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Interest in hybrid quasi-one-dimensional systems with an inner semiconducting part coated with a supercon-
ductor (the so-called core/shell structure) has been grown in the last decade. Materials with a strong
spin‒orbit coupling and a large g-factor (InAs, InSb) are chosen as semiconductors. Due to the proximity
effect, such objects can be considered as superconducting wires, where the existence of Majorana states has
been predicted. This review briefly summarizes the current experimental studies aimed at the detection of
Majorana quasiparticle excitations in superconducting wires. Furthermore, prospects of using the interfer-
ence geometry of devices including such wires are discussed. In particular, the coherent transport in a spa-
tially inhomogeneous one-dimensional normal metal/superconductor/normal metal system, where normal
metal wires serve as arms of an interference device, which interact with a normal metal contact, has been ana-
lyzed theoretically. It has been found that responses of Majorana and Andreev low-energy excitations of the
device can be distinguished.
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1. INTRODUCTION
The properties of the ground state and low-energy

excitations of a chain of spinless fermions, which con-
sists of N sites and is characterized by the hopping,

, and p-type superconducting pairing, Δ, parame-
ters between nearest neighbors and by the chemical
potential μ, were studied in [1]. It was found that a
Bogoliubov excitation with the energy decreasing expo-
nentially with increasing chain length, i.e., ,

where  is the coherence length and  is
the chain length (below, a = 1), is implemented in an
open system at . In other words, a zero-energy
edge state appears at . The bulk spectrum of this
system, which is often called the Kitaev wire or chain,
with periodic boundary conditions is gapped:

(1)

According to Eq. (1), the gap at  is closed if
the wave vector is . Thus, the appearance of
the edge state in the chain with open boundary condi-
tions under the continuous variation of the parameters
is accompanied by a quantum phase transition in the
system with periodic boundary conditions.

The specificity of the appearing edge state becomes
obvious after the transition from the second quantiza-
tion Fermi operators at the jth site , to the Majo-

rana operators , , and

. Similarly, the operator of any Bogoliubov
excitation  ( ) in the space of eigenstates
of the Bogoliubov–de Gennes Hamiltonian can be
represented as the superposition of Majorana mode
operators  and . As a result,
it is easy to show that any excitation satisfies the rela-
tion

(2)

where the coefficients  and zjn =
 can be interpreted as the values of the wavefunc-

tions of Majorana modes of the th excitation at the jth
site. They are expressed in terms of the Bogoliubov uv
coefficients; i.e., cj = .

If the on-site energy measured from the chemical
potential μ is zero and , the lowest-energy exci-
tation has zero energy  and ,

, and u1, 1 = . At the deviation
from the symmetric point , , the wave-
functions of Majorana modes are hybridized, which
generally leads to a nonzero energy of the excitation ,
which, as mentioned above, decreases exponentially
with increasing N and is an oscillatory function of the
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energy parameters of the system. The state with a
nearly zero energy and constituent Majorana modes
localized at opposite ends is called the Majorana state.
It is noteworthy that the Majorana state (MS) is a par-
ticular case of an Andreev state (AS)—a superposition
of the electron and hole waves with the energy inside
the gap—appearing in systems with a spatially inho-
mogeneous superconducting pairing potential [2].

The chain with the MS is considered as the system
in the topological superconductivity phase in view of a
nontrivial topology of the space of Bloch wavefunc-
tions . Indeed, the Berry phase acquired at the
motion over the Brillouin zone is [3, 4]

(3)

The phase  is related as to the Majorana
number M, which is a topological invariant proposed
in [1].

Majorana quasiparticles are not only of fundamen-
tal interest due to their exotic properties. For several
reasons, Majorana modes can possibly be used in
quantum computing. The existence of zero-energy
excitation indicates the double degeneracy of the
ground state, which has indefinite parity. As a result,
the evolution of the wavefunction of a qubit can be
considered in the basis of two such states  and 
[5, 6]. The authors of [7] showed that a change in the
wavefunction of the qubit that is not reduced to the
multiplication by a global phase factor can be ensured
by interchanging the Majorana modes b1 and b2 in a
Т-shaped wire without the closure of the gap in the
bulk spectrum (i.e., performing the braiding opera-
tion). The latter occurs because Majorana fermions
are non-Abelian anions [8]. Another feature of the MS
important for applications is its nonlocal character. As
a result, the MS is topologically protected against local
perturbations [9, 10], including decoherence pro-
cesses, which constitute an obvious stumbling block
for the fabrication of nontopological qubits.

A more realistic one-dimensional model was pro-
posed in [11, 12] to describe a semiconducting wire
with the Rashba spin–orbit coupling on the surface of
an s-wave superconductor in a magnetic field. Since
superconducting pairing characterized by the gap Δ
occurs in the wire itself due to the proximity effect,
this wire is referred to below as the superconducting
wire. A nontrivial phase in such a system is imple-
mented if the Zeeman energy h is above the threshold
value hc; in the continuum approximation, h >

.
At Δ = 0, the spin–orbit coupling with the intensity

α and Zeeman splitting lead to the formation of two
band of helical states separated by the gap h at k = 0
[13]. Then, the projection of the Hamiltonian of the
original model on the subspace of the bottom-band
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states at Δ ≠ 0 and  (where t is the hop-
ping parameter in the tight-binding approximation)
gives the Hamiltonian of the Kitaev model, where the
fermion pairing intensity is ~αΔ/h [11, 14]. Thus, the
s-wave pairing dominates in the superconducting wire
at h < hc ≈ |μ|, while the effective p-wave superconduc-
tor is implemented at  [15].

In several years after the cited theoretical propos-
als, first local tunneling spectroscopy studies of the
transport properties of a hybrid semiconductor/super-
conductor wire were carried out [16–18]. Researchers
often choose InAs (InSb) semiconductor wires, which
have a large Rashba parameter αR = 0.2–0.8 eV Å
(0.2–1 eV Å), high g-factor g = 8–15 (40–50), and a
small effective mass m* = 0.023me (0.014me) [19]. In
the first works, a semiconductor wire was placed on
the surface of a massive Al or NbTiN superconductor.
A technology of the epitaxial growth of a supercon-
ducting layer on the surface of a semiconductor core
(so-called core/shell structure) was later developed.
The gap in the core reached due to the proximity effect
is Δ = 0.2–1 meV. Correspondingly, structures are
experimentally studied at temperatures T ~ 0.01–0.1 K
in magnetic fields of B ~ 1 T. In view of a negative
effect of the magnetic field on superconducting pair-
ing, some recent experiments were performed with
hybrid wires with a EuS magnetic insulator layer
deposited in addition to the superconducting layer
[20–22].

It is worth noting that a significant technological
progress in the growth of hybrid wires, the improve-
ment of the parameters of the semiconductor/super-
conductor interface, etc. was achieved in about a
decade after the beginning of experiments. This results
in the detection of the following theoretically pre-
dicted effects of transport in the MS: the appearance
of a quantized peak of the differential conductance at
zero voltage [23, 24] and its stability under the varia-
tion of the tunnel barrier height at the normal
metal/superconducting wire interface, Zeeman
energy, chemical potential, and the presence of disor-
der [25].

It is known that electrons with the energy inside the
gap of the superconductor that are incident on the
superconductor from the normal metal undergo local
Andreev reflection at the interface [26]. If the Fermi
level is in the center of the gap and a Majorana mode
is localized at the edge of the superconductor, Andreev
reflection processes become resonant at any value of
the tunnel integral. As a result, the conductance at
zero bias voltage has a maximum with the height 2G0.
Here, G0 = e2/(2π ) is the conductance quantum,
where  is the reduced Planck constant, and a factor of
2 indicates the presence of electron and hole degrees
of freedom rather than spin degeneracy [23, 27].

A transition to a topologically nontrivial phase is
accompanied by the closure and reopening of the gap

μ α Δ, | | , ,h t�
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in the bulk spectrum of the superconducting wire. As
shown in [28], this effect can also be observed in trans-
port by measuring a nonlocal signal in the three-con-
tact normal metal/superconducting wire/normal
metal structure. It is assumed that the middle contact
is created by the direct (not through a capacitor)
grounding of a massive superconductor, which inter-
act with the wire with a length of L. If L  ξ, the trans-
port of quasiparticles with energies E < Δeff, where Δeff
is the gap in the bulk spectrum, between normal metal
contacts will be suppressed due to the damping char-
acter of quasiparticle wavefunctions. We emphasize
that it is taken into account that the gap Δeff in this case
is effective, i.e., is determined not only by Δ but also by
h and α [29]. In turn, at Δeff < E < Δ0, where Δ0 is the
gap in the parent superconductor, a change in the cur-
rent in the right contact , which is due to a change in
the voltage in the left contact , i.e., the nonlocal
conductance , will be nonzero because
of the normal transport of electrons or the transport of
holes (the latter is caused by crossed Andreev reflec-
tion). Consequently, the only scenario for the appear-
ance of a nonzero signal at V = 0 is the closure of the
gap in the bulk spectrum at h = hc [11, 12, 30]. It is
found that  in this case; i.e., the

current rectification  is observed near the topo-
logical phase transition. The parameter Δeff at h > hc,
which can be estimated from the measured nonlocal
conductance, is called the topological gap.

Using the described local and nonlocal measure-
ment data, the authors of recent comprehensive study
[31] attempted to plot a diagram of topological phases
of a superconducting wire. The studied sample was a
quasi-one-dimensional electron gas channel formed
under the action of gate electrodes on the two-dimen-
sional electron gas in an InAs quantum well. An alu-
minum stripe was epitaxially grown over the channel.
The magnetic field was applied along the channel.
Measurements showed that regions at the boundaries
of which a gapless bulk spectrum is observed and the
bulk spectrum with a gap occurs inside and outside of
them exist in the Vg–B parametric space, where Vg is
the gate voltage controlling the electron density in the
channel and B is the magnetic field strength. In turn,
conductance peaks of the left and right contacts at
zero voltage simultaneously exist only inside islands.
These resonances are stable under the variation of the
height of tunnel barriers, the electron density, and the
magnetic field. However, these regions are very small
(Vg ~ 1 mV,  100 mT; i.e., eVg ~ 1 meV, h ~ 10 μeV),
and the topological gap  μeV is an order
of magnitude smaller than the theoretically calculated
values.

An important factor significantly complicating the
interpretation of the results obtained in [31] and in
other works in this field [32, 33] is very strong disorder
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in the studied hybrid samples [34–36]. Several scenar-
ios are possible [37]. The first one is the inhomogene-
ity of the electrostatic potential, which is due to the
presence of a set of gate electrodes necessary for con-
trolling both the carrier density in the superconduct-
ing wire and height of tunnel barriers, charged impu-
rities in the environment, and Schottky barriers [38].
As a result, the chemical potential can be considered
as a smooth function of the coordinate both at the
interface between the superconducting wire and the
normal metal contact (quantum dot region can be
formed here) [16, 32, 39, 40] and in the bulk of the
wire [41]. In this case, ASs can appear in the trivial
phase and have zero energy at certain parameters [2,
42, 43]. As a result, the conductance of the normal
metal/superconducting wire interface at zero voltage
is also equal to 2G0. Depending on the characteristics
of the smooth inhomogeneity, the Majorana wave-
functions constituting such ASs can also be partially
separated in space (such states are also referred to as
quasi-MSs). Thus, their local linear response, i.e.,

, and its properties will much repeat

those observed for MSs [44–46].
The second scenario is disorder and numerous

impurities in the semiconductor core and at the semi-
conductor/superconducting shell interface, which can
totally be interpreted as f luctuations of the electro-
static potential in the superconducting wire. Since the
time-reversal symmetry in the system is broken (h ≠ 0)
and, as mentioned above, p-wave pairing dominates in
the topologically nontrivial phase, disorder can be of
great significance in contrast to the Bardeen–Coo-
per–Schrieffer superconductivity [47]. Majorana
states in sufficiently large systems are stable under the
effect of weak disorder (are topologically protected)
due to their spatial nonlocality and to the gap in the
spectrum of excitations [48, 49]. Strong disorder sup-
presses this gap and leads to the transition to the topo-
logically trivial phase [50–52]. The decrease in the
topological gap with increasing disorder will result in
the significant hybridization of Majorana modes and
again in the appearance of ASs whose energy can ran-
domly vanish. As in the first scenario, strong disorder
can also induce such ASs and ASs with partially sepa-
rated Majorana modes in the trivial phase [34, 53]. It
was shown that the response of these excitations is sig-
nificantly similar to that of the true MS [54–56]. It is
interesting that ASs with zero energy can also appear at
h = 0, which can be used to estimate the degree of dis-
order in the system in experiments [37, 57].

We emphasize that rather short sample with a
length of ~1 μm are used in current experiments in
order to suppress the negative effect of disorder and to
reach the ballistic transport regime [31, 36]. As a
result, ASs appearing in both scenarios can have a
nonzero probability density near the opposite bound-
aries of the hybrid structure [57]. Correspondingly, the
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correlated behavior of local conductances G11 and G22,
which is characteristic of the resonant transport
through the MS, can also be observed in the case of
trivial quasiparticles [37, 46].

Besides the obvious necessity of reducing the
degree of disorder in InAs/Al and InSb/Al hybrid
structures, another possible solution to this problem is
the search for alternative materials. Interest in lead tel-
lurite PbTe has been significantly grown in recent time
[58]. As InAs and InSb, PbTe wires have a strong
spin–orbit coupling and a high g-factor [59, 60], but
they also have a very high dielectric constant of
~103 [61], cf. ~10 in InAs and InSb [62]. Therefore,
the efficient screening of charged impurities and a
weaker disorder can be expected in this semiconduc-
tor. To protect PbTe wires from the formation of oxide
layers on their surfaces (which are also sources of dis-
order), they are additionally coated with a CdTe film
having the lattice matched to PbTe. For the same rea-
son, PbTe wires are grown on CdTe substrates [63, 64].
The further development of the selective area growth
of wires using molecular beam epitaxy allowed the
improvement of the quality of interfaces [65]. As a
result, the ballistic transport in zero magnetic field
and, consequently, quantized conductance steps were
observed [66, 67]. The length of the transport channel
thus obtained can reach 1.5 μm, which is a factor of
1.5 to 10 larger than in InAs and InSb [68, 69].

The calculations showed that PbTe/Pb hybrid
superconducting structures are promising and have
some advantages [59]. The superconducting gap in
lead is wider than that in aluminum; correspondingly,
higher magnetic fields can be used in experiments.
The superconducting gap in PbTe/Pb, which is com-
parable with those in InAs/Al and InSb/Al, can be
induced even at a weak coupling between Pb and
PbTe, which makes it possible to simultaneously
reduce negative effects of renormalization and super-
conductor-induced disorder in the semiconductor. As
mentioned above, a PbTe wire can first be coated with
a CdTe buffer layer and a Pb film can then be grown or
used as a layer coating PbTe/Pb. This allows one to
solve the problems of mismatch between the PbTe and
Pb lattices and the formation of oxide layers, which are
significant sources of disorder. Recent experimental
data have confirmed the solid (i.e., without parasitic
quasiparticle states inside) induced gap Δ ~ 1 meV
[70], which is about five times wider than the known
values in Al [19, 71].

The study of interference structures containing
superconducting wires is of interest for two main rea-
sons. First, because of the aforementioned problem of
distinguishing between the responses of MSs and ASs
(which are due to different mechanisms), it is neces-
sary to use more complicated transport schemes [72–
74]. Second, a number of theoretical works demon-
strated that braiding of Majorana modes, which is
necessary in the case of topological qubits to imple-
JETP LETTERS  Vol. 120  No. 1  2024
ment quantum gate operations, in systems with several
ways is possible with measurements and the quantum
teleportation effect (i.e., without any physical trans-
port of modes) [75–77].

The Aharonov–Bohm effect, i.e., oscillations of
the conductance as a function of the magnetic field
perpendicular to the plane of the interference struc-
ture, is one of the criteria of the implementation of the
coherent transport regime [78, 79]. Such a behavior of
the differential conductance has been already demon-
strated in practice for devices based on InSb [80] and
PbTe [64]. An attempt to implement a MS in one of
the arms of the interferometer was done in the experi-
ment reported in [81]. However, the observed
Aharonov–Bohm oscillations could not be attributed
to the transport through separated Majorana modes
and the possible contribution from bulk ASs (i.e.,
Bogoliubov excitations with strongly overlapping
Majorana modes) could not be excluded.

It is shown below how the problem of distinguish-
ing the response of the true MS from the responses of
inhomogeneous and bulk ASs can be solved by analyz-
ing features of the low-energy transport in the
Π-shaped interference device [74, 82].

2. TRANSPORT PROPERTIES
OF AN INHOMOGENEOUS 

INTERFEROMETER WITH A TOPOLOGICAL 
SUPERCONDUCTOR

We consider the steady-state current in the system
that is shown in Fig. 1 and is described by the Hamil-
tonian

(4)

Here, the first term  describes a single-band para-
magnetic contact and has the form

(5)

where V is the bias voltage, μ is the chemical potential,
ckσ is the annihilation operator for an electron with the
wave vector k, spin σ, and energy ξk.

The next terms of the Hamiltonian are described in
the tight-binding representation. However, it is note-
worthy that, since the characteristic distances at which
the wavefunctions of Majorana modes vary in super-
conducting wires are much larger than interatomic
distances, the continuum approach can also be suc-
cessfully applied to analyze the spectral and transport
properties of such systems [30, 83, 84]. The second
term is the Hamiltonian of the Π-shaped inhomoge-
neous interference device, which includes the super-
conducting segment S between two normal metal
arms 1 and 2. In the tight-binding approximation
and Nambu operator representation on the jth site
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Fig. 1. (Color online) Π-shaped structure (interference
device) interacting with the normal metal contact N. The
device is a wire with the spin–orbit coupling, where super-
conducting pairing and Zeeman splitting are induced in
the central segment (shown in yellow) due to proximity
effects. The tunneling of carriers from arms 1 and 2 to the
contact is accompanied by the appearance of the
Aharonov–Bohm phase due to the magnetic f lux .Φ
Ψj = , the Hamiltonian of the struc-
ture has the form

(6)

Here, Vj is the electrostatic potential, hj is the Zeeman
splitting, Δj is the s-wave superconducting pairing
potential, αj is the spin–orbit coupling constant, θj is
the angle at which the Rashba field is rotated at the
motion from one segment to another, t is the hopping
parameter between the sites of the device, and 
( ) are the Pauli matrices acting in the spin
and electron–hole spaces, respectively. The spatial
dependences are specified by the expressions

(7)

(8)

(9)

where e1, e2, and eS are the on-site energies of the elec-
tron in subsystems 1, 2, and S, respectively, indicated
in Fig. 1; N1 and NS are the numbers of sites in the nor-
mal metal arms and superconducting segments,
respectively; σ1 and σ2 are the parameters specifying
the degree of smoothness of the profiles at the N1/S
and S/N2 interfaces, respectively; h is the Zeeman
energy; Δ is the superconducting gap; α1, α2, and αS
are the spin–orbit coupling constants in the arms and
superconducting wire, respectively; and ΔθS, j and
Δθn, j are expressed in terms of the Heaviside step func-
tion θ as

It is worth noting that the local character of the
exchange field, which acts only in the superconduct-
ing wire, can be reached in practice due to the proxim-
ity effect by the deposition of the magnetic insulator
film additional to the superconductor layer on the
semiconductor core [20–22]. The superconducting
wire is in the nontrivial phase in the Zeeman energy

range hc1 < h < hc2, where .
The wavefunctions of the Majorana modes composing
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the MS can penetrate into the normal metal arms and
thus become available for interference measurements
[30, 85, 86].

The last term in the Hamiltonian given by Eq. (4)
describes the processes of tunneling between the nor-
mal metal contact and the arms of the device and has
the form

(10)
where the matrices

include tunneling parameters into the arms  and
the matrix

is determined by the Aharonov–Bohm phase
, which appears at tunneling due to the

magnetic f lux  through the device plane;  is
the normal f lux quantum.

The further numerical calculations were conducted
with the parameters t = 1, , , ,

, , , , σ1 = 3,
σ2 = 4, N1 = 50, and NS = 60.

The presence of the electrostatic and supercon-
ducting pairing potentials smoothly varying near the
interfaces allows the implementation of various low-
energy states, which are distinguished in the spatial
behavior of the wavefunctions of Majorana modes.
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Fig. 2. (Color online) Spatial distribution of the probabil-

ity densities  and  corresponding to the Majo-
rana wavefunctions for three types of low-energy exci-
tations of the interference device: (a) inhomogeneous
Andreev state, (b) Majorana state, and (c) bulk Andreev
state. The region  corresponds to the super-
conducting wire.

2
,1| |jw 2

,1| |jz

≤51 < 110j
The spatial distributions of the corresponding proba-

bility densities  and  are presented in Fig. 2.
The region  corresponds to the supercon-

2
,1| |jw 2

,1| |jz
≤51 < 110j
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ducting wire, and the left ( ) and right
( ) segments belong to arms 1 and 2,
respectively.

As known, in the Majorana-type Bogoliubov exci-
tation, the wavefunctions of the Majorana modes cor-
responding to the operators  and  (see Eq. (2))
are localized at the opposite ends of the superconducting
wire. In our case, as shown in Fig. 2b, these modes (prob-
ability densities are presented by the solid and dashed
lines) outflow into adjacent arms; i.e.,  and

. It is substantial that excitations with a
nearly zero energy can naturally appear in the consid-
ered inhomogeneous system, but they are not Majo-
rana states (this possibility in a simpler case was
demonstrated, e.g., in [38]). The wavefunctions of
Majorana modes forming such states can significantly
overlap with each other and can be localized in a lim-
ited spatial region. Such an inhomogeneous AS is
exemplified in Fig. 2a. It is seen that both Majorana
modes in this case are located in arm 2 ( ) and
in the adjacent region of the superconductor. The
excitation with the nearly zero energy, where the wave-
functions of Majorana modes strongly overlap with
each other and have a nonzero probability density in
the entire device is also possible, e.g., at a large Zee-
man splitting for the superconducting wire that is for-
mally in a topologically nontrivial phase ( )
[87]. The bulk AS is exemplified in Fig. 2c. It is note-
worthy that  (dashed line) and  (solid line)
are nonzero in arms 2 ( ) and 1 ( ),
respectively, despite the visual effect. This is of funda-
mental significance for the interference transport.

The transport properties of the inhomogeneous
superconducting device, which is simulated by the
microscopic Hamiltonian given by Eq. (6), can be
analyzed using the nonequilibrium Green’s function
method [88, 89] in the tight-binding approximation
(details of the approach for the superconducting sys-
tem can be found, e.g., in [90, 91]). Figure 3 presents
the dependences of the conductance  on
the Aharonov–Bohm phase φ in the linear response
regime at low temperatures. At h < hc1 = 0.5, oscilla-
tions of the differential conductance are shown by the
solid line. They are due to the presence of one low-
energy inhomogeneous AS in each of the opposite
arms (one of such ASs is given in Fig. 2a). To observe
the Aharonov–Bohm effect in this case, the energies
of both inhomogeneous ASs ε1 and ε2 should be lower
than or about the spin-dependent broadening param-
eters, which determine the lifetimes , i = 1, 2, 3, 4,
of four Majorana modes (two for each inhomoge-
neous AS). Moreover, according to analytical results
obtained in [74] for the effective Hamiltonian of the
two-level system (Andreev double-quantum-dot
model), the dependence  occurs only if all four
Majorana modes interact with the contact. It is seen in

≤ ≤1 50j
≤110 < 160j

1,1b 2,1b

≠2
<51,1| | 0jw

≠2
>110,1| | 0jz

> 110j

c2h h�
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Fig. 3. (Color online) Aharonov–Bohm effect  at var-
ious Zeeman splitting magnitudes h.

( )φG
Fig. 3 that the period of oscillations is π and extrema
are at the points φ = πn/2, .

Immediately above the topological phase transition
point h = hc1, the MS has zero energy ε1 = 0. Further,
since the Majorana wavefunction in the nontrivial
phase demonstrates oscillations damping in the bulk
of the superconducting wire and the localization
length is inversely proportional to the gap in the bulk
spectrum, the energy ε1 undergoes oscillations
increasing with the Zeeman energy h [87]. Although
two Majorana modes of the lower excitation are
already sufficient to observe the Aharonov–Bohm
effect (as clearly seen in Fig. 2b), the cases with ε1 = 0
and ε1 ≠ 0 differ in the properties of the effect and are
shown in Fig. 3 by circles and the dashed line, respec-
tively. Extrema in both cases are at the points φ = πn/2.
However, the period of oscillations in the more gen-
eral situation with ε1 ≠ 0 is 2π.

At large Zeeman splitting, the MS is transformed to
the bulk AS [92]. In this case, oscillations have a
period of 2π and extrema both at φ = πn and between
half-integer values of the Aharonov–Bohm phase. It is
substantial that the latter values depend on the param-
eters of the system, whereas maxima and minima at
integer φ values are stable. The revealed features of the
conductance behavior in the effective model appear
when the interaction of each of the Majorana modes
with the contact simultaneously through both arms of
the device is taken into account [74].

It is important that the Byers–Yang theorem [93]
can be violated in mesoscopic superconducting struc-
tures. In particular, in one-dimensional and quasi-
one-dimensional rings of s-wave superconductors,
where the coherence length is smaller than or about
the circle length, ξ ~ L, the critical temperature and
supercurrent as functions of the magnetic f lux have a
period of 2π (i.e., a period of h/e inherent in normal
metal systems) [94–97]. The period of conductance

∈n Z
oscillations for the bulk AS in the considered system is
doubled just at ξ ~ NS. A period of h/(2e) characteris-
tic of extended superconducting systems occurs in the
MS at any ε1 values if at least one of the two Majo-
rana modes of the state with the energy ε2 is localized
near the N1/S or S/N2 interface and is no longer cou-
pled to the contact (which can be ensured by increas-
ing one of the parameters σ1 and σ2 [44, 74]).

Thus, considering the period of oscillations and the
positions of the extrema of the conductance in the
Aharonov–Bohm effect that are stable under the vari-
ation of the parameters of the system, one can distin-
guish the cases of the quantum interference transport
in the MS, inhomogeneous ASs, and the bulk AS.
This conclusion remains valid at nonzero tempera-
tures T ~ 10 mK corresponding to experimental tem-
peratures and including weak diagonal disorder [74].

Conductance maxima of 4G0 (the case of the MS in
Fig. 3) indicate the transport involving simultaneously
two Majorana modes [45]. If the coupling of the sec-
ond mode with the contact is negligibly weak, peaks
reach 2G0 [23, 24]. Two-channel interference can also
be destructive, leading to G = 0. Both features are
clearly seen in a particular case where one of the Majo-
rana modes in the state with the minimum energy in a
nontrivial phase does not outflow to the arm of the
device adjacent to the superconducting wire. The
dashed line in Fig. 4a is the dependence of the proba-
bility density of the second Majorana mode on the
Zeeman energy  on the lower edge of the
device (N = 2N1 + NS is the number of sites in the
interference structure). The coupling of this Majorana
mode to the contact through the lower arm is obvi-
ously absent in both phases of the superconducting
wire. The interaction is possible only through the
upper arm, as seen in the behavior of  shown
by the solid line. The probability density at the upper
edge is maximal in the trivial phase (h < 0.4). How-
ever, since , no resonant features of the con-
ductance are observed (see the solid line in Fig. 4b). A
sharp drop of  occurs in the nontrivial phase near the
threshold energy hc1. In the case NS = 60, this is insuffi-
cient to completely block the transport to the second
Majorana mode (although certainly ), which
is confirmed by the absence of the quantized conduc-
tance plateau [3]. As h increases, resonances in G
alternate with antiresonances, where G = 0 ( ).
In this case, the higher the density , the higher the
resonant G values above 2G0.

An increase in the length of the superconducting
wire can ensure the exclusion of the second Majorana
mode from transport processes. As a result, the con-
ductance demonstrates a plateau with a height of 2G0
in the Zeeman energy range 0.4 < h < 0.6 shown by the
dashed line in Fig. 4b. The subsequent increase in h

∀

( ) 2
,1| |Nz h
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Fig. 4. (Color online) Case of the blocked transport to the
lower arm at . (a) Probability density of the second
Majorana excitation mode with the energy  at the upper

edge of the device  versus the Zeeman splitting h at
NS = (solid line) 60 and (dashed line) 120. At the lower

edge,  for any h value (dashed line). (b) Conduc-
tance versus the Zeeman splitting h.

S

S

S

μ ≈ 0.6
ε1

2
1,1| |z

2
,1| | = 0Nz
first leads to the increase in the hybridization of two
Majorana excitation modes with the energy , which
results in oscillations of the conductance with maxima
of 2G0. Further, when the direct tunneling into the
second Majorana mode becomes possible, the min-
ima again reach zero and the maxima increase above
2G0, approaching 4G0.

3. CONCLUSIONS

Despite a significant progress in the synthesis of
hybrid semiconductor/superconductor wires, the
existing spectroscopic data are insufficient to indicate
the presence of the Majorana state in these systems.
One of the main obstacles to detect Majorana quasi-
particles is disorder, which results in the appearance of
low-energy Andreev states, whose transport responses
are similar to that of Majorana excitations. This prob-
lem can be solved by the fabrication of purer InAS/Al
and InSb/Al samples, which are studied since the first
experiments to date, with  and the synthesis of

ε1

ξ>L
JETP LETTERS  Vol. 120  No. 1  2024
new hybrid wires, e.g., PbTe/Pb, where a semicon-
ducting core has a large dielectric constant.

Differences between Majorana and Andreev states
can be revealed in complex transport geometries. In
particular, this problem is solved when examining the
Aharonov–Bohm effect in an interference device with
a superconducting segment in the central part. The
identified differences are due to the features of the
spatial behavior of Majorana modes, which constitute
low-energy Bogoliubov states. The analysis of oscilla-
tions of the conductance as a function of the magnetic
flux, as well as the positions of extrema in this depen-
dence, allows one to separate the response of Majo-
rana quasiparticles against the background of other
Andreev states.
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