.39 0.0580 1.0000 4 1.28 1.58 0.0000 0.0000
0.0580 1.0000 0.0000 0.0000

3 1.23 0.39 0.9983 0.0000 5 1.28 1.58 0.0000 0.0000
0.9983 0.0000 0.0000 0.0000

Hexagon 6 1,22 0,21 0.0000 0.0000
0.0000 0.0000

1 1.32 2.71 0.0000 0.0000 7 1.22 0.21 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000

2 1.28 1.59 0.0000 0.0000 8 1.15 −1.49 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000

3 1.28 1.59 0.0000 0.0000 9 1.15 −1.49 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000

4 1.15 −1.37 0.9967 0.0000 10 1.04 −3.23 0.0130 1.0000
0.9967 0.0000 0.0130 1.0000

5 1.15 −1.37 0.0815 1.0000 11 1.04 −3.23 0.9999 0.0000
0.0815 1.0000 0.9999 0.0000

Chain 7 Grid 5 × 5

1 1.32 2.60 0.0000 0.0000 1 1.35 3.91 0.0000 0.0000
0.0109 0.0000 0.0018 0.0019

2 1.30 2.07 0.1855 0.0000 2 1.34 3.32 0.0026 0.0028
0.0981 0.0000 0.0099 0.0103

3 1.26 1.20 0.0000 0.0000 3 1.34 3.32 0.0025 0.0029
0.0347 0.0000 0.0094 0.0107

4 1.21 0.12 0.4300 0.0000 ⋅ ⋅ ⋅

0.2672 0.0000

5 1.15 −1.25 0.0000 0.0000 23 0.96 −6.11 0.6766 0.0811
0.0677 0.0000 0.6649 0.6429

6 1.07 −2.48 0.8835 0.0000 24 0.96 −6.11 0.7064 0.6755
0.9555 0.0000 0.7162 0.6327

Here, notation i⇄ j denotes the sum of two terms, where in
the second term, there has been a rotation of indices i and j.
Using Eqs. (2), (3), and (14), one can get the following secular
equation:

∑
i,j
[iωQiAi,jQj − σintra(ω, E f )QiBi,jQj] = 0. (16)

Neglecting the processes of carrier dissipation in Eq. (5), that is,
τ →∞, this equation can be written in matrix form as
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αω2Â − B̂ = 0, where α =
πh̵2

e2E f
. (17)

Multiplying this equation by Â−1, we arrive at the following
secular equation:

ω2 Î =
Â−1B̂

α
=⇒ ω2

i =
e2E f

πh̵2 ⋅ eigenvalues(Â−1B̂)

=
e2Vf
√ρ

√
πh̵

eigenvalues (Â−1B̂). (18)

One can see that the squares of plasmon frequencies are factor-
ized, i.e., they are represented as a product of a function depending
on the density of carriers in graphene and depending on the NPs
coordinate function. Based on the assumption that the contribu-
tion of dipole–monopole and dipole–dipole interactions is small,
we use the approach proposed in our previous work,42 which takes
into account the dipole contributions in the CTP frequencies. These
contributions are represented as

μ⃗iEQ
i jQj = η

RijRji

R6
ji

QiQj ,

μ⃗iE
μ
i jμ⃗j = η2 RijRji

R9
ji

QiQj ,

(19)

where μ⃗i is the dipole moment of the nanoparticle of index i, EQ
i j

is the electrical field created by charge Qj and acting at a moment
μ⃗i, Eμ

i j is defined similarly, η is the NP polarizability, μ⃗iEQ
i jQ j denotes

the NP dipole–monopole interactions, and μ⃗iE
μ
i jμ⃗j denotes the NP

dipole–dipole interactions. Applying these contributions to the pre-
viously calculated NP charges in Eq. (18), it is possible to calculate
the effect of dipole interactions on the plasmon frequencies (see
columns 3 and 8 of Table I).

CALCULATIONS OF CTPs IN SPECIFIC NP–GRAPHENE
COMPLEXES

As examples of solving Eq. (18), the plasmon frequencies for
several systems of nanoparticles on graphene were calculated. These
were used in the following systems: (a) square of 4 NPs; (b) linear
chain of 7 NPs; (c) ring of 6 NPs; and (d) a square array of 5 × 5 NPs
(see Fig. 4).

In all cases, the graphene carrier density was chosen as ρ = 5
× 1012 cm−2, which is common for the graphene under action of
a gate electrode voltage, the radius of NPs was R = 30 nm, the
interparticle distances were h = 10R, and the contact spot was R0
= 0.32R. Due to the fact that NPs can have a contact spot with
graphene of different sizes, this parameter must be selected as an
external parameter of the model. Obviously, CTP frequencies will
depend on this parameter. We also carried out calculations for

FIG. 4. Clusters of NPs with radius R = 30 nm on graphene. The distance between
the nearest NPs Rik = 10 × R. The circle size indicates the radius of the NPs. The
colors and saturation indicate the distribution of effective NP oscillating charges:
Blue denotes the negative charge; red denotes the positive charge. The arrows
show the electric field created by the NPs. (a) A square of NPs; (b) a hexagon of
NPs; (c) a circle of NPs; (d) a 5 × 5 grid of NPs; (e) a dimer of NPs; and (f) a chain
of 7 NPs.

the dimer with the above-mentioned parameters and the differ-
ent values of R0 = 0.27R. The calculated lowest CTP frequencies
νi are presented in Table I. In addition, in Fig. 5, we present the
dependence of the lowest CTP plasmon frequencies νmin for all
these systems on density ρ of carriers in graphene. In this case, the
radius of all nanoparticles R was equal to 5 nm, the interparticle
distances were equal to 5R and 7R, and the contact spot was R0
= 0.32R. One can see that this dependence reflects the factorization
in Eq. (18).

In practice, surface plasmons are often encountered, which
are realized at a flat metal–dielectric interface. At the same fre-
quency for such plasmons, the wave vector k of a surface plasmon
is greater than the wave vector of a photon in free space, and there-
fore, the direct excitation of a surface plasmon by ordinary photons
is impossible. To remedy this, various kinds of defects, gratings,
etc., are used. Due to the linear law of dispersion of free pho-
tons ω = ck and the small value of the frequency in the terahertz
range, it is obvious that the size L of the system, where the external

J. Chem. Phys. 160, 044117 (2024); doi: 10.1063/5.0178247 160, 044117-7

Published under an exclusive license by AIP Publishing

 19 February 2024 07:46:54

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 5. Dependence of the minimum CTP frequencies νmin on the electron con-
centration ρ in graphene for different systems: The red line indicates the νmin
dependence for the NP dimer; the yellow line is for the square of 4 NPs; the pur-
ple line is for the hexagon of 6 NPs, the green line for the chain of 7 NPs, the
turquoise line is for the ring of 12 NPs, the brown line is for the grid of 5 × 5 NPs,
and the blue dotted-dashed line is for the NPs dimer with parameter R0 = 0.27R.
The black dashed line corresponds to the parameters used in the FEM calculations
(see Fig. 6).

electromagnetic field intensively interacts with the surface plasmon,
will be very large L ∼ 1–100 μm. For the CTPs in the systems stud-
ied here, the plasmon frequencies are determined not by the wave
vectors, but by the conductivity σ of the conducting surface, by the
geometry of the arrangement of metal nanoparticles Ri, and by their
radius R. Therefore, it can be expected that such plasmons can be
easily excited by applying an external electromagnetic field of an
appropriate frequency.

COMPARISON WITH THE FINITE ELEMENT METHOD

To verify our model predictions, we calculated the extinc-
tion spectrum of a dimer that comprised of two identical spherical
Au NPs of radius R = 5 nm located on the graphene monolayer
surface using the finite element method (FEM), realized in the
COMSOL Multiphysics software. The tabulated values for n and
k of Au were obtained from Ref. 43. The frequency-dependent
graphene conductivity σ(ω, E f ) was calculated for the electron den-
sity n = 3 × 1012

/cm2, corresponding to E f = 0.2 eV (7), τ = 10−13

s, and temperature T = 300 K. The conductivity σ was calculated
by taking into account the intraband contribution σintra(ω, E f )

only and by taking into account both the intraband and interband
σintra(ω, E f ) + σinter(ω, E f ) contributions [see (5) and (6)]. In both
cases, no significant changes were observed.

It is known that calculating an optical response of a finite size
structure requires a double calculation. So, first, the field distribu-
tion in the system was calculated in the absence of particles on the

infinite size graphene layer. Then, the finite size system was calcu-
lated, wherein the size of the computational domain in the direction
orthogonal to the wave vector was chosen to be 150 nm, with a
computational mesh containing more than 93 000 vertices.

As a result of the FEM calculations, an extinction spectrum of
Au NPs dimer on the graphene surface is shown in Fig. 6. One can
see that a CTP excitation emerges at λ = 5320 nm when the particles
are located at the distance h = 5R and at λ = 5580 nm for h = 7R. The
CTP quality factor Q is about 7–9, which is in good agreement with
our estimations discussed above. For comparison, the thick vertical
dashed lines show the wavelengths calculated using our analytical
model [see Eq. (18)]. It is also interesting to compare the numeri-
cal efficiency of calculations using the FEM method and using the
proposed model. FEM calculations of dimer extinction spectra take
more than 24 h on an AMD Ryzen Threadripper 3970x CPU with 32
cores. Calculations of the dimer CTP frequencies using our model on
1 core of a similar CPU took ∼10 s.

Energy losses of CTPs in NP–graphene complexes

The energy losses of CTPs are convenient to determine by using
the quality factor Q, which is the ratio of the energy losses ΔE over
one oscillation period to the total energy Etot of the oscillation. Here,
we estimate Q using calculations of the energy losses during move-
ment of the charge carriers both inside the nanoparticles ΔENP and
inside the graphene ΔEGr ,

Q =
Etot

ΔE
=

Etot

ΔENP + ΔEGr
⇒ Q−1

=
ΔENP

Etot
+

ΔEGr

Etot
= Q−1

NP +Q−1
Gr , (20)

where Q−1
NP is the inverse quality factor determined by the losses in

the NPs and Q−1
Gr is the inverse quality factor determined by losses in

the graphene.

Energy losses in NPs

We assume that energy losses during electron density oscil-
lations on an individual nanoparticle are practically independent

FIG. 6. FEM calculations of the extinction spectrum of Au NPs dimer on graphene
at R0 = 0.32R. The radius of NPs is R = 5 nm, the interparticle distances are
h = 5R (black line) and h = 7R (red line). The dashed lines show the position of
the CTP resonance calculated using the model.
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of the density oscillations on other nanoparticles, so they can be
considered independently. Energy losses during the movement of
charge carriers inside a spherical NP of index i ΔENPi can be calcu-
lated by imagining that charges move from the surface of a charged
nanoparticle of radius Ri through its volume to the contact spot
with graphene of radius R0, where they transfer to graphene. In
our work,31 it is shown that the additional charges on a nanopar-
ticle are located on its surface and that the electrical capacitance
C of the nanoparticle matches well with its radius, confirming the
electrostatic law for the capacitance of the sphere. Using the quasi-
stationary approximation (see the arguments above), the charges
inside the NP volume can be neglected. In this case, the time aver-
age energy loss in NP can be calculated as ΔENPi = ⟨∫Vi

j(r)E(r)dV⟩
= 1

σNP(ω)∫Vi
j 2
(r)dV , where V i is the volume of NP of index i, j(r)

is the magnitude of current inside the NP, and σNP(ω) is the
nanoparticle optical conductivity. Because of that, this volume inte-
gral is difficult to calculate and we estimate it by replacing it with
the integral over the volume of a truncated cone, of which the
upper flat surface with radius R1 = 2R coincides with the NP sur-
face. Here, the radius of the cone’s lower surface is equal to the
NP–graphene contact spot radius R0 = ηR and the cone height is H
(see Fig. 7).

Assuming that all NPs have the same radius R and that the
volume of the cone coincides with the volume of the nanoparticle,
one can get VNP = 4/3πR3

≃ Vcone = 1/3πH(R2
1 + R2

0 + R1R0), where
H = R

1+ η
2+

η2

4

. Such a change in the geometry makes it easy to estimate

the energy losses in NPs by Joule heating. Assuming that the current
density j(r) in any horizontal plane h of the cone is constant j(r)
→ j(h) and that the section of the cone by this plane forms a circle
of radius r(h), the current density in the quasi-stationary approx-
imation can be calculated from j(h)πr2

(h) = j(H)πR2
1 = Żi, where

Żi is the rate of change of the total charge of the NP of the index
i. Using the formula for the truncated cone r(h) = R0 +

R1−R0
H h, one

can get

ΔENPi ≃
Żi

2

πσNP(ω)

H

∫

0

dh
r2
(h)
=

Żi
2

πσNP(ω)
H

R0R1

=
Żi

2

2πσNP(ω)
1

ηR(1 + η
2 +

η2

4 )
. (21)

Keeping in mind that the charges of the nanoparticles are
changed harmonically Zi = Zi(0)eiωt and the normalization of the
CTP eigenvectors∑i Z2

i = 1, Eq. (21) is transformed into the average
total energy loss in the complex of nanoparticles,

ΔENP =∑
i

ΔENPi =
−ω2

2πσNP(ω)
1

ηR(1 + η
2 +

η2

4 )
. (22)

The calculation of ΔENP requires knowledge of σNP(ω). For def-
initeness, we assume that the NPs are composed of gold. Taking into
account that we use the terahertz frequency range, one can use the
Drude free electron approximation44,45 for optical conductivity since
the gold interband transitions can be neglected in this frequency
range. So, σNP(ω) can be separated into real and imaginary parts,

σNP =
σ0

1 − iωτ
=

ω2
plτ

4π(1 − iωτ)
= σNPRe + σNPIm

=
ω2

plτ
4π(1 + ω2τ2

)
+ i

ω2
plωτ2

4π(1 + ω2τ2
)

. (23)

For gold, the plasma frequency ωpl = 9.1 eV = 2.20 × 1015
/s,46

while the carrier momentum relaxation time τ ≅ 9.3 × 10−15 s.45,47

Since the energy loss is due to the Joule heating associated with the
real part of the conductivity, we must use only the real part of the

optical conductivity σNP(ω) ≃
ω2

plτ
4π(1+ω2τ2

)
in the ΔENP calculations.

Taking into account that the total energy of oscillations in the sys-
tem is equal to the maximum potential energy Etot = ∑i

Z2
i

2R =
1

2R and
using Eqs. (22) and (23), one can get

Q−1
NP =

ΔENP

Etot
=

8π

ηR(1 + η
2 +

η2

4 )
⋅ (

ω
ωpl
)

2
(1 + ω2τ2

)

ωτ
. (24)

Energy losses in graphene

To calculate energy losses in graphene, it is necessary to take
into account the damping factor in the intraband optical conduc-
tivity σintra(ω, E f ), which is determined by the scattering time τ
[see Eq. (5)]. Using Eqs. (16) and (18), one can get ωi(ωi +

i
τ )

FIG. 7. Transformation of the NP geometry for energy loss calculations.
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= eigenvalues(Â−1B̂)/α, where α is defined in Eq. (17) that has two
solutions for ωi, which differ only in the sign of the real part of the
frequency,

ωi =
1

2τ
(±

√

4τ2
⋅ eigenvalues(Ã−1B̃) − 1 − i). (25)

Taking only one solution with a positive sign of the real part of
the frequency, we obtain the spectrum of all oscillation frequencies
that have real and imaginary parts. The imaginary part of the fre-
quencies gives the energy loss in the graphene for oscillation mode
ΔEGr,i as

ΔEGr,i

EGr,i
=

ωi,Im

ωi,Re
. (26)

Recalling again that for harmonic vibrations, the total energy
of mode i is equal to the double of the average kinetic energy of the
carriers in graphene EGri and using the scattering time τ = 7 × 10−14

s14 for the specific case of a CTP in the dimer consisting of two
nanoparticles of radius R = 5 nm located on graphene at a distance L
= 7R from each other, one can obtain the value ΔEGri

1/2Etot
= 2Q−1

Gr =
ωi,Im
ωi,Re

≃ 0.02. Therefore, taking Eq. (20) into account, one can estimate the
quality factor of the graphene subsystem as Q ∼ 50.

Using Eqs. (24) and (26), we have calculated the dependence of
the CTP quality factor on the radius R for two gold nanoparticles at
a distance of L = 7R, where the carrier concentration is equal to ne
= 1012/cm (see Fig. 8).

INTERACTION OF CTPs WITH EXTERNAL
ELECTROMAGNETIC FIELDS

In order to understand how the considered CTPs can be
excited, it is necessary to calculate the interaction constant of the
plasmons and the external electromagnetic field (EMF). For sim-
plicity, we assume that the external EMF is incident on graphene
normally. Due to the nanometer size of the system and the EMF
wavelength being in the THz range λ≫ 10 μm, we assume that
the external EMF does not depend on the coordinates E⃗ext(r, ω)
= E0

extP⃗ext . By analogy with Eq. (4), it is possible to write down the
power of the absorption of the external electromagnetic field Wext
energy as

Wext =
1
2∫

Ω

j⃗(r, ω)E⃗∗ext(r, ω) d2r =
1
2

σ(ω)E0
ext∫

Ω

E⃗(r)P⃗ext d2r

=
1
2

σ(ω)E0
ext∫

Ω

∇⃗(φ(r)P⃗ext) d2r. (27)

Using (9) and (12) and the Taylor series expansion: 1
∣r−R j ∣

= 1
∣R j ∣
[1 + r⃗n⃗j

∣R j ∣
], where n⃗j =

R⃗j
∣R j ∣

, Eq. (27) is transformed as

Wext =
1
2

σ(ω)E0
ext∑

j,k

Qj

∣Rj ∣

2π

∫

0

[1 +
r⃗R⃗j

∣Rj ∣
)]n⃗(r − Rk)P⃗extdϕ.

Shifting the origin to the point R⃗k, replacing σ(ω) by σintra(ω, E f )

and remembering that the radius vector r = R0 when integrating
along the circular contour C, this equation is transformed as

FIG. 8. Dependence of the dimer quality factor and its contributions on the radius R of NPs.
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Wext =
1
2

σ(ω)E0
ext∑

j,k

Qj

∣Rj ∣
2

2π

∫

0

(r⃗n⃗jk)(n⃗rP⃗ext)dϕ

≃
π
2

σintra(ω, E f )E
0
ext∑

j,k

QjR0

∣Rjk∣
2 cos (R⃗jk, P⃗ext). (28)

The normalized interaction constants Wext for some systems are
presented in Table I.

Additionally, we decide to test the hypothesis that Wext is
proportional to the scalar product of the dipole moment d⃗ of the
oscillating charges Qj of the NPs on graphene and the EMF electric
field polarization vector P⃗ext ,

Wext = P⃗ext∑
j

QjR⃗j = d⃗P⃗ext. (29)

In other words, we assume that the EMF absorption power
is spent on the formation of the charges Qj located at points with
coordinates R⃗i. The columns 4, 5, 9, and 10 of Table I present the
normalized absorption power coefficients Wext , calculated by (28)
(top lines) and by (29) (bottom lines). Notably, these coefficients
calculated by both the formulas match well in most cases, which
suggests the possibility of using the simplified formula in (29) to esti-
mate the interaction constant of an EMF with plasmonic modes. It
can also be noticed that some plasmonic modes do not interact with
the external electromagnetic field, something that can be explained
by their spatial symmetry [see also Fig. 4(a)].

DISCUSSION

In recent years, charge transfer plasmons (CTPs) have been
investigated in systems consisting of two or more metal NPs, con-
nected by a conductive junction (bridge). In such systems, free
charges flow between the nanoparticles, leading to the appear-
ance of CTP oscillations, of which the frequency usually resides in
the Vis–IR frequency region,31,48–51 with the CTPs being accom-
panied by an oscillating electric current through the nanoparticle
junctions. Depending on the type of nanostructures and bridges,
this charge transfer can be analyzed through quantum tunnel-
ing and by classical conducting bridge calculations.52–55 It should
be noted that the quantum tunneling effect is important for
very small distances between nanoparticles (<5 Å) only (see, for
example, Ref. 55). It is shown that the intensity, spectral width,
and resonance frequency of the CTPs depend directly on the
conductance of the junction,31,49,56–59 wherein the CTPs can be
used to create terahertz-frequency photonic devices60 and ultrafast
nanoswitches.61

The purpose of this work was to develop a theory and theoreti-
cally study CTPs in systems where the charge oscillates between
metal NPs, not utilizing conductive bridges, but a graphene surface
to connect them. The applied model takes into account the kinetic
energy of the carriers inside the graphene as well as the Coulomb
energy of the charged nanoparticles and includes energy dissipation.

The properties of the CTPs were investigated for NP com-
plexes on a single-layer graphene surface using the assumption that
the charge density in the doped graphene is much greater than the
charge density induced during the CTP oscillations. Linear equa-
tions were obtained that describe the CTP frequencies and their

eigenvectors, i.e., amplitudes of oscillating charges for each NP. It
was shown that the plasmon frequencies reside in the THz range
and that they can be factorized, i.e., they can be presented as a
product of a factor determined by the graphene Fermi level and a
factor determined by the complex geometry of the NPs, wherein
the monopole–dipole and dipole–dipole interactions are taken into
account. CTP frequencies and eigenvectors were calculated for sev-
eral different geometries of NP–graphene complexes, namely for a
dimer, a square of 4 NPs, rings of 6 and 12 NPs, and a square array
of 5 × 5 NPs. It was shown for all these systems with the same NP
size and interparticle distances that the CTP frequencies differ by
less than a factor of two.

To demonstrate the numerical efficiency of the model, the CTP
frequency of the dimer was also calculated using the finite element
method (FEM) and a good agreement for the calculated CTP fre-
quencies by the two methods could be demonstrated. Importantly,
the speed of calculations according to the proposed model is approx-
imately 3–4 orders higher than the speed when using the FEM
method, so the model makes it possible to calculate CTPs for very
large systems.

The dissipation of the CTP energy and, correspondingly, the
quality factors (Q) have also been addressed. The Q factors, with pre-
dicted values of ∼10 − 100, are determined by two competing partial
factors: the carrier energy losses inside the NPs and in the graphene.
It was found that the energy losses in the NPs are inversely depen-
dent on the radius of the nanoparticles, while the losses in graphene
are proportional to the NP radius and the distance between them.

For the investigated NP–graphene systems, the magnitude of
oscillating NP charges Qi and the electric field distributions were
analyzed for various CTP modes, showing that different plasmon
modes interact differently with an applied exciting EMF. The inter-
action constants (absorption power Wext) of the CTPs with an
exciting EMF were calculated, showing that Wext is proportional to
the product of the CTP dipole moment and the polarization vector
P⃗ext of the EMF.

The proposed quantum–classical model may be useful to calcu-
late CTP properties in the THz range for large NP–graphene systems
with a considerable degree of accuracy. This possibility can be very
useful for the prediction of properties of different THz devices,
especially in the fields of drug and explosive detection, biosensors
used in medical sciences, security screening, and photonic devices.
We also believe that the proposed NP–graphene systems constitute
a highly relevant perspective for the modern, swiftly developing,
THz technology, such as the new generation mobile communication
technology, due to the fact that the use of NPs of 30–100 nm size
will lead to miniaturization of the elements that cannot be achieved
using plasmons in pure graphene or graphene nanoribbons.
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