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We calculate electronic structure and spin susceptibility dependencies on doping within the framework of a
cluster perturbation theory for strongly correlated electronic systems. The change in the susceptibility with
increasing doping is qualitatively consistent with the experimental data on resonant inelastic X-ray scattering
and inelastic neutron scattering, as well as with the results of the calculations within the quantum Monte
Carlo method.
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1. INTRODUCTION
Progress in the development of the resonant inelas-

tic X-ray scattering (RIXS) allowed to experimentally
obtain information on dynamical magnetic suscepti-
bility [1–3] complementing the results of the inelastic
neutron scattering (INS) [4–6]. For cuprates like

, a strong dependence of electronic and
magnetic properties on doping x is well known. With
increasing x, the system evolves from an antiferromag-
netic Mott–Hubbard insulator at  through a still
not well understood pseudogap state with the short-
range magnetic order to a normal Fermi-liquid-like
metal at high dopings . It is known that the
strong electronic correlations (SEC) in cuprates pre-
vent description of their physical properties within the
framework of the standard one-electron approxima-
tions in a wide region of the phase diagram. To ade-
quately describe the pseudogap state, it is necessary to
take into account doping-dependent changes in the
short-range antiferromagnetic order. To solve the
problem, numerically exact methods for finite clusters
are widely used, for example, the quantum Monte
Carlo method (QMC) [7–9]. At the same time, trans-
lational invariance is also important for both the elec-
tronic structure and the collective excitations in a
crystal and it can be considered using approaches such
as the dynamic mean field theory and its generaliza-
tions [10] and within the framework of cluster theories
[11]. Here we use cluster perturbation theory (CPT)

[12–14] in which the eigenstates of a small cluster are
calculated exactly and then used to write the interclu-
ster hoppings and interactions within the framework
of the perturbation theory using cluster’s eigenstates.

2. CALCULATION METHOD

The method for calculating the electronic structure
in CPT is described in many publications and, de
facto, is already standard [12–14]. Recently, methods
for calculating dynamical charge and spin correlation
functions based on CPT were developed [15] and
called Charge-CPT and Spin-CPT, respectively.
There, exact diagonalization of the 3 × 3 clusters
within the Emery model was used. In such a cluster,
spin correlations up to the fifth coordination sphere
are taken into account exactly. The calculation
method is close to the approaches used in [16–18]. In
this work, the Spin-CPT is applied to the Hubbard
model

(1)

where  denotes an annihilation operator at the site i

with the spin , ,  is the particle
number operator,  is the hopping integral, and U is
the on-site Coulomb repulsion.
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Fig. 1. (Color online) Changes with doping of the spectral density at the Fermi level, essentially, the Fermi surface (top row), and
the maps of the spin response  (bottom row) for five doping concentrations, x = 0, 0.0625, 0.125, 0.1875, 0.25. Note
that for the clarity, the intensity scale in the lower left figure differs from all other figures of the bottom row.

( )χ ΩIm ,k
As the first step, the local spin correlation function
is calculated exactly in terms of the many-electron
eigenstates of the cluster,

(2)

where indices  and  enumerate cluster sites,  is a
spin raising (lowering) operator at site ,  are the
eigenstates of a cluster with energies , and 
denotes frequency. The procedure for obtaining the
matrix of intercluster interactions is similar to con-
structing a single-particle CPT on the Hubbard
X-operators [14] and leads to a two-particle Green’s
function in the CPT approximation in a form similar
to random phase approximation (RPA):

(3)

where k is the wave vector, the matrix  is obtained
by considering intercluster interactions in the limit of
the  model and is analogous in its structure to the
usual hopping matrix  in CPT. The translational
invariance of the lattice is restored by calculating the
function

(4)

where  is a position of the site  within a cluster. In
this work, we calculate the electronic structure and
spin correlation functions using the 4 × 4 cluster that
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allows us to take into account the short-range mag-
netic order up to the ninth neighbor exactly.

3. CALCULATION RESULTS

Figure 1 shows the changes with doping in the elec-
tronic structure and spin susceptibility within the
Hubbard model considering hopping between first
and second neighbors with parameters  and

 and Hubbard repulsion . Here
and below, the energy is given in eV, and the parame-
ters are selected to reproduce the low-energy elec-
tronic structure of the Emery model for cuprates [19].
The top row shows the maps of the electron spectral
density distribution at zero frequency, , in
the first quarter of the Brillouin zone. The distribution
corresponds to the Fermi surface. In the undoped case
of a Mott–Hubbard insulator, the spectral density is
vanishingly small everywhere. At low doping x =
0.0625, the spectral weight is small for all wave vectors
in the antinodal direction, while in the nodal direction
there is a maximum of the spectral distribution func-
tion; it is the pseudogap state and the widely discussed
Fermi arc observed in experiments. For ,
the spectral weight of electrons on the Fermi surface in
the antinodal direction is still noticeably lower than in
the nodal direction. This state can be called a weak
pseudogap with the center of the Fermi surface at the
(π, π) point. Near optimal doping , the
spectral weight is almost the same over the entire
Fermi surface, which is characteristic of a normal
Fermi liquid. The distribution of the spectral weight of
electrons for the overdoped case  indicates
that a Lifshitz transition has occurred and a new Fermi
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surface has been formed with the center at the
 point.

Let us now analyze the spin susceptibility as a func-
tion of the wave vector and the energy (bottom row in
Fig. 1). In the undoped case, the spin-wave nature of
the excitations is evident with a linear dispersion law
and a maximum of the spin response at the (π, π)
point. A similar dispersion and distribution of the
spectral weight were obtained by the QMC method in
[16]. With doping and weakening of the antiferromag-
netic correlations, in the vicinity of the (π, π) point,
the maximum of the spin response shifts to higher
energies. Similar behavior was also obtained by the
QMC method [16]. An increase in the energy of spin
excitations upon doping was discovered experimen-
tally in the RIXS spectra [18]. These experiments did
not reveal the low-energy spin excitations predicted in
RPA calculations [20]. Note that at high doping, char-
acterized by the dispersion of almost free electrons
(  and ), the low-energy spin
response is present at incommensurate wave vectors
that is consistent with the INS data on 
[21, 5], as well as with RPA [20] and the cluster calcu-
lations generalization of RPA–CPT-RPA [15].

4. CONCLUSIONS

We studied the evolution of the electronic structure
and spin excitations with doping within the cluster
perturbation theory for the Hubbard model of cupra-
tes within the 4 × 4 cluster. We augmented the calcu-
lation of the dynamical spin susceptibility based on the
cluster perturbation theory within the framework of
the Spin-CPT method by the intercluster interaction
that has a structure similar to RPA. It is shown how,
during the transition from an insulator state to a
pseudogap state, a transition from magnon to para-
magnon dispersion occurs with a dominant contribu-
tion of the spectral weight at the antiferromagnetic
wave vector (π, π). At the same time, during the tran-
sition from the pseudogap state to a weakly correlated
metal, the spin response at low energies is redistrib-
uted to incommensurate vectors.

Here we have not observed incommensurate
response at low dopings at low energies, which was
discovered in  and  [4, 5]
and obtained within the framework of perturbation
theory for strongly correlated electrons [22–25]. In
our theory, for the electronic structure characteristic
of the pseudogap phase, there is a maximum of spin
response at the (π, π) point and excitations are similar
to paramagnons. This kind of picture of spin suscepti-
bility was observed in  [6]. It is possible
that other sets of parameters may lead to an incom-
mensurate response such as the lower branch of the
“hourglass.” It is of interest for further research.
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