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ABSTRACT

The properties of charge transfer plasmons (CTPs) in periodic metallic nanoparticle arrays (PMNPAs) on the single-layer graphene surface are
studied within a computationally efficient original hybrid quantum-classical model. The model is based on the proven assumption that the
carrier charge density in doped graphene remains unchanged under plasmon oscillations. Calculated CTP frequencies for two PMNPA geome-
tries are shown to lie within the THz range and to be factorized, i.e., presented as a product of two independent factors determined by the gra-
phene charge density and the PMNPA geometry. Equations are derived for describing the CTP frequencies and eigenvectors, i.e., oscillating
nanoparticle charge values. It is shown that the CTP plasmons having a band structure containing a wave vector and a band number, like to
phonons in periodic media, can be divided into an acoustic mode and optical CTP modes. For the acoustic modes, the CTP group velocity
tends to zero at k ! 0, but reaches a value of � VFermi in graphene inside the Brillouin zone, while for the optical modes, the group velocity dis-
persion is extremely weak, although their energy is higher than the acoustic plasmon energies. It is shown that the calculated dependence of
CTP frequencies on the carrier concentration in graphene is in good agreement with experimental data. We believe that the proposed model can
help in designing various graphene-based terahertz nanoplasmonic devices of complex geometry due to very high computational efficiency.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0206742

I. INTRODUCTION

Terahertz (THz) radiation lies between the infrared (IR) and
microwave ranges and typically covers the frequencies from 300GHz
to 30 THz, which correspond to the wavelengths from 1mm to
30 μm. Recent advances in nanotechnology and photonics demon-
strated the high application potential of THz technology for various
fields.1 A unique feature of THz radiation is its ability to penetrate
with minimum losses through the materials (plastic, paper, clothing,
wood, etc.) that are normally opaque to visible light. Due to the
remarkable rotational and vibrational resonances of molecules at THz
frequencies, this radiation can detect a multitude of molecules.2

Today, THz technology finds application in the detection of explosives
and drugs, security checks, spectroscopy, image transmission, biomed-
ical research,3 food quality control, environmental monitoring,4 and

many other areas. Terahertz devices used in nondestructive testing are
safe for humans, in contrast to x rays.

The most efficient current THz spectroscopy and visualization
systems combine photoconductive antennas with femtosecond lasers
generating THz waves.5 However, fast laser sources included in these
systems make them bulky, expensive, and high-maintenance.

Recent studies underscore the potential of graphene for some
applications, in particular, THz optoelectronics. As was demon-
strated in Ref. 6, graphene plasmons or rather graphene plasmon
polaritons (GPPs) with their high performances can replace noble
metal plasmons. These features make graphene a perfect material
for creating plasmonic devices. Its main advantage is related to the
unique band structure, which spans the THz and IR ranges.7–9 At
the same time, due to difference the in the speeds of photons and
plasmons in graphene, the high-efficiency energy transfer from the
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electromagnetic radiation to graphene is a challenge. Therefore,
various graphene-based metamaterials are used to match these
speeds. To enable the direct coupling of GPP and free-space radia-
tion, different surface gratings, such as periodical ribbons10 or
disks,11 have been used. The grating allows us to eliminate the
requirement of in-plane momentum conservation.

In recent years, some works have appeared devoted to proper-
ties of 2D metamaterials consisting of regular arrays of metallic
nanoparticles (NPs) on various dielectric substrates. In Ref. 12 by
the coupled dipole (CD) method, it was numerically obtained a
narrow localized surface plasmons (LSPs) extinction peaks in the
1D silver nanoparticle array that is explained by the interaction of
LSP in individual NPs.

In Refs. 13 and 14, it was shown that the presence of a dielec-
tric substrate under metal NPs entails the interaction of LSPs and
diffractive grating Rayleigh anomalies. This interaction leads to
the generation of lattice resonances having high quality factors
Q (� 2340, see Ref. 14) throughout the visible spectral ranges.
Unfortunately, since the frequency of LSPs in metal NPs lies in the
visible or near-infrared range, it is impossible to obtain plasmon
frequencies in the THz range in such systems.

Recently, various metamaterials for different THz applications
have been also proposed. In Ref. 15, it was reported a metamaterial,
which comprises T-shaped gold elements combined with a gra-
phene layer. This compound exhibited high absorption in the
range of 20.8–39.7 THz. In Ref. 16, a polarizer based on graphene
and a gold resonator grid was explored. This device had a negative
effective refractive index and was stable across different beam inci-
dence angles. Wang et al.17 investigated hybrid metal–graphene
metastructures consisting of arrays of split gold periodic rods over
a graphene monolayer. These structures allowed the THz transmis-
sion modulation by the gate voltage. Liu et al.18 introduced a multi-
layered metamaterial based on metal and graphene layers
promising for broadband applications. The use of graphene with
concentric hexagonal-shaped gold rings was described in Ref. 19,
and the possibility of precise tuning of resonance frequencies in the
THz range was demonstrated. Finally, Wu et al.20 proposed a
dynamic THz absorber made of graphene with gold nanostrips.

In Ref. 21 (see Fig. 1), the authors created a regular square-
periodic array of gold nanocylinders on graphene where GPP
absorption features were measured. It was possible to effectively
manage GPP resonances across the 2–8 THz range by changing the
array period or changing the doping of graphene.

The cited works opened new avenues for the development and
application of THz optoelectronic devices. Unfortunately, in many
of these works (see, e.g., Refs. 10, 11, and 21), plasmon frequencies
were calculated using a simplified formula,22 which included the
properties of only graphene and its coverings,

k(ω) ¼ π�h2ε0(εr1 þ εr2)
q2Ef

1þ i
ωτ

� �
ω2, (1)

where k(ω) is the in-plane wavevector of the GPP, ε0 is the vacuum
permittivity, εr1 and εr2 are the dielectric constants of the materials
above and below the graphene film, τ is the carrier scattering time,
and Ef is the Fermi energy measured from the Dirac point, wherein

the geometric characteristics of nanoobjects (disks, strips, etc.) on
the graphene surface remained outside of consideration, although
they should influence the GPP spectrum. A full consideration of
these characteristics should lead to very complex equations derived
in the optics of surface gratings (see, e.g., Ref. 23).

At the same time, there are commercial electromagnetic solvers
based on Finite Element Method (FEM) or Finite Difference Time
Domain (FDTD) methods, based on numerical discretization of the
electromagnetic field.24,25 They allow to find plasmonic excitations
for systems with any given geometry.26–28 Unfortunately, calculations
of charge transfer plasmon (CTP) frequencies by these methods for
complex 3D-systems having many connected nanoparticles are very
time consuming. At the same time, the calculations of the CTP fre-
quencies of complex systems using the model we develop here take
3–4 orders of magnitude less time.

The purpose of this work is to consider the spectrum of GPP
based on a completely different model—on the concept of CTP plas-
mons, which arise when periodic metal nanoobjects are placed on
the graphene surface. These equations can be very simple but allow
to calculate the CTP plasmon spectrum for complex systems con-
taining metal nanoparticles periodical array on the graphene surface.

FIG. 1. (a) Schematic illustration of the PMNPA on graphene. (b) Resonance
frequency of graphene plasmon polaritons, plotted as a function of carrier
density ρ for different values of period.21 Reproduced with permission from
Tantiwanichapan et al., ACS Photonics 4, 2011 (2017). Copyright 2017
American Chemical Society.
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In this study, we develop our previous hybrid quantum-
classical model, which was first used to describe CTPs in systems of
metal NPs linked by narrow conductive molecular bridges, where
quantum effects are expected to be quite substantial.29–31 Recently,
we have used it to describe CTPs in irregular arrays of metal NPs
on graphene, which was very numerically efficient.

II. QUANTUM-CLASSICAL MODEL OF CTPs FOR
PMNPAs ON GRAPHENE

Here, we extend our previous model35 to calculate properties
of CTP plasmons to systems included periodic metallic nanoparti-
cle arrays (PMNPAs) on graphene. As the main equation, for these
systems, we use again the total energy conservation law,

dEtot
dt

¼ dEpot

dt
þ dEkin

dt
¼ 0, (2)

where the potential energy Epot ¼ ENP is the electrostatic energy of
charged NPs and the kinetic energy Ekin ¼ Egraphene is the energy of
moving carriers in graphene.

In the previous model, we have proven several points. First, it was
proved the changes in the graphene carrier density can be neglected
during CTP vibrations, wherein the redistribution of the carriers
density inside NPs can also be neglected because of the change that
occurs during NP localized surface plasmon (LSP) excitation, which
frequencies lie in the vis frequency range, which is much higher than
THz frequencies. Second, we have demonstrated that the CTP energy
losses consisting of energy losses in graphene and in the NPs are quite
small, so the total quality factors Q of CTP plasmons in NPs–graphene
systems are Q � 10–100. Third, calculations of the total transmittance
T of the NPs–graphene interface using the nonequilibrium Green
function (NEGF) method33 have shown that the NPs–graphene
contact resistance can be neglected, so we will neglect this effect below.

Now, to build the model describing the properties of CTP plas-
mons in regular arrays of metal NPs on graphene, we assume several
points. First, for simplicity, the radius of all NPs is equal to R and
each NP–graphene has a contact spot of radius R0, through which
the NP charge flows to graphene. Second, due to periodicity and by
analogy with phonons in a periodic media, it is assumed the CTPs
are characterized by the wave vector ~k and the band number n.
Therefore, in the CTP plasmon with band number n and frequency
ωn, the NP charges Qj,n would be changed harmonically,

Qj,n(~Rj, t) ¼ Z j,n(~Rj)e
iωnt , (3)

where Z j,n(~Rj) is the charge amplitude for the NP having the coordi-
nate ~Rj and the band index n. The current from the NP to graphene,
equal to _Qj would be changes harmonically as well. Using Bloch’s
theorem, the NP charge amplitude Z j,n, having the wave vector ~k
and the band number n but lying in another unit cell (UC) with the
translation vector ~Rn would be changed harmonically,

Z j,n ~Rj þ ~Rn
� � ¼ Z j,n(~Rj)e

i~k~Rn: (4)

Third, the time derivative of the density of the kinetic energy
of carriers in graphene is determined by the work of external

electric forces acting on these carriers34 taken with the opposite
sign,

dEkin
dt

¼ � 1
2
j rð ÞE* rð Þ ¼ � σ(ω, μ)

2

ð
Ω
E rð ÞE* rð Þ

¼ � 1
2
σ(ω, μ)

ð
Ω
∇k w rð Þ∇kw* rð Þ� �

d2r, (5)

where σ(ω, μ, T) is the graphene conductivity, depending on the
graphene chemical potential μ, temperature T , and frequency ω,
and w rð Þ is the electric potential at point r on graphene and ∇k is
the parallel to the graphene plane component of the gradient.

As was obtained in Ref. 35, only intraband Drude contribution

σ intra(ω, Ef ) ¼ e2Ef
π�h2

i
ωþiτ�1 is essential in the THz range, wherein

τ � 10�13 s is the graphene free carrier momentum relaxation time
and it affects the CTP quality factor factors.

Taking into account the periodic boundary conditions (PBCs)
[see (4)] and assumption that the graphene charge density does not
changed under the plasmon oscillations, the Coulomb potential w(r)
in the graphene is equal to the double sum of the potentials induced
by charged NPs j inside UC and over all UCs with index n,

w rð Þ ¼
XN
j¼1,n

Zj ~Rj
� �

ei
~k~Rn

~r � (~Rj þ ~Rn)
�� ��

¼
XN
j¼1,n

Zjei
~k~Rn

8π3

ð
q
Φcoul qð Þei~q ~r�~Rjþ~R0ð Þd3q, (6)

where N is the number of NPs inside UC, n is the UC index, and
the Fourier image of the Coulomb potential Φcoul qð Þ ¼ 4π

q2 . Here, we
should keep in mind that the center of NPs is raised over the gra-
phene plane (see Fig. 2).

While calculating w rð Þ, it is convenient to enter the parallel
(qk) and transverse (qz) to the graphene plane components of the
reciprocal space vector~q . After this, (6) can be rewritten as

w rð Þ ¼
X
j,n

Z jei
~k~Rn

2π2

�
ð
qk ,qz

e�i ~qk ~r� ~R jþ~Rnð Þð ÞþqzeR� �
q2k þ q2z

dqzd
2qk, (7)

FIG. 2. NP on graphene: r is the radius vector in the graphene plane, R is the
NP radius, and θ is the angle between r and the radius of the vector coming
out of the NP center.
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where ~k is the plasmon wave vector and eR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � R2

0

p
is the

distance from the NP center to the graphene surface (see Fig. 2).
Since we are interested in the potential component wk, acting

only in the graphene plane, we can integrate Eq. (7) over all the qz
values and obtain the Fourier image of the potential Φ acting in
the plane,

Φ qk
� � ¼ ð1

�1

4π
q2k þ q2z

e�iqz~Rdqz: (8)

Therefore, the potential w(r) in the graphene plane can be cal-
culated as

w rð Þ ¼
X
j,n

ð
qk

Zjei(
~kþ~qk)~Rn

(2π)3
Φ qk
� �

e�i~qk(~r�~Rj)d2qk, (9)

using the lattice sum,
P

n e
i ~kþ~qkð Þ~Rn ¼ 2πð Þ2

Ω0

P
~G δ

~kþ ~qk, ~G
� 	

,

where Ω0 is the unit cell area and ~G are the planar reciprocal lattice
vectors; the potential w(r) becomes equal,

w rð Þ ¼
X
j,~G

ZjΦ ~G�~k
� 	
2πΩ0

e�i ~G�~kð Þ ~r�~Rjð Þ: (10)

From this equation, it is easy to obtain ∇kw(r) in (5).
Applying another sum rule

Ð
Ω ei

~G2�~G1ð Þ~rd2r ¼ Ω0δ(~G1 �~G2), one
can transform Eq. (5) as

dEkin
dt

¼ σ(ω, μ)
16π2Ω0

X
j,i

Z*
j Zi�

�
X
G

jΦ G� qð Þj2ei ~k�~Gð Þ ~Rj�~Rið Þ(~k�~G)
2

¼ σ(ω, μ)
2

X
i,j

Bi,j(~k) Z
*
j Zi, (11)

where the kinetic energy matrix is

Bi,j(~k) ¼ σ(ω, μ)
8π2Ω0

X
G

jΦ G� kð Þj2ei ~k�~Gð Þ ~Rj�~Rið Þ(~k�~G)
2
:

In addition, we can calculate the potential energy of the unit
cell as

Epot ¼
X
i[1

Qiw(Ri)
2

þ Q2
i

2R

� �
:

By analogy with the kinetic energy calculation, one can calculate

the potential energy of the unit cell as

Epot ¼
X
i,j[1

QjQi

4πΩ0

X
G

Φcoul ~G�~k
� 	

e�i ~G�~kð Þ ~Ri�~Rjð Þ

þ
X
i[1

Q2
i

2R
¼

X
i,j

Ai,j(~k)Q
*
j Qi, (12)

where the potential energy matrix is

Ai,j(~k) ¼ δi,j
R

þ
X
i=j

2

jRi � Rj(~k)j

¼ δi,j
R

þ
X
~G

Φcoul(~G�~k)
4πΩ0

e�i ~G�~kð Þ ~Ri�~Rjð Þ:

Using (3) and (12), the potential energy time derivative is

dEpot

dt
¼ d

dt

X
i,j

Ai,j(~k)QiQ
*
j ¼ iω

X
i,j

Ai,j(~k)ZiZ
*
j: (13)

Using Eqs. (2), (11), and (13), we can derive the main matrix equa-
tion as

X
i,j

iωZiAi,j(~k)Z j � σ intra(ω, Ef )ZiBi,j(~k)Z j

h i
¼ 0: (14)

Assuming that the graphene carrier dissipation processes are
much less than the energies of the plasmons under study or, in
other words, τ ! 1, (14) can be written in the following matrix
form:

αω2Â(~k)� B̂(~k) ¼ 0; α ¼ π�h2

e2Ef
: (15)

Introducing Ŵ(~k) ¼ Â(~k)
�1
B̂(~k) and using the well-known

formula for graphene Ef ¼ �hV fermi
ffiffiffiffiffi
πρ

p
, one can get the secular

equation for determining the CTP frequencies,

ω2
i (
~k) ¼ e2Vfermi

ffiffiffi
ρ

pffiffiffi
π

p
�h

� eigenvalues(Ŵ(~k)): (16)

This equation is exactly like Eq. (18) in Ref. 35 for CTPs in an
irregular NP array on the graphene except that the matrix Ŵ(~k)
has a different form. It is clear that the CTP frequency ωi are
decomposed into factors, which are the function of carrier density
in graphene and the function depending on the NP coordinates in
the unit cell and the CTP wave vector only. The dependence of the
matrix Ŵ on the planar vector ~k, which is determined by the
dependences of matrices Ai,j(~k) and Bi,j(~k), has symmetry deter-
mined by the planar geometry of NPs on the graphene surface.

Considering case jkj ! 0, taking into account the system
general electrical neutrality and the assumption the changes in the
graphene carrier density can be neglected during CTP vibrations, it
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becomes obvious that in this case, one acoustic and some optical
CTP plasmonic modes can be existed.

For the acoustic plasmonic mode of index n0, the amplitudes
of all NP charges Z j¼1...N ,n0 ! 0 when jkj ! 0. This leads to a zero
restoring force acting on all free carriers and to the CTP frequency
ωn0 ! 0. There must also exist (N�1) CTP optical modes, where
Z j,n = 0 for at least some NPs inside UC. Because of this, a chang-
ing local electric field in the graphene changes the kinetic energy of
carriers there, determined by the kinetic Bi,j matrix, as well as the
potential energy of charged NPs, defined by the Ai,j potential
matrix. This leads to a nonzero matrix Ŵ and to nonzero values of
CTP frequencies ωi for the optical CTP branches. The situation
here is completely analogous to phonon spectra in periodic media,
where acoustic and some optical vibration modes are also observed.

III. APPLICATION OF THE MODEL

We apply the developed model for two periodic systems
involving metallic NPs with a radius of Rnp ¼ 3 nm placed on the
graphene surface (see Fig. 3). The first structure includes a chain of
four identical NPs uniformly spaced in the UC. The distance

between the centers of neighboring NPs is Rneigh ¼ 5R and the
parameters of a rectangular UC are a ¼ 20 R and b ¼ 5 R. At the
same time, the UC could be reduced to the smallest primitive UC
containing inside only one NP. Like phonons in a similar periodic
structure, the CTP band structure for this system should lead to the
bandgap absence between an acoustic and all optical modes of
CTPs.

The second investigated structure [see Fig. 3(b)] included four
identical NPs in the symmetrical square UC, and this UC is chosen
so that it cannot be decomposed into a simpler UC. The system
includes a square of four NPs inside UC with the diagonal length
between the NP centers Rdiag ¼ 6 R, where the UC sides are rotated
by 45 deg relative to the square sides. The parameters of the square
UC are a ¼ b ¼ 10 R.

Using (16), we determined the band structures ν(~q) for both
NP–graphene systems [see Figs. 4(a) and 4(b)]. These modes can
be divided again into the acoustic and optical CTP branches. In
both structures, the CTP frequencies of the acoustic modes tend to
zero as ~k ! 0 and reach the maximum at the first Brillouin zone
(1BZ) boundaries. The optical CTP modes have the weak ν(~k) dis-
persion, although their frequencies are higher than those of the
acoustic modes. In any case, the frequencies of all ν(k) modes
range within 0–10 THz.

Interestingly, the first chain structure of equidistant NPs con-
tains no bandgap between the acoustic and optical CTP modes [see
Fig. 4(c)]. This can be explained by the fact that this structure can
be reduced to another structure containing only one NP in the UC,
where there is the only one acoustic mode. By folding, this mode is
mapped onto a set of acoustic and three optical modes in the
reduced UC, where the modes at the 1BZ boundaries transform
into each other without forming a bandgap, similar to the situation
with the acoustic branch of phonons in a crystal with only one
atom in the UC.

The band structure of the second square structure has a
bandgap between all CTP branches, since it cannot be reduced to
the structure with the single NP inside UC. The band gaps between
higher optical modes are narrow and difficult to distinguish in the
figure.

It should be noted that solving of (16) on a PC with CPU Intel
Core I5-3340, 3.1 GHz for one k point in 1BZ takes only a few
seconds, which indicates the high computational efficiency of the
developed model. Our practice35 shows that similar calculations, but
for non-periodic NP–graphene structures within the framework of the
Finite Element Method (FEM) or Finite Difference Time Domain
(FDTD) method, which have become the de facto standard for such
calculations, take about a day or more on a similar computer.

For the structures under study, the plasmon group velocities

denoted as Vgroup(~k) ¼ dν(~k)
dk were investigated also. Figure 5 shows

these velocities depending on the wave vector kx along the x axis.
For convenience, these group velocities were normalized to the
Fermi velocity of electrons near the Dirac cones Vfermi ≃ 106 m/s.
It can be clearly seen that there are certain~k ranges where Vgroup(~k)
surpasses the Fermi velocity of electrons Vfermi.

Next, the dependence of the CTP frequencies for both systems
on the graphene carrier concentration ρ(1=cm2) was calculated and
plotted (see Fig. 6), wherein NP radius R ¼ 375 nm and the cell

FIG. 3. Unit cells of two NP–graphene systems. (a) Chain structure including
four NPs on graphene. (b) Square structure including four NPs on graphene.
Dashed lines show the unit cell boundaries.
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parameters of the chain structure a ¼ b ¼ 4 R were taken the same
as in the experiment in Fig. 1, indicated by a dark green line. One
can see very close agreement with the experiment. The slight dis-
crepancy between CTP frequencies calculated by our model and
the experiment can be explained by two factors: (1) in the experi-
ment, it were used nanocylinders, while the spherical NPs were
used in the model; (2) in the experiment, it was investigated the
system consisting of metal nanocylinders on the graphene sheet,

FIG. 6. Calculated CTP frequencies of the NP–graphene systems, plotted as a
function of carrier density ρ in graphene. The black solid line corresponds to the
highest mode of the chain structure. Red dashed and dotted lines correspond to
two higher modes of the square structure.

FIG. 4. (a) Band structure ν(~k) for the UC included the chain of four NPs on
graphene; (b) ν(~k) for the structure of four NPs in the square UC; (c) cross
section of ν(~k) on kx with ky ¼ 0 for both structures. The red solid line corre-
sponds to (a); the blue dashed line corresponds to (b). For the blue line, the
curves of 3 and four modes are almost equal on the border of 1BZ. On the
drawings (a) and (b), the blue surface represents the acoustic mode, while the
fuchsia, green, and red surfaces represent the optical CTP modes.

FIG. 5. Dependence of the ratio of plasmon group velocity Vgroup(~k) to electron
velocity V fermi on the wave vector kx. (a) for the chain of four NPs on graphene
and (b) for the square structure of four NPs on graphene. The blue curve repre-
sents the “acoustic” mode, while the fuchsia dashed, green dash-dotted, and
red dotted curves represent the “optical” modes.
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under which, instead of a vacuum, a thin layer of SiO2 and a sub-
strate of p-doped silicon were placed, so (16) had to be modified by
analogy with (2) from21

~ω2
i (
~k) ¼ ω2

i (
~k)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

(1þ εr1 )

s
,

where the effective permittivity of the underlying medium εr1 is
defined as the weighted average of permittivity of these materials,
calculated using the relative weights determined by the overlap
factors of the plasmon field intensity distribution with these two
materials.

In addition, we plotted the distribution of electric field lines
for both investigated structures at different wave vectors kx and
ky ¼ 0 (see Fig. 7). These lines were calculated from the formula
~E(~r) ¼ �∇w(r) ¼ �P

G i~G w(G) e�i~G~r: Based on the distribution
of the electric field lines and NP charge amplitudes, it can be seen
that for the case kx ¼ 0, the distribution of NP charges and field
lines is completely symmetrical. This results in a zero dipole
moment P ¼ 0 of the system. For the case kx ¼ 0:5 π=a, the distri-
bution of NP charges and the field lines is asymmetrical and this
leads to P = 0. As was shown in Ref. 35, the interaction of an
external electromagnetic field (EEF) with a system is determined by
the dipole moment P. Consequently, the interaction of EEF with
our system will occur only in the case of kx ¼ 0:5 π=a.

IV. CONCLUSIONS

In this work, we extend the original hybrid quantum-classical
model35 to predict the CTP plasmon properties for the periodical
NP arrays on the graphene surface. The linear equations describing
the CTP frequencies and eigenvectors (oscillating NP charge
values) are derived. It is shown that the CTP plasmon band struc-
ture ω(~k, n) is characterized by the plasmon wave vectors~k and the
band indexes n, wherein the CTP bands are divided into the acous-
tic and optical modes, similar to phonons in periodic media. It is
demonstrated that these plasmon frequencies lie in the THz range
and are factorized, i.e., presented as a product of the factor deter-
mined by the graphene charge density and the factor determined
by the NP geometry.

The model is applied to two cases of regular NP arrays. In the
first case, it is used the chain of four uniformly spaced identical
NPs, which, due to identical distances between NPs, can be
reduced to the UC containing the single NP only. In the second
case, we calculated the CTPs for the periodic structure where the
UC contains a square of four same NPs, which cannot be reduced
to the smaller one.

In the both cases, the plasmon group velocities Vgroup(~k) tend
to zero at~k ! 0 for the acoustic modes but attain their maximum
values of � VFermi inside 1BZ. In both cases, the optical modes
have weak ω(~k, n) dispersion. It is shown that the calculated depen-
dence of CTP frequencies on carrier concentration in graphene is
in good agreement with available experimental data.

We believe that the results of this study can help in designing
various nanoplasmonic devices operating in the THz range because
the developed model makes it possible to carry out CTP

FIG. 7. Distribution of electric field lines for both structures at different wave
vectors kx . The color and saturation of balls reflect the distribution of effective
oscillating NP charges: negative charges are blue and positive charges are red.
(a) The chain structure with kx ¼ 0, (b) with kx ¼ 0:5 π=a. (c) The square
structure with kx ¼ 0, (d) with kx ¼ 0:5 π=a.
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simulations 3–4 orders faster than usually used FEM or FDTD cal-
culations, raising possibilities for predicting the plasmonic proper-
ties of very large systems.
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