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We consider the effect of the nematic order on the formation of the superconducting state in iron pnictides
and chalcogenides. Nematic order with the B2g symmetry is modelled as the d-type Pomeranchuk instability
and treated within the mean-field approach. Calculated nematic order parameter depends on the nematic
interaction coefficient and abruptly changes with the coefficient’s increase. The superconducting solution is
obtained within the spin-fluctuation pairing theory. We show that the leading solution in the nematic phase has
a sπ± structure. From the critical temperature Tc estimations, we conclude that the nematic superconducting
state of the sπ± type is more favorable than the usual s± and dx2−y2 type states appearing in the absence of
the nematicity.
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1. Introduction. Complicated systems are often
possess several concurrent or coexisting long range or-
ders of different nature. Iron pnictides and chalco-
genides, quasi-two-dimensional systems, are an exam-
ple. Multiorbital effects there lead to the appearance of
an unconventional superconductivity with the order pa-
rameter structure of the s± type that has the opposite
signs at different Fermi surface sheets, still belonging to
the A1g representation and being the extended s-wave
symmetry [1–5]. Vast amount of experimental data on
the superconducting state may be explained within the
framework of the spin-fluctuation mechanism of Cooper
pairing that, as one of the solutions, has the s± state [6].
The presence of this state is confirmed by the data on
the spin-resonance peak [7–9] observed in the inelastic
neutron scattering [10, 11, 12] and by the observation
of the spin exciton characteristic for the s± state in the
Andreev reflection spectra [13].

Experimentally discovered disparity in the resistance
along the orthogonal a and b directions in the iron plane
in the tetragonal phase of the iron pnictides [14] led to
the conclusion that the C4 symmetry is broken down
to C2 and the nematic order is formed [15, 16]. The
word “nematic” here is used to emphasize that the tran-
sition takes place in the electronic subsystem in contrast
to the usual structural phase transition with ions mov-

1)e-mail: mkor@iph.krasn.ru

ing to the new equilibrium positions. Close analog is
the formation, in the disordered system of spins, of the
Ising nematic order with the broken Z2 symmetry. It is
the difference from the usual transition to the magnetic
state appearing due to the O(3) symmetry breaking [15].
In other words, nematic phase is characterized by the
non-equality in the a and b directions that leads to the
inequality of the magnetic response, i.e. the spin suscep-
tibility, in the orthogonal directions in the momentum
space, qx and qy.

Since with the lowering temperature nematic tran-
sition precedes the magnetic or superconducting tran-
sitions [17, 18], we study the superconductivity on the
background of the already formed nematic order. Here
we analyse the role of the Fermi surface symmetry lower-
ing from C4 to C2 on the superconducting gap solutions
within the spin-fluctuation pairing theory [4]. Result-
ing solutions have the C2 symmetry in agreement with
the experimentally observed lowering of the gap sym-
metry [19].

2. Model. We start with the Hamiltonian of the
five-orbital model for iron pnictides H5−orb [20, 21]:

H5−orb =
∑

k,σ,l,l′
εll

′
k d†klσdkl′σ, (1)

where d†klσ (dklσ) is the creation (annihilation) opera-
tor for the electron with the momentum k, spin σ, and
orbital index l, εll

′
k is the matrix of the single-electron
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energies with the chemical potential being subtracted
(diagonal terms) and hopping integrals (off-diagonal el-
ements), which values are presented in [21].

To describe the nematic state, we follow the mean-
field approach from [22, 23]. Two-particle nematic inter-
action gives the following contribution to the Hamilto-
nian

Hnem = −1

4

∑

k,k′,σ,σ′,l,l′
V nem
ll′ fklfk′l′nklσnk′l′σ′ , (2)

where nklσ = d†klσdklσ is the number of particle oper-
ator, V nem

ll′ are the matrix elements of the interaction,
fkl is the form factor. Following [22, 23] to model the
nematic order with the B2g symmetry as the d-type
Pomeranchuk instability, we set the form factor to be
fkl = cos kx − cos ky.

To proceed with the mean-filed theory, we write the
expression nklσ = 〈nklσ〉 + δnklσ with 〈nklσ〉 being the
average of the occupation number and the deviation
from the average δnklσ considered to be small. Inserting
the expression into the Hamiltonian Hnem, discarding
the second order terms by the deviation from the aver-
age, and omitting a constant energy shift that would be
absorbed into the chemical potential, we derive

HMF
nem =

∑

k,σ,l

Φlfklnklσ. (3)

Here we introduced the nematic phase order parameter

Φl = −1

2

∑

k′,σ′,l′
V nem
ll′ fk′l′ 〈nk′l′σ′〉 . (4)

Note that due to the formulation of the two-particle ne-
matic Hamiltonian Hnem as the density-density interac-
tion, the mean-field Hamiltonian HMF

nem does not contain
the interorbital hoppings and describes the changes of
the particle density at an orbital l.

3. Nematic order parameter. As the first step,
we find the solution for the nematic order parameter Φl.
To do this, we self-consistently calculate both Φl from
Equation (4) and the average 〈nk′l′σ′〉. We set the ma-
trix V nem

ll′ to be equal to δll′Vnem with the interaction
coefficient Vnem. Since it is unknown, we treat it as a
parameter. The calculated dependence of Φl for differ-
ent d-orbitals on the coefficient Vnem is shown in Fig. 1.
Clearly, for small values of Vnem nematic state is absent
(region I). Order parameter becomes finite once Vnem

becomes larger than some value, besides, only for one
of the orbitals, dxy (region II). Since the value of 4 eV
for the interaction coefficient is quite large even com-
pared to the Hubbard repulsion, further we restrict our
consideration to regions I and II.

Fig. 1. (Color online) Dependence of the nematic order pa-
rameter Φa for the orbital a on the interaction coefficient
Vnem. Roman letters mark the regions where the distinct
order parameter behavior is present

Fermi surface and energy dispersion in two different
regions are shown in Fig. 2. In the region II (Vnem =

= 2.8 eV), the breaking of the C4 symmetry held in the
region I (Vnem = 0) is obvious. This is clearly seen in
the dispersion along the (0, π)− (π, 0) direction.

Fig. 2. (Color online) Fermi surface (top) and energy dis-
persion along the main directions of the Brillouin zone
(bottom) for the two values of the interaction coefficient
Vnem. Energy is shown relative to the chemical potential.
α1,2 and β1,2 label the Fermi surface sheets, different col-
ors mark the areas with the maximal contribution from
the corresponding orbital

Real part of the dynamical spin susceptibility at zero
frequency Reχ(q, ω = 0) is the central object of the
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spin-fluctuation pairing theory [4]. Spin susceptibility is
calculated as the spin-spin correlation function

χll′mm′
(q,Ω) =

β∫

0

dτeiΩτ
〈
TτS

+
ll′(q, τ)S

−
ll′ (q, 0)

〉
, (5)

where Ω is the Matsubara frequency, β = 1/T is the
inverse temperature, Tτ is the time ordering operator
with respect to the Matsubara time τ , S+ and S− are
the spin operators. Averaging is done over the interact-
ing ensemble. In the zeroth order we have

χll′mm′
(0) (q,Ω) = −T

∑

p,ωn,μ,ν

[
ϕμ
pmϕ∗μ

plGμ↑(p, ωn) +

× Gν↓(p+ q,Ω + ωn)ϕ
ν
p+ql′ϕ

∗ν
p+qm′

]
. (6)

Here ωn is the Matsubara frequency, μ and ν are the
band indices, ϕμ

km are the coefficients of the band to
orbital transformation, that is dkmσ =

∑
μ
ϕμ
kmbkμσ,

where bkμσ is the electron annihilation operator in
the band basis where the Green’s function is diagonal,
Gμσ(k, ωn) = 1/ (iωn − εkμσ).

First we calculate χll′mm′
(0) (q,Ω) with the Hamilto-

nian H0 = H5−orb+HMF
nem and than we get χll′mm′

(q,Ω)

within the random phase approximation (RPA). Lad-
der approximation, RPA, is constructed with the onsite
Coulomb interaction, namely, intraorbital Hubbard U ,
interorbital U ′, Hund’s exchange J , and the pair hop-
ping J ′ [24, 25]. Hamiltonian Hint has the following form

Hint = U
∑

f,m

nfm↑nfm↓ + U ′ ∑

f,m<l

nflnfm +

+ J
∑

f,m<l

∑

σ,σ′
d†flσd

†
fmσ′dflσ′dfmσ +

+ J ′ ∑

f,m �=l

d†fl↑d
†
fl↓dfm↓dfm↑, (7)

where nfm = nfm↑ + nfm↓, nfmσ = d†fmσdfmσ is the
number of particles operator on the lattice site f .

Sum of the ladder diagrams that include the
electron-hole bubble in the matrix form χ̂(0)(q,Ω)

gives the following expression for the spin susceptibility
matrix in the RPA [4]

χ̂(q,Ω) =
[
Î − Ûsχ̂(0)(q,Ω)

]−1

χ̂(0)(q,Ω), (8)

where Î and Ûs are the unity matrix and the interac-
tion matrix in the orbital basis given in [21]. Later we
present results for the physical susceptibility χ(q,Ω) =

=
∑
l,m

χllmm(q,Ω) analytically continued to the real fre-

quency axis ω (iΩ → ω + iδ, δ → 0+).

Breaking of the Fermi surface symmetry leads to the
lowering of the symmetry to C2 in the dependence of the
spin susceptibility on the wave vector q. This is shown
in Fig. 3. Increase of Vnem and the following increase of
the order parameter Φl leads to the rise of the peak near
q = (π, 0) in comparison with q = (0, π). Of course, it is
related to the disappearance of the Fermi surface sheets
β2 near (0,±π), in contrast to β1 sheets near (±π, 0).
This leads to the dominance of the scattering between
the bands forming α1,2 sheets and bands forming β1

sheets in contrast to the bands forming β2 sheets (see
Fig. 2).

Fig. 3. (Color online) Dependence of the real part of the
spin susceptibility at zero frequency on the wave vector
q calculated in RPA for the two values of the interaction
coefficient Vnem

4. Superconducting state. On the background of
the nematic state, we seek for a superconducting state
by solving a linearized equation for the order parameter
Δk = Δ0gk written as an equation on the eigenvalues λ
and eigenvectors gk [4, 21, 26–28],

λgk = −
∑

ν

∮

ν

dk′
||

2π

1

2πvFk′
Γ̃μν(k,k′)gk′ , (9)

where vFk′ is the Fermi velocity, the contour integral is
taken over the parallel to the ν-th Fermi surface sheet
component of momentum k′

||, and the band μ is unam-
biguously determined by the location of the momentum
k. Positive λ’s correspond to attraction and the maxi-
mal one of them represents the state with the highest
critical temperature Tc, i.e., the most favorable super-
conducting state with the corresponding gap function
determined by gk.

Cooper vertex Γ̃μν(k,k′) depends on the Coulomb
parameters U , U ′, J , J ′ and on Reχ(q, ω = 0), see
[4]. Under the spin-rotational invariance assumed here,
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Fig. 4. (Color online) Superconducting order parameter for U = 1.3, J = 0.2, and Vnem = 0 for the two leading eigenvalues
λ at the Fermi surface sheets (α1,2, β1,2). Left: angular dependence at each sheet, right: magnitude of the order parameter
is shown as the intensity within the Brillouin zone. All values are in eV

U ′ = U − 2J and J ′ = J . We vary the other two pa-
rameters, U and J , of the Hubbard interaction. For the
further study we choose the following set of interactions
(values in eV)
1: U = 1, J = 0; 2: U = 1.1, J = 0; 3: U = 1, J = 0.1;
4: U = 1.2, J = 0; 5: U = 1.1, J = 0.1; 6: U = 1.2,
J = 0.1; 7: U = 1, J = 0.2; 8: U = 1.3, J = 0;
9: U = 1.1, J = 0.2; 10: U = 1.3, J = 0.1; 11: U = 1.4,
J = 0; 12: U = 1.2, J = 0.2; 13: U = 1.4, J = 0.1;
14: U = 1, J = 0.3; 15: U = 1.4, J = 0.15; 16: U = 1.3,
J = 0.2.

For the set # 16 (U = 1.3, J = 0.2) in Figs. 4, 5,
we demonstrate the two solutions of Eq. (9) with the
maximal values of λ (leading solutions) in regions I and
II: without nematicity at Vnem = 0 in Fig. 4 and in the
nematic phase at Vnem = 2.8 eV in Fig. 5.

For the current set of interaction parameters, dx2−y2

and s± type solutions compete in the region I (i.e., they
have close values of λ), however, dx2−y2 type is winning.
In the nematic phase, region II, we can not use the clas-
sification of the gaps according to the irreducible rep-
resentations of the tetragonal phase. Still, we call the
state with the larger value of λ in Fig. 5 as “sπ±” to em-

phasize its connection to the s± state in the tetragonal
phase and to point out that the corresponding Δk is in-
variant under the rotation by π, not π/2 as was for the
extended s-type symmetry. State with the smaller λ in
Fig. 5 resembles dxy type symmetry, thus we call it like
that.

Combined graph of λ values for the different sets
of onsite Coulomb interactions at Vnem = 0 and at
Vnem = 2.8 eV is shown in Fig. 6. Curves correspond to
different calculated gap symmetries. Note that the “ne-
matic type” sπ± always has a larger value of λ than the
s± solution that compete with the dx2−y2 type. Thus,
Tc of the superconducting state coexisting with the ne-
matic state is higher than Tc of the sole superconducting
state. This supports the conclusion that the nematic su-
perconducting phase may be more favourable than the
state with the unbroken C4 symmetry.

5. Conclusion. We considered the emergence of
the superconductivity on the background of the ne-
matic order in the five-orbital model for iron pnic-
tides and chalcogenides. Nematic order is treated within
the mean-field theory with the nematic interaction co-
efficient Vnem. Self-consistently calculated nematic or-
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Fig. 5. (Color online) The same as in Fig. 4 but for Vnem = 2.8 eV

Fig. 6. (Color online) Leading eigenvalues λ for the two
values of the nematic interaction coefficient Vnem for dif-
ferent sets of Coulomb parameters

der parameter Φl is zero (region I) for values of Vnem

from zero to some critical value, after which the Φl

component corresponding to the orbital l = dxy un-
evenly becomes finite (region II). Superconducting so-
lution within the spin-fluctuation paring theory is found
in both regions, I and II. In the absence of the ne-
matic order (region I), the superconducting order pa-
rameter has the s± and dx2−y2 type structures for the
two leading competing solutions. In the nematic phase

(region II), two leading solutions are of sπ± and dxy
types, moreover, first one always wins. Estimation of
the corresponding critical temperatures Tc leads to the
conclusion that the nematic superconducting state with
the sπ± structure will have the higher Tc than the usual
s± and dx2−y2 states with the unbroken C4 symmetry.
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