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Sorting of extremely small nanoparticles by membranes supporting symmetry-protected
bound states in the continuum
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We consider double perforated slabs (membranes) that support a symmetry-protected bound state in the
continuum (BIC). These slabs are immersed into a liquid at room temperature. Laser excitation of the BIC
generates giant optical forces that strongly affect the Brownian motion of nanoparticles in a colloidal solution.
By solving of the Fokker-Planck equation we show that a single membrane can localize only larger nanoparticles.
However, system of two parallel membranes can trap extremely small nanometer-sized nanoparticles by a
resonant excitation of quasi-BICs, with varying intensities in each membrane.
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I. INTRODUCTION

The precise and efficient sorting of specific target
molecules from complex mixtures is fundamentally important
for many applications. The standard molecular sorting relies
heavily on centrifugation and filtration for their simplicity
and high throughput, but has low accuracy, poor recovery,
and large sample requirements [1]. Among the various sort-
ing methods, optical sorting, which exploits the different
optical and/or fluid drag forces on different objects [2], is
particularly attractive because of its great potential for pre-
cise separation of nanoscale objects [3]. The optical power
could be easily localized to achieve efficient light-matter in-
teractions, so that the optical force is even sufficient to sort
nanometer-sized molecules. This localization is achieved by
the excitation of resonant modes with small mode volume and
sufficient intensity enhancement, such as surface plasmons or
high-Q resonant modes in chips and photonic crystal (PhC)
structures [2,4–14], particularly whispering gallery modes
(WGMs) [15–18] in cylindrical resonators or guided modes
[19–21] in PhC waveguides. Furthermore, the optical force
is highly sensitive to particle properties, size, and refractive
index that are of key importance for sorting.

Along with the high-Q modes outlined above, bound states
in the radiation continuum (BICs) offer a promising way to
manipulate and sort nanoparticles [17,22–35]. In particular,
different types of BICs, symmetry protected (SP), Friedrich-
Wintgen, accidental, and Fabry-Perot, have been observed in
membranes [36–43]. In the present paper, we employ the SP
BICs because of their robustness to material and structural
fluctuations [44].

The proposed structure comprises two perforated slabs
(membranes), as illustrated in Fig. 1. The excitation of a
quasi-BIC in the membranes by an incident laser beam gives
rise to a giant Ashkin optical potential well whose depth is
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proportional to the polarizability of the nanoparticle and the
intensity of the beam. This potential is periodic along the
membrane but localized across it. The Brownian motion of
nanoparticles along the periodic potential and the respective
sorting were subjects of numerous studies [2,45–48]. In the
present paper, we consider sorting of nanoparticles based on
their Brownian motion across two membranes, as illustrated in
Fig. 1. These membranes generate two optical potential wells
of different depths, as a result of the excitation of quasi-BICs
in the membranes. The depths of the optical potentials are
controlled by two laser beams independently.

Initially, nanoparticles of various sizes but with an iden-
tical permittivity are distributed uniformly on the left of the
membranes. The optical potential induced by the resonant
mode depends on the size of the particles and, thus, the diffu-
sion times across the membrane depends on the particle size.
This results in a time-dependent probability distribution over
particle size in different regions of the system. The smaller
particles are able to pass freely through the first (left) mem-
brane, while the optical potential for larger particles is much
deeper, resulting in their trapping and formation of a smooth
step-like distribution of the nanoparticle sizes in the mem-
brane holes. The next (right) membrane, in which the same
SP quasi-BIC is excited but with a deeper optical potential,
traps larger particles, which are small enough to pass through
the left membrane.

In this study, perforated membranes are employed as they
permit the free passage of nanoparticles up to hundreds of
nanometers in size. To simplify calculations, the nanoparticles
are assumed to be spherical, isotropic, and of very small size,
ranging from a nanometer to a few nanometers. These sizes
were selected as an example of an extreme case for optical
sorting. In fact, the potential must be deep enough to trap such
a small particle. Sorting different types of fullerenes could be
proposed as a practical application. Of course, the method is
not limited to very small nanoparticles. The size of the sorted
particles is controlled by the laser powers, WL and WR, which
can be varied over a wide range.
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FIG. 1. Double silicon membranes with the permittivity ε = 12
submerged in water with the refractive index 1.33. At initial time
spherical nanoparticles of different radii rp but equaled permittivity
εp = 3 are distributed homogeneously at the left side of the left
membrane. Laser beams of the same frequency but different powers
resonantly excite SP BICs supported by membranes as sketched by
red wavy lines.

II. SYMMETRY-PROTECTED BOUND STATES IN THE
CONTINUUM IN ONE MEMBRANE

For the convenience of the reader all the dimensions of the
membrane are depicted in the bottom of Fig. 1. The following
membrane parameters were selected: period L = 1082 nm,
square holes of size a × a, where a = 703 nm, and slab thick-
ness H = 1082 nm. With these dimensions, the membrane
supports a number of SP BICs in the � point. In this study, we
will select the SP BIC with the maximal electromagnetic (EM)
field intensity inside the membrane holes. The field distribu-
tion of this SP BIC with the eigenfrequency ωcL/c = 4.3505,
calculated using COMSOL MultiPhysics, is shown in Fig. 2.

FIG. 2. EM field components of the SP BIC solution of an
infinitely periodic silicon membrane immersed in water with the
eigenfrequency ωcL/c = 4.3505. The dielectric of the membrane is
shown in gray.

FIG. 3. The EM field intensity |E(x, y, z)|2 of the SP BIC so-
lution, which determines the optical potential (1). The intensity in
the cross section x, y, z = 0 (a). The dielectric of the membrane is
displayed in grey. The intensity in the cross sections x, z, y = 0 and
y, z, x = 0 (b). The optical potential along the z axis at x = y = 0
(c) (red line) is compared to the model potential −U0/ cosh(δz/H )
in Eq. (5) for the rp = α and fitting parameter δ = 3.7 (blue line).
U0 represents the maximum depth of the optical potential in the left
membrane. The origin of the coordinate system is at the center of the
left membrane hole.

The corresponding optical potential is presented in Fig. 3. The
sizes of the system were chosen so that the SP BIC could be
excited by a laser with a wavelength of λ = 1.55 µm. At this
wavelength, the material losses in both silicon, from which
the membrane is made, and water are negligible. In what
follows we will assume that laser beams have the specified
wavelength.

Excitation of the SP BIC by a resonant external laser beam
illuminating membranes at normal incidence results in a giant
intensity |E(x, y, z)|2 of the EM field. The EM field intensity
enhancement is quantified by the ratio of the intensities of
the incident and excited fields. This enhancement is of the
same order of magnitude as the quality factor. Although the
quality factor Q = Re(ωc)/2Im(ωc) of SP BIC is theoretically
infinite, in practice it is always finite owing to a number of
causes, such as deviation from the normal incidence, the finite
membrane size, structural fluctuations, material losses, and so
forth, which transform BIC into quasi-BIC. In what follows
we take Q = 105 to be definite.

The optical potential, which is proportional to the intensity
of the EM field, can be expressed in the following form [49]:

U (x, y, z) = −πr3
p

εp − εl

εp + 2εl
|E(x, y, z)|2. (1)

Here, rp is the radius of the spherical particle with a per-
mittivity εp, while εl denotes the permittivity of the liquid.
Since the contribution of the quasi-BIC field is dominant com-
pared to the incident wave [26], we can approximate the EM
field in the Eq. (1) by the SP BIC field normalized according
to the intensity enhancement.

III. BROWNIAN MOTION OF NANOPARTICLES IN THE
PRESENCE OF OPTICAL FORCE

The time evolution of the probability density P(r, t )
of spherical nanoparticles with radius rp and permittiv-
ity εp = 3 in a liquid medium in the presence of the
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FIG. 4. Probability density of P(x = 0, y, z) at initial time (a), and one second after the start of sorting for three sizes: rp = 1 nm (c),
rp = 1.4 nm (e), rp = 1.6 nm (g), where the blue line outlines the space accessible to particles. The corresponding probabilities (3) PL (red
open circles) and PR (blue open circles) to be trapped by membranes are shown in subplots (d), (f), and (h) as a function of time. Subplot
(b) shows asymmetric Fano resonance in transmission through a single membrane vs frequency 2Q(ω − ωc )/ωc, where ωc = 4.3505c/L is the
eigenfrequency of the SP quasi-BIC with Q = 105. Zero transmission point is marked by star.

Ashkin force F = −∇U (r) satisfies the Fokker-Planck
equation [50–52]

dP

dt
= 1

γ
(−∇(PF) + kBT ∇2P)

= H2

t0

(
∇

(
P∇U (r)

kBT

)
+ ∇2P

)
, (2)

where U (r) is the optical potential (1), γ = 6πηrp is the fric-

tion coefficient, t0 = γ H2

kBT is the characteristic diffusion time
in the system, T = 300 K is the temperature of water with
permittivity εl = 1.332, and η = 0.0009 Pa sec is the dynamic
viscosity of water. The characteristic time t0 is proportional to
the particle size rp, which means that small particles in a liquid
reach thermodynamic equilibrium faster than the larger ones.

Our system consists of two identical membranes. Both
membranes are illuminated by laser beams polarized along
the x axis from the opposite sides. However, the left and
right beams have different powers WL and WR, respectively,
as sketched in Fig. 1. We assume that the beams are tuned
to the frequency at which the light transmission through each
membrane is zero [40,43,53], as a result of the asymmetric
Fano resonance [54–56]. The Fano resonance corresponds to
interference of two resonances, one broad and one narrow.
For such an interaction, the points corresponding to maximum
and zero transmission appear on the transmission coefficient
plot, as in Fig. 4(b). These points are separated by a gap
comparable with the width of the narrow resonance, so by

tuning the transmission to zero we still excite the quasi-BIC.
The total-reflection requirement ensures that the laser beam
on the left excites the quasi-BIC only in the left membrane
and does not affect the right membrane and vice versa. The
cross-talk effect, which significantly reduces the controlla-
bility of the sorting process, can also be avoided by using
slightly different membranes and exciting quasi-BIC in each
membrane at different wavelengths.

Since the optical potential and the initial conditions for the
probability density are periodic, it is sufficient to solve Eq. (2)
in the unit cell shown in the bottom of Fig. 1 with appropriate
boundary conditions. The absence of a probability flow across
the unit cell boundaries corresponds to the Neumann bound-
ary condition dP/dn = 0, which is used in the calculations.

In Fig. 1 five regions of the system are marked. Regions II
and IV contain membranes that generate the optical potential.
In the other regions I, III, and V, the potential is negligibly
small. For solving Eq. (2), the distances shown in Fig. 1 were
chosen as G = H, D = 2H .

We assume, that at the initial time t = 0 all nanoparticles
of different sizes fill the region I only. Figure 4(a) shows the
density probability cross section P(x = 0, y, z, t = 0) that sat-
isfies the normalization condition

∫
P(r, t = 0)dV = 1. The

initial condition is far from equilibrium, so the particles un-
dergo Brownian motion towards the other regions. If there
were no optical forces, the particles after reaching thermo-
dynamic equilibrium would be homogeneously distributed in
all regions. Upon the resonant excitation of the quasi-BIC, the

075305-3



BULGAKOV, SHADRINA, SADREEV, AND PICHUGIN PHYSICAL REVIEW B 110, 075305 (2024)

Brownian motion of the particles is undergoing a significant
change if the depth of the optical potential (1) is comparable
to the thermal energy kBT . For a quasi-BIC quality factor
of Q = 105 and incident power of order of 10 mW/µm2, the
Ashkin force competes with the Brownian force at rp ∼ 1 nm.
This causes larger particles to be trapped by the Ashkin poten-
tial and the smaller particles to pass through the membrane.
The optical potential (1) tends to localise particles inside the
membrane holes, where it reaches a minimal value. Since
the potential (1) is proportional to rp

3, the Brownian motion
process is strongly dependent on the size of the particles.
The solution of Eq. (2) is illustrated in subplots of Fig. 4
for the incident plane wave intensities of WL = 14 mW/µm2

and WR = 23.3 mW/µm2 for the particle sizes of rp = 1 nm,
1.4 nm, and 1.6 nm at the time of one second after the start of
the sorting process.

Note that very small particles are not affected by the optical
potential and easily penetrate into region V during the one
second time interval, and it is reasonable to remove them from
region V, for example by a slow flow of liquid parallel to the
membranes. In the modeling, this is achieved by introducing
into the right-hand side of Eq. (2) a relaxation term −μP,
which acts only in region V.

To estimate the probability of particle trapping by mem-
branes, we introduce the following quantities:

PL(t ) =
∫

II
P(r, t ) dV,

PR(t ) =
∫

IV
P(r, t ) dV, (3)

where integration is performed only over region II or IV.
As illustrated in Figs. 4(d), 4(f), and 4(h), the probabilities
PL(t ) and PR(t ) exhibit distinct behaviors crucially dependent
on the radius of the particles. For a particle sizes less than
rp = 1 nm, the probability PL,R in regions II and IV is notably
low because of the inability of the optical potential to trap
the particles. Consequently, they have migrated to region V
and have left the structure because of the relaxation term. In
contrast, for rp = 1.4 nm the particles are mostly trapped in
region IV. For a particle size of rp = 1.6 nm, the majority of
particles was unable to reach region IV within one second and
were instead localized on the left membrane. This observation
demonstrates a clear effect of particle sorting by size.

In order to gain a deeper insight into the underlying physics
of the observed phenomenon we consider a one-dimensional
version of Eq. (2),

dP

dt
= H2

t0

(
d

dz

(
P

d

dz

U (z)

kBT

)
+ d2

dz2
P

)
. (4)

The presence of membranes is modelled by a one-dimensional
potential with two wells positioned at zL = 0 and zR = D +
H . This potential is approximated by the empirical formula

U (z) = −U0L
(rp/α)3

cosh (δ(z − zL )/H )
− U0R

(rp/α)3

cosh (δ(z − zR)/H )
,

(5)

where δ is the fitting parameter and U0L,0R is the depth of the
optical potential in the left and right membranes for rp = α.

Here we introduce the value α, which corresponds to the char-
acteristic size of the sorted particles. The parameter α is used
to relate the potential depth, which is assumed to be of order of
several kBT , to a specific value of rp. A sketch of the potential
(5) is shown in the inset of Fig. 5(d). Equation (4) was solved
with the Neumann boundary conditions. The initial condition
is defined by the following relations P(z < zL − H/2, t =
0, rp) = const, P(z > zL − H/2, t = 0, rp) = 0,

∫
Pdz = 1.

Note that the real optical potential has a minimum in the
center of the membrane hole and is increasing towards its
edges. The corresponding force always has a component di-
rected towards the z axis. The probability density also exhibits
maximal values in the vicinity of the z axis, which justifies the
use of the one-dimensional approximation. The approximat-
ing function 1/ cosh in the potential (5) was chosen because
of its exponentially decaying tails, as observed in the real
potential. A comparison of the real potential and the one-
dimensional approximation with the parameter δ = 3.7 shows
perfect agreement as seen in Fig. 3(c).

First, let us see how each potential well individually af-
fects the Brownian motion of particles of size rp. For this
purpose we need to solve Eq. (4) for the potential (5) with
U0L �= 0,U0R = 0 and with U0L = 0,U0R �= 0. We denote the
corresponding localization probabilities (3) by P1

L (t, rp) and
P1

R (t, rp). The results of the calculations are presented in
Figs. 5(a) and 5(b), which show that larger particles are al-
most completely trapped, while smaller particles pass freely
through the membrane. The crossover between these two
regimes occurs near the line P1

L,R(t, rp) = 0.5. Obviously, the
crossover line strongly depends on the depth of the potential
U0L/kBT,U0R/kBT and shifts towards the region of smaller
sizes rp when the potential is increased.

Next, consider the joint effect of both potentials under
condition U0R > U0L. Then, the particles able to pass the left
potential well will be captured by the stronger right potential
well, while the smallest particles are affected by neither well
and will leave the sorting region as a result of the relaxation
term. A simple estimate indicates that particles are outside
the left membrane with probability (1 − P1

L (t, rp)) and will
be captured by the right membrane with probability P1

R (t, rp).
Then, the probability to be trapped in the right membrane
for the case of double potential well can be approximated as
PR(t, rp) ≈ (1 − P1

L (t, rp))P1
R (t, rp).

Figures 5(c) and 5(d) show the dependence of the local-
ization probability in the right membrane on time and size of
the particles. Figure 5(c) shows the case of a simple multipli-
cation of the probabilities while Fig. 5(d) shows the result of
solving the one-dimensional Fokker-Planck equation (4) with
the double-well potential. The probability PR(t, rp) exhibits a
pronounced maximum. The maximal probability value tends
to 1 as time increases for fixed rp0(t ). In other words, particles
with size close to rp0(t ) are trapped by the right potential well
with some distribution. This is the key idea of sorting. The
result obtained by simple multiplication of probabilities well
agrees with the exact solution as can be seen in Figs. 5(c) and
5(d). A more detailed picture of the time evolution of P(z, t )
is given in Fig. 6 for four particle sizes rp = 1α, 1.3α, 1.45α,
and 1.6α.

Our studies show, see Fig. 7, that both the width of the dis-
tribution function and the maximum value depend strongly on
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FIG. 5. Solutions of the one-dimensional Fokker-Planck equation (4) with potential (5). Localization probability P1
L (t, rp) in one potential

well with U0L = 3kBT,U0R = 0 (a). Localization probability P1
R (t, rp) in one potential well with U0L = 0,U0R = 5kBT (b). The case of two

potential wells: the probability of localization in the right membrane by approximate theory PR(t, rp) = (1 − P1
L (t, rp))P1

R (t, rp) (c), the
probability of localization in the right membrane PR(t, rp) in the case of two potential wells (d). The red dashed line corresponds to the
equation P1

L (t, rp) = 0.5, the black dashed line corresponds to the same, but for the probability P1
R (t, rp). The vertical axis represents the value

t × (1 nm/α), where α is the characteristic size defined below Eq. (5).

FIG. 6. Behavior of the solution of the one-dimensional Fokker-Planck equation (4) P(z, t ) for different particle sizes: rp = 1α (a), rp =
1.3α (b), rp = 1.45α (c), and rp = 1.6α (d). The membrane boundaries are indicated by red dotted lines.
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FIG. 7. Probability distribution PR (3) of the one-dimensional
model (4) with a double-well potential (5) over the sizes rp/α at the
time t = 1 sec × (α/1 nm) depending on the ratio s = U0R/U0L .

the ratio U0R/U0L. If we assume that the distribution should be
narrow enough with a sufficiently high peak, then U0R/U0L =
5/3 can be chosen as the optimal ratio. The maximum of
the probability distribution PR(t, rp) resulting from the inequi-
librium of the process undergoes a continuous shift in the

course of time. Therefore, the sorting is complete in a fixed
moment of time, say t = 1 sec × (α/1 nm). After that, the
mechanism of removing the sorted particles from the right
membrane is to be switched on. In our example shown in
Fig. 5(d), the probability of localization in the right mem-
brane 1 sec × α/1 nm after the start of sorting PR reaches a
maximum for the size rp ≈ 1.4α.

The position of the maximum of the size distribution
PR(t, rp) varies with the parameter α. Comparing the defini-
tion of U0L,0R in the equation (5) with the potential (1), we see
that the field intensity at the membrane is |E |2 ∼ 1/α3. Thus,
the powers of the laser beams that excite the left and right
membranes are also scaled as WL ∼ 1/α3 and WR ∼ 1/α3. In
other words, if the parameter α increases, the maximum of the
size distribution function shifts to larger rp, and the required
powers WL,WR decrease as 1/α3. This obvious scaling law
gives us the possibility to tune to any size of the target particles
by simply changing the intensities WL,WR while keeping their
ratio constant. Then, the sorting time increases proportionally
to α because of the scaling law of t0 in Eq. (4).

Figure 8(a) shows the time evolution of the size distribu-
tion function PR(t, rp) when solving the 3D Fokker-Planck
equation (2) for incident wave intensities WL = 14 mW/µm2

and WR = 23.3 mW/µm2, WR/WL = 5/3. Figure 8(b) is the
same Fig. 8(a), but for WL = 0.014 mW/µm2 and WR =
0.0233 mW/µm2. At the same time, as before, WR/WL = 5/3.
Reducing the power by a factor of 1000 led to a shift of the
distribution function towards larger sizes. Meanwhile, in the

FIG. 8. Solutions of the 3D Fokker-Planck equation (2) PR(t, rp) (3) at different laser powers WL,WR, corresponding to potential depths
U0L = 3kBT,U0R = 5kBT : WL = 14 mW/µm2 and WR = 23.3 mW/µm2 for rp = 1 nm (a), WL = 0.014 mW/µm2 and WR = 0.0233 mW/µm2

for rp = 10 nm (b). Solutions, corresponding to potential depths U0L = 5kBT,U0R = 5kBT : WL = 23.3 mW/µm2 and WR = 23.3 mW/µm2 for
rp = 1 nm (c), WL = 0.0233 mW/µm2 and WR = 0.0233 mW/µm2 for rp = 10 nm (d). The black line shows the dependence of the maximum
of the distribution PR on time.
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first case of higher intensities the maximum of the distribution
function at the final time point was tuned to 1.4 nm, in the
second case of lower intensities it was tuned to 14 nm, and
the sorting time also increased by a factor of 10. Figures 8(c)
and 8(d) show the distributions of PR(t, rp) at WR/WL = 1.
These figures confirm the conclusion from the 1D calculations
shown in Fig. 7 that the ratio WR/WL needs to be optimized for
efficient sorting.

Our investigations show that the sorting process is robust to
changes in the system dimensions, i.e., the distance between
the membranes and the length of regions I, III, and V, with
only the sorting time changing. An important practical point
is that the distribution function reaches quasi-stationary state
very quickly, and then changes slowly with time. This means
that it is not necessary to strictly fix the sorting completion
time.

IV. CONCLUSIONS AND DISCUSSIONS

We propose a sorting mechanism based on the Brownian
motion under the influence of optical forces. The Ashkin force
corresponds to a potential well with depth of several kBT for
the target particle size. The sorting system shown in Fig. 1
consists of two parallel membranes engineered to support a
special type of symmetry-protected bound state in the contin-
uum (SP BIC). One special feature of the SP BIC is that the
EM field is concentrated in the membrane holes. By exciting
the SP BIC in the left and right membranes with laser beams
of different powers WL and WR, we set up a device capable
of accumulating particles of certain sizes in the holes of the
right membrane. The size distribution of the captured particles
depends on the ratio of applied powers WR/WL. As seen in
Fig. 7, the ratio WR/WL = 5/3 can be considered optimal from
the point of view of narrow distribution width and sorting
efficiency.

It should be noted that the proposed mechanism for sep-
arating the particle fractions is based on a significantly
nonequilibrium process. Indeed, without an initial concen-
tration gradient, Brownian motion would not result in the
transfer of particles from left to right. In addition, the
sorting time is limited because at equilibrium the nanopar-
ticles are distributed according to Boltzmann’s law P ∼
exp ( − U (r)/kBT ). Therefore, the process of sorting and un-
loading the sorted nanoparticles should be performed rather
quickly.

Figure 7 illustrate the resulting distribution over the radii
of spherical nanoparticles in the right membrane. This distri-
bution have a width (±30%). Therefore, the proposed method
is more suitable for a mixture of only a few types of nanopar-
ticles whose radii are well separated by values exceeding at
least the width of the probability distribution. In particular,
a mixture of nanoparticles with sizes of 0.5, 1.5, and 2.5
nanometers could be well separated by the presented method.

The proposed mechanism allows to capture particles whose
sizes are distributed in some narrow but finite range, as shown
in Fig. 7. To narrow down the probability distribution of this
fraction, the particles collected by the right membrane can be
used as a starting mixture for the next step of the sorting pro-
cess. Using refining procedures in sequence can help making
the probability distribution very sharp.

We assumed the room temperature of T = 300 K for the
sorting process. A simple energy balance between the input
power of the laser beams and the power dissipated by thermal
conduction gives a heating estimate of �T ≈ 5 K, primarily
because of the low absorption of water and silicon at the wave-
length λ = 1.55 µm. Our calculations show a nice stability
of the sorting process in relation to increase of temperature,
because the important quotient U0/kBT changes slightly. This
means that we can neglect the temperature degradation during
the sorting.

For simplicity, we have represented particles as spherical
isotropic dielectrics defined only by radius and permittivity,
see Eq. (1). Nevertheless, there is no limitation for sorting
nanoparticles of arbitrary shape by their individual polariz-
ability, which can be calculated in the dipole approximation.

The hole in the membranes were designed to be square,
although other shapes, such as circles, could be used. From
a practical standpoint, round holes are easier to manufacture
and can provide structural integrity to the system. The basic
requirements for the membrane remain the same, i.e., it must
support a SP BIC with maximum field intensity inside the
holes and allow for free passage of particles.

There are some difficulties, which are worth to be dis-
cussed briefly. First, the accumulation of nanoparticles in
holes of membranes distorts the BIC field [30,35] and shift the
BIC frequency. After trapping of a large number of nanopar-
ticles the resonant condition may be violated. To estimate this
effect qualitatively, we use the perturbation theory [57]

�ωc = −ω�ε, (6)

where �ε is the change in permittivity because of N nanopar-
ticles with a volume Vp = 4Nπr3

p/3 averaged over the volume
of the hole Vh = a2H ,

�ε = (Vpεp + (Vh − Vp)εl )/Vh − εl = (εp − εl )Vp/Vh.

The resonant condition is broken if �ωc > ωc/Q. For the
sizes of holes applied in the paper, the number of 1 nm
nanoparticles in each hole should not exceed one thousand.

Second, each membrane has finite dimensions along the x
and y directions, which leads to formation of a standing wave
in the EM field envelope function [58]. This, in turn, means
that the depth of the potential wells will be different in each
cell. As a result, particles of different sizes will accumulate
in the right membrane. To reduce the inhomogeneity of the
potential, only the central part of the extended membrane
can be used, where the depth of the potential wells varies
slightly.

One of the challenges in the proposed scheme is that the
sorting process is not continuous. The sorting process can be
made continuous by replacing each membrane with a com-
plex of two parallel membranes. This complex must support
a high-Q state whose EM field is concentrated between the
membranes, where particles will accumulate. By using a con-
tinuous flow of liquid between the membranes to carry away
these particles, we will create a device that does not require to
stop the sorting to unload the sorted particles.

Our investigation is purely theoretical, and many other
challenging factors that may arise during experimental imple-
mentation have not been considered. The main idea of the
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study is that it is possible to employ Brownian motion for
sorting ultrasmall particles when the particles are subjected
to a strong optical potential, thanks to the nearfield resonant
mode with a high Q factor. The competition between the
optical and stochastic forces, one of which tending to local-
ize the particle and the other to delocalize it, produces the
sorting effect. Despite possible limitations imposed by the

experimental implementation, we are convinced that the pro-
posed sorting mechanism can be used in practice.
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