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Doped Mott-Hubbard materials with a low quasiparticle transparency
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Based on the Wilson’s criterion metal/insulator, extended to materials with strong electronic correlations,
we have identified a specific class of the materials, which is not associated with their usual classification into
Mott-Hubbard and charge transfer dielectrics. The local symmetry of these materials leads to the disappearance
of quasiparticle states (so-called first removal or first extra states) in the Hubbard gap. It is especially unusual for
doped materials, in which quasiparticles, being charge carriers, can disappear or appear under external factors
without the Mott transition being achieved. In this work, we introduce the so-called “quasiparticle transparency”,
and provide specific experiments to identify materials with the low quasiparticle transparency. A number of
examples of such materials with a spin crossover under high pressure, showing the Jahn-Teller nature, are
considered.
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I. INTRODUCTION

The satisfiability of the known metal/insulator (MI) cri-
terion W /U ∼ (R + 1) (where R is the orbital degeneracy)
of the Mott-Hubbard transition depends on the characteris-
tic material scale, since the width W of the quasiparticle
band decreases with the decreasing scale of materials, and
the Coulomb interaction U increases due to the weakening
of screening effects. The MI transition itself can also be
controlled by external effects, which change physical prop-
erties of the material (thermal expansion, pressure, optical
pumping, etc.). Of particular interest is the transition of Mott-
Hubbard insulators to a metallic state induced by the doping
effect, since doped materials have unique properties, e.g., high
temperature superconductivity in the two-dimensional (2D)
perovskite cuprates [1,2] and colossal magnetoresistance in
3D manganites [3,4]. Moreover, in both materials the pseudo-
gap effect is observed. However, it is hard to imagine that the
initial MI criterion is correct in all these various cases.

To understand the origin of the problem, it is sufficient
to look at the “band structure” within the framework of
the formalism of Hubbard operators [5] in the zero-hopping
approximation. The formalism is necessary to detect the
effects of many-electron local states on the number of quasi-
particles in the band. In the zero-hopping approximation,
according to the initial MI criterion, the material must be
an insulator (W = 0), but the MI criterion based on Wil-
son’s ideas [6] for the doped Mott-Hubbard materials shows
nontrivial scale invariant results, independent of the band
width W . The purpose of our work is to construct and
apply Wilson’s MI criterion as related to the system of
itinerant electrons in the analytical form to the doped Mott-
Hubbard materials. The approach includes a key statement
that if an electron system consists of completely occupied
and empty bands, it is an insulator, otherwise, it is a metal,
where however the spectral density of quasiparticles depends

on the doped carrier concentration x due to many-electron
effects.

II. WILSON’S MI CRITERION FOR DOPED MATERIALS

To extend the Wilson’s MI criterion, we will further follow
the work [7] where it is demonstrated that doped 2D per-
ovskite cuprates have metallic conductivity, with no forbidden
quasiparticle states being present. Although there are some
features here (e.g., an impurity potential effect and associated
states), we will consider the criterion taking into account
the many-electron effects only. Our extended approach uses
the fact that the optical intracell dd transitions with their (l
orbital, S spin)-selection rules in the transparency window
and optical charge transfer transitions in the oxides can be
observed in the same 3d states [8,9]. Note, in order to make
further content more self-sufficient, we have also provided
here some calculation details from Ref. [7] (see Appendix A).

In the first approximation we can assume that the quasi-
particles are unit cell excitations which can be represented
graphically as single-particle transitions between different
sectors Nh = ...(Nh0 − 1), Nh0, (Nh0 + 1), . . . of the configu-
ration space of the unit cell (Nh0-hole number per cell in
the undoped material, see Fig. 1) [10]. Each of these transi-
tions forms an rth quasiparticle band, where the root vector
r = {ii′} in the configuration space numerates the initial i and
final i′ many-electron states in the transition. The quasiparticle
transitions with increasing or decreasing electrons form the
conduction or valence bands, respectively. The indices i and
i′ run over multi-electron states: μ, τ , and η in the sectors
Nh0, Nh0 − 1 and Nh0 + 2 (see Fig. 1). Here, it is convenient
to start with Lehmann representation of the Green’s function
Gλλ

f gσ of the intracell Hamiltonian H0 with respect to the family

of single-particle operators c(+)
f λσ

with the f (g) cell, λ orbital,
σ =↑,↓ spin indices, and their matrix elements in the basis
of |(Nh, MS )i〉 eigenstates of H0 (S and M spin and spin
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FIG. 1. Ei(Nh, MS )-energy level scheme of the configuration
space based on the cell states with hole number per cell Nh = Nh0 − 1,

Nh0, Nh0 + 1, . . . , where i = μ, τ, η and Nh0 is the hole number per
cell in the undoped material. The circles e and h denote the occupied
ground cell states of the electron-and hole-doped materials, respec-
tively. The solid line with arrows corresponds to the first extra states
(fes) and first removal state (frs) quasiparticles.

projection of the multielectron cell eigenstate):∑
λσ

Gλλ
f gσ =

∑
λσ

〈〈c f λσ | c+
gλσ 〉〉

= δ f g

∑
rr′

∑
λσ

γ f λσ (r)γ f λσ

(
r′)Drr′

f g (E )

= δ f g

∑
rr′

δrr′
∑

σ

Fr (x)χσ
rr

E − 	r
, (1)

where matrix elements

γλσ (r) = 〈(Nh + 1, M ′
S′ )τ |c f λσ |(Nh, MS )μ〉

× δ(S′, S ± |σ |)δ(M ′, M + σ ), (2)

and

χσ
rr′ =

∑
λ

γ ∗
λσ (r)γλσ (r′) (3)

for the p- and n-quasiparticle states in the valence and
conduction bands, respectively, where the total space
of the root vectors {r} = · · · + {r12} + {r23} + · · · , ({r12} =
{μτ }, {r23} = {τη} and so on (see Fig. 1). The occupation
factor Fr (x) is the probability to detect a cell in any of
the i, i′ states participating in the rth transition, and 	v

r =
Ei(Nh, MS ) − Ei′ (Nh + 1, M ′

S′ ) and 	c
r = Ei(Nh − 1, MS ) −

Ei′ (Nh, M ′
S′ ) are the quasiparticle energies in the rth valence

and conduction bands, respectively. In the paramagnetic (PM)
phase of the doped material the occupation factor has the
form:

Fr12 (x) = 1 − αx

2S + 1
, (4)

where α = 1 − (2S + 1)/(2S′ + 1) is proportional to the ratio
of the spin multiplets of the i, i′ states participating in the
r12-transition (from the subspace {r12}) between the ground
states |(Nh0, MS )i=0〉 and |(Nh0 + 1, M ′

S′ )i′=0〉 indicated by the
arrows in Fig. 1.

The Green’s function in Eq. (1) is yet free from the short-
comings of the hydrogenlike representation and low-energy
approximations since we do not restrict ourselves to choose

the intracell Hamiltonian H0, and are ready to work with all
the |(Nh, MS )i〉 states. Taking into account the specifics of the
cuprates, we will consider p-doped materials, where the num-
ber of valence states is equal to the sum over all quasiparticle
states:

Nv (x) =
∑
λσ

∑
r

γλσ
2(r)

∫
dE

(
− 1

π

)
Im Dr

0(E )E+i0

= N12
v (x) + N23

v (x), (5)

where N12
v (x) and N23

v (x) are the contributions from the quasi-
particles with the root vectors r from the {r12} and {r23}
subspaces since the other states of |(Nh, MS )i〉 in the p-doped
material are not occupied, and there is a zero probability
Fr (x) = 0 to detect a cell in these states at a low temperature.
The Wilson’s condition in the insulating state, which we are
interested in, is

Ne − x = Nv (x), (6)

where (Ne − x) is the total electron number per cell of the hole
doped material. That is, if the number of electrons in the cell
equals the number of valence quasiparticle states, the doped
material is an insulator.

To obtain the Fermi level position in a degenerate doped
material at zero temperature we could perform the integration
on the right side of the equation

x =
∑
λσ

∑
r

γλσ
2(r)

∫
EF

dE

(
− 1

π

)
Im Dr

0(E )E+i0, (7)

over the top valence band of the first removal electron states
( f rs) with the lowest binding energy (see Fig. 1), and this
is, as a rule, sufficient at the actual concentration x ∼ 0.1.
However, this is not sufficient, when the hole concentration
x exceeds the number of quasiparticle states in the top va-
lence band x 	 Nfrs, since the number of the f rs quasiparticle
states, Nfrs, may be very small. Therefore, the solution of
Eq. (7) has the features at Nfrs → 0. To understand this, we
obtain the total number of valence quasiparticle states, Nv , as
a function of both the doping concentration x, and Nfrs:

Nv (x, Nfrs ) = N12
v + N23

v , (8)

where the contributions N12
v and N23

v from the subspaces {r12}
and {r23} are calculated in Appendix A, and the root vectors
r characterize the specific quasiparticle band: if r = {ν0, l0}
or r = {τ0, l0} in Eqs. (2) and (3), then we are dealing with
the first extra states ( f es) or f rs quasiparticles in Fig. 1,
respectively. By following this approach, we obtain an MI
criterion:

Nv (x) = Ne − x(1 − Nfrs ), (9)

which is characterized by a condition: Nfrs = 0 (insulator) or
Nfrs �= 0 (metal), and Nfrs is calculated in Appendix A. Indeed,
under the conditions Nλ = Ne = 1 we always obtain a simple
metal with the valence states Nfrs = 2 and Nv (x) = (1 + x), as
it occurs in the Hubbard model, where the high-spin (triplet)
states are simply not available. The criterion is based only on
the properties of completeness of a set of states |(Nh, MS )i〉 in
the configuration space of the cell, and the number of states
Nfrs depends on their spin and orbital nature.
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III. QUASIPARTICLES IN DOPED MATERIALS
WITH LOW QUASIPARTICLE TRANSPARENCY

From Eq. (9) it follows that the doped material can show
both the metallic Nv (x) > (Ne − x), and dielectric properties
Nv (x) = (Ne − x) at the Nfrs > 0 or Nfrs = 0, respectively.
The physical meaning of the MI criterion lies in the matrix
value χσ

rr′ [see Eq. (3)], which in the Hubbard operator rep-
resentation corresponds to the quasiparticle as a sequence of
intracell transitions between the multielectron cell states. If
single-particle transitions are forbidden by any symmetry, the
charge carriers are missing. The doping particles (electrons
or holes) are in the local multielectron states |(Nh, MS )i〉, but
there is no peak in the single-particle density of states, and the
matrix element χσ

r0r0
defined in the root vector space {r} can

be called “quasiparticle transparency” of the doped material.

A. Pressure-induced effects

The f rs states can be prohibited at the δ(S′, S ± |σ |) = 0
in Eqs. (2) and (3) (s-forbidden f rs quasiparticles). How-
ever, can forbidden f rs( f es) states really exist in any doped
Mott-Hubbard materials? A review of the Tanabe-Sugano di-
agrams [11] shows that the low transparency effects in the
materials with 3d elements in an octahedral environment
are unlikely. Indeed, the ground states in different sectors
of the configuration space are connected by nonzero matrix
elements (2) of the single-particle operators. However, the
nature of the ground state of the transition element ion de-
pends on the applied pressure, while some materials with 3dk

ions at 3 < k < 8, namely, the transition metal oxides, transi-
tion metal complexes, metal-organic molecules and molecular
assemblies, exhibit spin crossover, with increasing pressure
from ambient pressure [12–23]. The spin crossover occurs
due to the competition between the energy crystal field 10Dq
and the intra-atomic Hund exchange JH , for example, in an
interesting material FeBO3 [24], where the Fe3+ ion is in the
high-spin configuration 3d5(t3

2ge2
g) at ambient pressure. The

energy of the high and low spin states in the N0(3d5) sector
can be presented in the form [25]:

Ehs = Ec(d5) − 10JH

Els = Ec(d5) − 20Dq − 4JH . (10)

Equation (10) shows that the spin crossover S|P<PS =
5/2 ↔ S|P>PS = 1/2 in the ground state is possible at a
certain pressure PS (= 48 − 54 GPa for iron borate [24]) cor-
responding to the crystal field 10Dq = 3JH . Here and below,
Ec is a part of the energy term independent of the Hund
exchange JH and the crystal field 10Dq [26]. Similarly, in the
sector N+ for the 3d6 configuration

Ehs = Ec(d6) − 4Dq − 10JH ,

Els = Ec(d6) − 24Dq − 6JH , (11)

for the spins Sν0 = 2 and Sν0 = 0, respectively. This shows
that the crossover in the ground state of the term is possible,
under the condition 10Dq = 2JH , in accordance with the pres-
sure Pmin. Similarly, in the sector N− for the 3d4 configuration

Ehs = Ec(d4) − 6Dq − 6JH ,

Els = Ec(d4) − 16Dq − 3JH . (12)

FIG. 2. Ground state crossover Sν0 = 2 ↔ 0 in the Nh0 − 1 sec-
tor FeBO3 under the pressure Pmin < P < PS . The solid elliptical line
with a cross shows the forbidden f es quasiparticles.

Equation (12) shows that the crossover in the ground state
of the term is possible at the same crystal field 10Dq = 3JH

as for the 3d5 configuration. The energy of the ground states
in Eqs. (10) and (12) in the pressure range Pmin < P < PS

promotes the forbidden f es quasiparticles (see Fig. 2), and
the n -doped iron borate, can turn out to be an insulator
(semiconductor), where

χσ
r0r0

=
∑

λ

γ ∗
λσ (6A1,

5E )γλσ (5E , 6A1) = 0 (13)

at δ(S′ = 0, S = 5/2 ± |σ |)δ(M ′, M + σ ) = 0. The disap-
pearance of n quasiparticles precedes the spin crossover at
the pressure PS . Note, however, that the iron borate has not
so far been able to be converted into the metallic state with
an increase in pressure. The similar calculations for all 3dn

ionic configurations in the octahedral crystal field show a
possibility for the forbidden f es and f rs quasiparticles only
in the n-doped materials with 3d5 and the p-doped materials
with 3d6 ions, respectively.

B. Quasiparticles induced by the pseudo-JT effect

The second possibility to observe the effects of low quasi-
particle transparency is the material with the dynamic Jahn-
Teller (JT) effect, where the hole doping changes the initial
orbital configuration of the |(Nh0, MS )μ=0〉 ground cell states
(l forbidden f rs quasiparticles). Indeed, in 2D cuprates with
elongated and tilted octahedral CuO6 complexes as well as
with the nonzero eg splitting energy ⊥ = EB1g − EA1g > 0, the
pseudo-JT effect (A1g + B1g) ⊗ (b1g + a1g) is possible [27].
The single-particle operators c(+)

f λσ
in the matrix elements (2)

and quasiparticle transparency (3) are nondiagonal operators,
and quenching effects can be expected.

As follows from Refs. [28,29] the phonons have zero
thermal Hall response outside the pseudogap phase in the
hole-doped 2D perovskite cuprates. However, inside the pseu-
dogap phase, the phonons become chiral to generate the Hall
response. They show the specific symmetric nature of the
electron-lattice coupling. Next, we apply the MI criterion to
understand the symmetric nature of phonons in the pseudogap
effect of the hole spectrum in doped 2D perovskite cuprates.
At first, we will test the MI criterion for doped cuprates in
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(a) (b)

FIG. 3. Ei(Nh, MS ) energy level scheme of the configuration space based on the cell states (15) in the CuO2 layer. The solid line with
arrows corresponds to the f rs quasiparticles. (a) The tilting and orientation angles ϕ and θ of the CuO6 octahedron are retained by the f rs
quasiparticles. (b) The wavy line shows the eg states splitted by ⊥ energy, and active in the pseudo JT effect. The angles do not have specific
magnitudes and they are changed by the f rs quasiparticles.

the framework of the usual Russell-Saunders scheme. Let us
calculate the magnitude of Ns(t )

frs in the cuprates, where the
root vector r = {2b1, A1g} is relevant in Eq. (A9) at μ = 0 and
τ = 0 [30,31], i.e., it corresponds only to the A1g singlet f rs
state, which is a well-known Zhang-Rice singlet [32]. Using
the exact diagonalization procedure with the local density ap-
proximation (LDA) parameters from the work [33], we obtain
the relation:

Ns
frs = 1 + [

β2
0 (hb) − β2

0 (hdx )
]

× [
B2

0

(
h2

b

) − B2
0

(
h2

dx

)] ≈ 0.97 (14)

for the singlet f rs states, where the doublet and singlet ground
states (5) and (6) are

|2b1〉0 = β0(hb)|hb, σ 1
2
〉 + β0(hdx )|hdx , σ 1

2
〉

|A1g〉0 = B0
(
h2

b

)∣∣h2
b, 00

〉 + B0
(
h2

dx

)∣∣h2
dx

, 00
〉

+ B0(hdx , hb)|hdx , hb, 00〉, (15)

hb and hdx are the holes in the b-symmetrized cell states of
oxygen and dx2−y2 cooper states of the CuO2 layer, respec-
tively. Thus, there is no l - forbidden quasiparticles in the
Russell-Saunders scheme, and the number of valence states is
almost a constant: Nv (x) ≈ Ne − 0.03x. Here, the f rs quasi-
particles are associated with the single-hole transitions in
Fig. 3(a), where the lattice of the CuO2 layer is unchanged,
and the adiabatic approximation is correct.

In the dynamic JT effect, the CuO6 octahedra can be both
in the U stripe, and D stripe states with different tilting and
orientation angles ϕU (D) and θU (D), respectively [27]. The hole
concentration x in them is also different, and the dynamic JT
effect in the CuO2 layer as a whole would be possible only
if its total charge and regular stripe structure were retained.
Let us assume that the tilts ϕU (D) and orientations θU (D) of the
CuO6 octahedra with respect to the spacer rock salt layers are
active JT distortions, and the rotation of all the tilted CuO6

octahedra around the c axis (i.e., changing their orientation
θ ) in the stripe U/D/U/D... structure fits within these limita-
tions [34]. However, the scale of a novel JT cell in the stripe
set U/D/U/D... exceeds the initial cell (i.e., the single CuO6

octahedron). As a result, in the dynamic JT effect, the hole

number x is not retained in the single CuO6 octahedron upon
rotation around the c axis.

In Eqs. (2) and (3), where the matrix elements γλσ (r)
were calculated still in the local Russell-Saunders scheme,
there emerge overlapping phonon parts of the initial cell func-
tions (A1) and (A2). According to the meaning, it is the Ham’s
reduction factor [35] in the quasiparticle transparency, since
the JT cell has a fourfold degeneracy with different θU (D)

orientations of the tilted CuO6 octahedra:

χσ
r0r0

(δθ, δϕ)

= γ ∗
x2σ

(1A1g,
2b1g

)
γx2σ

(2b1g,
1 A1g

) ·
∑
δϕδθ

α(δϕ, δθ ), (16)

where r0 = {1A1g,
2 b1g}, θ = θU , θD and ϕ = ϕU , ϕD with the

indices U and D related to the stripe affiliation for the single
CuO6 octahedron in the harmonic oscillator states |ψτ (μ)(θ )〉
and |ψτ (μ)(ϕ)〉 of the displaced 2D oscillator [34]:

α(δϕ, δθ ) = 〈ψ1A1g
(θD)|ψ2b1g

(θU )〉2 · 〈ψ1A1g
(ϕD)|ψ2b1g

(ϕU )〉2

≈ exp{−ν(δθ2 + δϕ2)/2}, (17)

where δϕ = ϕD − ϕU ≈ 9◦ − 13◦, δθ = θD − θU = ±45◦
and ν = K/h̄ωD with the Debye frequency ωD and force
coefficient K . Formally, the hole-doped 2D cuprate becomes
an insulator only at ωD → 0. We obtain the reduction effects
in Eq. (17), if the charge inhomogeneity of the dynamical
U/D/U/D... stripe structure [see Fig. 3(b)] occurs. To clarify
the MI criterion itself and the last conclusion, we consider a
simplified spinless model in Appendix B.

IV. CONCLUSIONS

According to Wilson’s MI criterion for materials with
strong electronic correlations, a class of the materials having
the forbidden f rs( f es) quasiparticles in Hubbard gap was
identified. In order to highlight the nature of the materials with
specific single-particle excitations, but not two-particle excita-
tions, we introduced the term “quasiparticle transparency” for
the matrix element χσ

r0r0
[see Eq. (3)], which in these materials

can have a zero magnitude, and the n or p doping does not lead
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to the generation of charge carriers. Actually, by this term we
note the analogy of the f rs( f es) quasiparticles with the light
propagation in a material with optical intracell absorption at
frequencies of the dd transitions. A first search for materials
with low quasiparticle transparency allowed us to identify the
following candidates:

(i) The doped 3d oxides with a spin crossover (e.g., n-
doped FeBO3 iron borate, Fe2O3(3d5), MnO(3d5), . . . and
p-doped LaCoO3(3d6), Mg1−xFexO magnesio wustite, …),
where the low quasiparticle transparency effects could be
observed in the vicinity of the crossover at high pressure
(e.g., PS = 48−54 GPa for iron borate). The doped charge
carriers are generated and disappear with increasing pressure.
A possibility for the forbidden f es and f rs quasiparticles is
available only in n-doped materials with 3d5 and p-doped
materials with 3d6 ions respectively. This is associated with
a a completely occupied t2g shell of 3d ion in the octahe-
dral environment, and materials with the local tetrahedral
symmetry, such as spinels, must therefore be based on other
3d ions. Now, there is no information on the effects of low
quasiparticle transparency in doped 3d oxides under high
pressure. Missing data indicates complex detection. Indeed,
a preliminary selection of the type (n or p) of doping for a
specific material and low temperatures are required to occupy
exclusively the f rs( f es) states.

(ii) The materials with the dynamic JT effect (2D per-
ovskite cuprates), where overlapping phonon functions in
different sectors Nh0 and Nh0 + 1 of the cell configuration
space leads to a partial quenching of hole carriers. The essence
of the quenching is that even in the dynamic JT effect, the
doping holes avoid the U stripes, and the threshold nature of
the pseudo JT effect at the doping concentration xD > xc in
the D stripes continues to support the charge inhomogeneous
U/D/U/D... stripe structure. Otherwise, the hole concentration
drops below critical x < xc and the pseudo-JT effect disap-
pears [36]. However, the dynamic stripe structure is associated
with the bifurcation nature of adiabatic potential for the tilted
CuO6 octahedra in Fig. 3(b). The prohibition on the f es( f rs)
quasiparticle states is not the most effective there, because
the crystal field corresponds to moderate magnitudes in the
Cl-S-O-N-C ligand series. Indeed the prohibition is a property
of structures with a specific crystal field, and the forbidden
f rs( f es) states in rare earth materials are unlikely due to
the shielded 4f orbitals. We also believe the complex layered
spinel structure with octahedral and tetrahedral crystal fields,
might be a promising example. In the chemistry of battery
materials, the 3D spinel AM2O4 (A and M are the metal of the
alkali group and 3d metal) can be obtained from some infinite
layered structures of AMO2, through the intercalation pro-
cess and the harmonious existence of complex layered spinel
phases [37,38]. However, is the similar process possible for
the infinite layer CaCuO2 superconductor with a field effect
doping [39,40]?

The real question is how can the doped materials with low
quasiparticle transparency be identified? In undoped materi-
als, the signatures of the forbidden f rs( f es) quasiparticles
in the single-particle density of states are missing. However,
they can be enhanced by a resonant optical excitation, since
the condition for the zero magnitudes (2) does not apply to
the optical matrix elements. Therefore, it is possible to detect

the low quasiparticle transparency by studying the difference
between the optical gap and photoconductivity measurements
for a mobility gap (see, e.g., Ref. [41]). The first corresponds
to a charge transfer gap (the so-called a CT gap) in cuprates,
where the light-induced f rs “quasiparticles” are localized,
and the second corresponds to a gap in spectrum of the charge
carriers. As follows from our work, the difference in the un-
doped cuprates is directly related to the pseudogap effect in
the hole-doped cuprates. The photoconductivity was mainly a
topic of superconductor research in the 1990s, but the expla-
nation for the effect is still under some debate [42].

In general, the angle resolved photoemission spectroscopy
and observation of de Haas–van Alphen oscillations re-
ally show a hard gap in the density of states of the 2D
cuprates [43,44]. However, Fermi arcs are observed in the
k-dependent experiments at the nodal region of the 2D Fermi
surface in a pseudogap state. It is impossible to interpret
arcs within our approach, since there is no Fermi surface.
The existence of Fermi arcs may be associated with limits
of applicability of the MI criterion. Indeed in itinerant mate-
rials, the Wilson’s criterion is correct so long as the empty
and occupied bands don’t overlap. The Mott-Hubbard ma-
terial with the forbidden f rs( f es) quasiparticles can be in
a dielectric state at some doping concentration in the range
0 < x < xc. Here, there is also restriction, since the overlap-
ping bands with different root vectors r = {μ, τ } changes a
nature of the f rs( f es) states. In the 2D perovskite cuprates,
the quasiparticle bands involving Zhang-Rice singlet 1A1g

with r = {b1g,1A1g} and triplet 3B1g with r = {b1g,3B1g} can
overlap [45,46] even at W||/⊥ < 1, where W|| is a width of
the qusiparticle band in CuO2 layer, due to the nonzero Hund
exchange interaction JH ∼ 0.1eV (see Fig. 3). In this case,
the JT effect is impossible, and there is no prohibition from
MI criterion at the broken condition W||/U < W||/⊥ < 1,
i.e., for the doped Mott-Hubbard materials with overlapping
bands.
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APPENDIX A: THE NUMBER OF FRS(FES) STATES
IN THE DOPED MOTT-HUBBARD MATERIALS

In the case of one hole per cell, the |(Nh, MS )i〉 cell states
are a superposition of different hole configurations of the same
orbital (l )symmetry:

|(Nh0, MS )μ〉 =
∑

λ

βμ(hλ)|hλ, MS〉|ψμ(ϕ)ψμ(θ )〉. (A1)

Thus, there are C1
2Nλ

= 2Nλ one-hole spin doublet states,
where Ck

n is the number of combinations. Altogether, there
are C2

2Nλ
= NS + 3NT of the spin singlets NS = C2

Nλ
+ Nλ and

triplets NT = C2
Nλ

:

|(Nh0 + 1, M ′
S′ )τ 〉 =

∑
νν ′

Bτ (hν, hν ′ )|hν, hν ′ , M ′
S′ 〉

× |ψτ (ϕ)ψτ (θ )〉 (A2)
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in the two-hole sector (see Fig. 1) of the Nλ orbital
approach, where the harmonic oscillator wave function
|ψμ(τ )(ϕ)ψ(μ(τ )(θ )〉 = |ψμ(τ )(ϕ)〉|ψμ(τ )(θ )〉 associated with a
(non)displaced 2D oscillator [34]. Using the intracell Hamil-
tonian H0 in the cell function representation the configuration
weights βμ(hλ) and Bτ (hλ, hλ′ ) can be obtained by the ex-
act diagonalization procedure for the matrices (Ĥ0)λλ′ and
(Ĥ0)νν ′

λλ′ in the Ei(Nh, MS )-eigenvalue problem in different sec-
tors Nh [10].

The sum (5) over all the rth excited states with μ �= 0 in the
sector Nh = Nh0 is omitted, and only the excited states with
any τ (η) index in the nearest Nh = (Nh0 + 1) and (Nh0 + 2)
sectors are summed up. The expressions for the high- and
low-spin two-hole partner states (with S′ = S ± |σ |) can be
combined into a single expression:

|hλ, hλ′ , M ′
S′ 〉 = {

�↑(S′
M ′ , S)cλ′↓

∣∣hλ, M ′ − 1
2

〉
+ sgn(S)�↓(S′

M ′ , S)cλ′↑
∣∣hλ, M ′ + 1

2

〉}
,

(A3)

where S = S′ − S = ±|σ |, and the coefficients

�2
σ (S′

M ′ , S) = S + η(σ )sgn(S)M ′ + 1
2

2S + 1
(A4)

have the completeness property for the contributions from the
identical spin states of the doping hole to different high- and
low-spin two-hole partners:

+|σ |∑
S=−|σ |

�2
σ (S′

M ′ , S) =
∑

σ

�2
σ (S′

M ′ , S) = 1, (A5)

and also
S∑

M=−S

�2
σ (S′

M ′ , S) = S + 1

2
. (A6)

Taking into account relations (A1), (A2), and (A6) we can
determine the matrix element in Eq. (5) by the sum:

〈(Nh0 + 1, M ′
S′ )τ |cνσ |(Nh0, MS )μ〉 =

∑
λ,λ′,λ′′

〈hλ′ , hλ′′ , M ′
S′ |cνσ |hλ, MS〉βμ(hλ)Bτ (hλ′ , hλ′′ )�σ (S′

M ′ , S)〈ψτ (ϕ)ψτ (θ )|ψμ(ϕ)ψμ(θ )〉.

(A7)

After substituting Green’s function (1), expressions (2) and (A6) in Eq. (5) we obtain:

Nv (x) = N12
v + N23

v = N12
s,v + 3N12

t,v + N23
v , (A8)

where instead of the sum over the root vectors r, we used the summation over the physically meaningful indices τ , M and S
(i.e., the sum over all the low (s) and high (t) spin two-hole states). Here,

N12
s(t ),v =

∑
νσ

∑
τ

F s(t )
r={0,τ }(x)

∑
MM ′

{∑
λ

�σ (S′
M ′ , S)βμ=0(hλ)Bτ (hλ, hν )δ(S′, S ± |σ |)δ(M ′, M + σ )

}2

×
∑
ϕθ

〈ψτ (ϕ)ψτ (θ )|ψμ=0(ϕ)ψμ=0(θ )〉2, (A9)

where (+) and (−) on the right side are used with the indices t
and s, respectively, and the occupation factor in the PM phase

F s(t )
{0,τ }(x) =

{
1
2 (1 − αs(t )x), τ = 0
1
2 (1 − x), τ �= 0

, (A10)

with αs(t ) = 1 − 2/(2S′ + 1) and S′ = 0, 1; S = 1/2. Let us
start with the contribution from the spin singlet f rs states Ns

frs:

Nv (x) = (2Nλ − 1) − x
(
1 − Ns

frs

) = Ne − x
(
1 − Ns

frs

)
,

(A11)

where the low and high spin contributions are

N12
s,v = (1/2)

[
(Nλ + 1)(1 − x) + 2xNs

frs

]
(A12)

and

N12
t,v = (1/2)(Nλ − 1)(1 − x), (A13)

respectively. In the static case,

∑
ϕθ

〈ψτ (ϕ)ψτ (θ )|ψμ(ϕ)ψμ(θ )〉2

= 〈ψτ (ϕU,D)ψτ (θU,D)|ψμ(ϕU,D)ψμ(θU,D)〉2 = 1, (A14)

at any |τ 〉 and |μ〉 electron states since the tilting ϕ = ϕU,D

and orientation θ = θU,D angles are fixed and associated with
the minimum of the single adiabatic potential in the U and D
stripes. The relation N23

v = x(2Nλ − 2) for the contributions
from the quasiparticles with the root vectors from the {r23}
subspace is derived similarly to the previous expression for
contribution (A9). The number of possible singlet f rs states
is in the range 0 � Ns

frs � 2, where

Ns
frs = 1 −

∑
λ

β2
0 (hλ)

∑
λ′,λ′′

[1 − δλλ′ − δλλ′′]B2
τ=0(hλ′hλ′′ ),

(A15)
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and τ = 0 corresponds to the f rs-quasiparticles. In de-
riving Eq. (A11) we also used Eq.(A6) and the identity∑
λ

β2
μ(hλ)

∑
λ′,λ′′

B2
τ (hλ′hλ′′ ) = 1 at any μ and τ . Since the sum

∑
τ

[β0(hλ)Bτ (hλ, hν )][β0(hλ′ )Bτ (hλ′ , hν )] = 0 (A16)

at any ν and λ �= λ′, the contribution from the cross-term
from Eq. (A9) to the total number of the valence states
is missing. In the case of the triplet nature of the f rs
states, we obtain an expression similar to Eq. (A11) with the
contribution

Nt
frs = 1 −

∑
λ

β2
0 (hλ)

∑
λ′ �=λ′′ �=λ

B2
τ=0(hλ′hλ′′ ), (A17)

where 0 � Nt
frs � 1.

APPENDIX B: THE NUMBER OF FRS STATES
IN THE DOPED MOTT-HUBBARD MATERIALS

WITH THE PSEUDO-JT EFFECT

To show the role of the charge inhomogeneity, we ob-
tain the MI criterion in a more simple three-orbital model
(λ = a, b, c) of a semiconductor with two spinless electrons
and hole doping Ne = 2 − x. Here, |μ〉 = aμ|a〉 + bμ|b〉 +
cμ|c〉 and |τ 〉 = (ab)τ |a〉 + (bc)τ |bc〉 + (ac)τ |ac〉, where |μ〉
and |τ 〉 are the states with μ(τ ) = 0 − 2 in the sectors Nh0

and Nh0 + 1, respectively. The coefficients satisfy the com-
pleteness relations a2

μ + b2
μ + c2

μ = 1 and (ab)2
τ + (bc)2

τ +
(ac)2

τ = 1. In the homogeneous undoped case (x = 0), the
number of valence states

Nv = N12
v =

∑
τ

{
1 − a2(bc)2

τ − b2(ac)2
τ − c2(ab)2

τ

} = 2,

(B1)

since
∑

τ (bc)2
τ = ∑

τ (ab)2
τ = ∑

τ (ac)2
τ = 1, and thus, the

material, according to the criterion, is a semiconductor, at
Ne = 2. Now let x �= 0, then,

Nv (x) = N12
v + N23

v

= Nfrs + (1 − x)
2∑

τ=1

{
1 − a2

0(bc)2
τ − b2

0(ac)2
τ − c2

0(ab)2
τ

}
+N23

v = 2 − {1 − Nfrs}x, (B2)

where Nfrs = 1 − a2
0(bc)2

0 − b2
0(ac)2

0 − c2
0(ac)2

0, and N23
v = x.

Now let us introduce into this model the JT instability
in the two-particle sector, as is assumed for cuprates [34],
where the JT distortions are the tilting and orientation angles
ϕ and θ of the CuO6 octahedra. In the dynamic state, all the
octahedra do not have specific tilts ϕ and orientations θ , and
all the states |τ (μ)〉|ψμ(τ )(ϕ)ψμ(τ )(θ )〉 cannot be occupied
with the factors (1 − x) and x in both sectors Nh0 and Nh0 + 1
of the configuration space. Indeed, in this case the charge
inhomogeneity disappears along with the pseudo-JT effect at
a concentration below the threshold x < xc [47,48]. We can
choose the bifurcation potential in Fig. 3(b), at which a certain
number x of the doped carriers still avoid the U stripes so that
the number of valence states at x �= 0 is

Nv (x) ≈ 2 − {1 − Nfrs}x · α(δϕ, δθ ), (B3)

where

α(δϕ, δθ )

=
∑
ϕDθD

∑
ϕU θU

〈ψμ=0(ϕD)ψμ=0(θD)|ψτ=0(ϕU )ψτ=0(θU ) 〉2

� 1, (B4)

and the number of valence states Nv (x) decreases. Depending
on the magnitude of α(δϕ, δθ ), the criterion can detect the
ground state of the doped JT material close to insulating one.
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