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Signatures of quantum chaos and fermionization in the incoherent transport
of bosonic carriers in the Bose-Hubbard chain
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We analyze the stationary current of Bose particles across the Bose-Hubbard chain connected to a battery,
focusing on the effect of interparticle interactions. It is shown that the current magnitude drastically decreases
as the strength of interparticle interactions exceeds the critical value which marks the transition to quantum
chaos in the Bose-Hubbard Hamiltonian. We found that this transition is well reflected in the nonequilibrium
many-body density matrix of the system. Namely, the level-spacing distribution for eigenvalues of the density
matrix changes from Poisson to Wigner-Dyson distributions. With the further increase of the interaction strength,
the Wigner-Dyson spectrum statistics change back to the Poisson statistics which now marks fermionization of
the Bose particles. With respect to the stationary current, this leads to the counter-intuitive dependence of the
current magnitude on the particle number.
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Recently, we have seen a surge of interest to quan-
tum transport in one-dimensional systems coupled at their
edges to particle reservoirs [1–22]. Following [1] we refer
to these systems as boundary driven systems. Particularly,
one very important example of the boundary driven sys-
tem is the so-called open Bose-Hubbard (BH) model or BH
chain [7–16]. This system can be realized experimentally
by using different physical platforms including supercon-
ducting circuits [17,18], photonic crystals [19,20], and cold
Bose atoms in optical lattices [21]. The central question to
be addressed with the open BH chain, both theoretically
and experimentally, is the stationary current of Bose parti-
cles across the chain and its dependence on the strength of
interparticle interactions. It is known that properties of the
closed/conservative BH system crucially depend on the ratio
of the hopping matrix element J and the interaction constant
U which are two of the four parameters of the BH Hamil-
tonian, the other being the chain length L and the particle
number N . For example, for integer N/L the ground state of
the system shows the quantum phase transition between the
super-fluid state for J � U and the Mott-insulator state in
the opposite limit [23]. As for the excited states they show
a qualitative change from the regular to the chaotic [24,25].
Thus, one may expect that the stationary current in the open
BH chain should also crucially depend on the interaction
constant.

To approach the formulated problem we introduce a spe-
cific boundary driven BH model which conserves the number
of particles in the system. Although the introduced model
cannot be directly related to ongoing laboratory experiments,
it admits a comparative theoretical analysis with the closed
BH system. In this paper we compare the energy spectrum
of the closed system with the eigenspectrum of the station-
ary density matrix of the open system. It is found that the

spectrum of the stationary density matrix shows the same
structural changes as the energy spectrum of the BH Hamilto-
nian when the control parameter (in our case, the interaction
constant U ) is varied. We also demonstrate that the observed
changes in the spectrum statistics are well reflected in the
stationary current across the BH chain which, unlike the spec-
trum statistic, is a measurable quantity. Last but not least, the
introduced model allows for the exact numerical analysis of
relative large systems which is unfeasible in the case of the
common boundary driven BH model. For example, for the
common model with L = 10 and the mean number of particle
〈N〉 = 5, one has to account for particle number fluctuations
at least until Nmax = 10. This gives the density matrix of the
size larger than 150 000 × 150 000, as compared to the matrix
size 2002 × 2002 in the case of the fixed N = 5.

We consider the BH chain of the length L with incoherent
coupling between the first and the Lth sites. The coupling is
described by the the following Lindblad operators:

L1(R̂) = V̂ †V̂ R̂ + R̂V̂ †V̂ − 2V̂ R̂V̂ †,

L2(R̂) = V̂ V̂ †R̂ + R̂V̂ V̂ † − 2V̂ †R̂V̂ , (1)

where V̂ = â†
1âL [22,26,27]. Thus, the master equation for the

carrier density matrix R̂ reads

∂R̂

∂t
= −i[Ĥ, R̂] − �1L1(R̂) − �2L2(R̂), (2)

where

Ĥ = −J

2

L−1∑
�=1

(â†
�+1â� + H.c.) + U

2

L∑
�=1

n̂�(n̂� − 1) (3)

is the Bose-Hubbard Hamiltonian. It is easy to see that the
Lindblad operator L1(R̂) induces the incoherent transport of
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the carriers from the last to the first sites, while the operator
L2(R̂) is responsible for the incoherent transport in the reverse
direction. If the rates �1 �= �2, there is a nonzero current in
the clockwise or counterclockwise direction depending on the
inequality relationship between the two relaxation constants.
We notice that, by an analogy with electronic devices, the
introduced Lindblad operators mimic the effect of a battery
which induces direct current in the electric circuits.

We are interested in the stationary current I = Tr[̂IR̂]
where R̂ = R̂(t → ∞) is now the steady-state density matrix
and Î is the current operator,

Î = J

2i

L−1∑
�=1

(â†
�+1â� − H.c.). (4)

First of all, we notice that if �1 = �2 the steady-state den-
sity matrix is proportional to the identity matrix, namely,
R̂ = 1̂/N , where N is the dimension of the Hilbert space. In
what follows we focus on the liner response regime where
�1 = � + ��/2, �2 = � − ��/2, and �� � �. Thus,
we have

R̂ = 1̂

N + ��R̃, (5)

where Tr[R̃] = 0. Substituting the Ansatz (5) into the master
equation, we obtain

−i[Ĥ, R̃] − �[L1(R̃) + L2(R̃)] − 2(n̂L − n̂1)

N = O(��).

(6)
In the limit �� → 0, Eq. (6) transforms into the algebraic
equation for the elements of the unknown matrix R̃. In our
numerical approach, however, we do not solve this algebraic
equation but evolve the density matrix R̂(t ) according to
the master equation (2) and use Eq. (6) to check that we
reached the true steady state. We found this method to be more
efficient than the straightforward solution of the algebraic
equation.

Since our primary goal is the stationary current across
the chain, we shall analyze the matrix R̃ in the basis of the
eigenstates of the current operator,

Î =
N∑
j=1

σ j |� j〉〈� j |. (7)

Two examples of the matrix R̃ in this basis are given in Fig. 1
for U = 0, left panel, and U = J , right panel. A qualitative
difference between these two cases is clearly visible from
the plot. In the next paragraph we quantify this difference.
We conclude the present paragraph by displaying the com-
mutation relation between the current operator and the BH
Hamiltonian for U = 0,

−i[Ĥ, Î] − (n̂L − n̂1)

2
= 0, (8)

which we shall use later on.
Knowing that the BH Hamiltonian (3) exhibits transition to

quantum chaos as U is increased, we expect a similar transi-
tion for the nonequilibrium density matrix. This expectation
is supported by the visual analysis of the matrices depicted in
Fig. 1 and results of the relevant studies of the boundary driven

FIG. 1. Absolute values of the matrix elements of the matrix R̃ in
the basis of the current operator. The system parameters are L = 6,
N = 3 (the Hilbert space dimension N = 56), J = 1, � = 0.04,
and U = 0 (left) and U = 1 (right). The upper limit of the color
axis is 0.2.

spin chains [28,29]. Following Refs. [28,29], we consider
the spectrum and eigenstates of the nonequilibrium density
matrix,

R̃ =
N∑
j=1

λ j |	 j〉〈	 j |. (9)

In what follows we restrict ourselves by the case � � J .
Then, if U = 0, the states |	 j〉 practically coincide with the
eigenstates of the current operator |� j〉, while the eigenvalues
are related to each other as

λ j ≈ 4σ j/N . (10)

To see that, let us scale the density matrix R̃ → N /4 · R̃ and
set �� = 0 in Eq. (6). Then the obtained algebraic equa-
tion differs from the commutation relation Eq. (8) by a small
term ∼� which can be taken into account perturbatively. As
expected, application of the perturbation theory removes de-
generacies of the eigenvalues of the current operator, see the
inset (b) in Fig. 2.

The magenta staircase curve in Fig. 2 depicts the case
U �= 0. Here we see that the width of the spectrum increases
as U is increased. The main difference is, however, in the
spectrum statistics. Figure 3 shows the distribution of the
the scaled spacings s = (λ j+1 − λ j ) f (λ j ), with f (λ) being
the mean density of states, as compared to the Poisson and
Wigner-Dyson distributions [30]. For U = J a nice agreement
with the Wigner-Dyson distribution, which is the hallmark of
quantum chaos [31,32], is noticed.

Next we analyze the stationary current I across the chain:

I = Tr[̂IR̂] =
N∑
j=1

λ j〈	 j |̂I|	 j〉 ≡
N∑
j=1

λ j I j . (11)

In the case of vanishing interparticle interactions, one derives
by using Eq. (10) the following semianalytic equation:

I = 4JN2��

∫ 1

0
σ 2(x)dx, (12)

where x = j/N and σ (x) is the inverse function to the
integrated density of states of the current operator, which
interpolates the blue line in Fig. 2. Thus, as it is intuitively
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FIG. 2. The scaled eigenvalues of the matrix R̃ for U = 0, red
line, and U = 1, magenta line, compared to the eigenvalues of the
current operator, blue line. Parameters are L = 8, N = 4 (N = 330),
J = 1, and � = 0.04.

expected, for U = 0 the total current increases with the num-
ber of particles in the system.

The case U �= 0 is more subtle. Figure 4 shows numerically
obtained dependence of the stationary current on the interac-
tion constant U for L = 6 and a different number of particles
N . One clearly identifies in Fig. 4(b) the critical Ucr = Ucr (n̄),
n̄ = N/L, above which the current drastically decreases. This
critical interaction marks the crossover from the Poisson to
the Wigner-Dyson spectrum statistics for the nonequilibrium
density matrix R̃. An unexpected result is that for U � Ucr the
current decreases with the number of particles. Furthermore,
we find that for these large U the spectrum statistics is again
Poissonian.

We relate the observed change of the spectrum statistics
and the counterintuitive dependence of the current on the
particle number to the interaction-induced localization of the
eigenstates |	 j〉 and the fermionization of the strongly inter-
acting Bose particles [33]. Indeed, the obvious consequence
of the eigenstate localization is that the mean I j = 〈	 j |̂I|	 j〉
tends to zero and is strictly zero if all bosons occupies a
single site of the chain. Figure 5 shows the quantiles I j for
(L, N ) = (6, 3) and U = 0, 0.5, 10. It is seen that the fraction
of the delocalized states which support the current decreases
in favor of the localized states for which I j ≈ 0. For exam-
ple, in Fig. 5(c) the states corresponding to the minimal and
maximal eigenvalues are the states |	1〉 ≈ |0, 0, 0, 0, 0, 3〉
and |	N 〉 ≈ |3, 0, 0, 0, 0, 0〉. Along with the localized and
partially localized states, one can see in Fig. 5(c) a num-
ber of the delocalized states. A closer inspection of these
states shows that they are a superposition of the Fock states
where occupation numbers of the chain sites are either zero or
unity. Since this subspace of the Hilbert space is the Hilbert
space of the hard-core bosons, we conclude that the residual
conductivity of the system at large U is mainly due to the

FIG. 3. The integrated level spacing distribution compared to the
integrated Poisson and GUE Wigner-Dyson distributions for U = 0
(a) and for U = 1 (b). The other parameters are L = 10, N = 5 (N =
2002), and � = 0.04. For the statistical analysis we took 60 percent
of eigenvalues from the central part of the spectrum.

hard-core bosons. As is known, the spectral and transport
properties of the hard-core bosons are similar to those of the
noninteracting fermions and, hence, they can support ballistic

FIG. 4. The total current as a function of the interaction constant
U for three different values of the particle number N = 2, 3, 4 in the
linear (a) and logarithmic (b) scales, L = 6 and � = 0.04.
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transport for arbitrary large U if N/L < 1. We also mention
that the appearance of the localized states and the integrable
states associated with the hard-core bosons is consistent with
the observed change of the level-spacing distribution from the
Wigner-Dyson distribution back to the Poisson distribution in
the limit of large U .

In summary, we introduced the model for quantum trans-
port of Bose particles across the Bose-Hubbard chain which
conserves the number of particles in the chain. Similar to the
standard transport model where a Bose-Hubbard chain con-
nects two particle reservoirs with different chemical potentials
and where the number of particles is not conserved, the intro-
duced model shows different transport regimes depending on
the ratio between the tunneling and interaction constants in the
Bose-Hubbard Hamiltonian (3). Namely, for U ∼ J the sta-
tionary current of the Bose particles is drastically suppressed
as compared to the case U = 0. In our previous publication [9]
we explain this effect by transition to chaotic dynamics
of the classical counterpart of the system. In this work we
use the genuine quantum approach where the object of in-
terest is the nonequilibrium many-body density matrix of the
bosonic carriers in the chain. This is a unique example where
the nonequilibrium density matrix is calculated/analyzed
for the nonintegrable bosonic system. (For transport proper-
ties of the fermionic and spin systems we refer the reader to
the recent review [34]). We found the spectrum of this ma-
trix exhibits a transition from a regular spectrum for U � J ,
which obeys the Poisson statistics, to an irregular spectrum
for U ∼ J , which obeys the Wigner-Dyson statistics. In this
sense we confirm the conjecture of Ref. [9] that the drastic
reduction of the current for U ∼ J is due to the transition to
quantum chaos.

FIG. 5. The quantities Ij = 〈	 j |̂I|	 j〉 for U = 0 (a), 0.5 (b), and
10 (c). The system parameters are L = 6, N = 3, and � = 0.04.

Within the framework of the introduced model we also
observed an interesting effect—the residual conductivity due
to fermionization of Bose particles. We notice that this is a
pure quantum effect which cannot be addressed by using the
classical (mean-field) or pseudoclassical (truncated Wigner
function) approaches.
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