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Abstract—By the example of α-Fe2O3 hematite, 5Fe2O3⋅9H2O ferrihydrite, and γ-Fe2O3 maghemite pow-
ders, a microwave-radiation-induced powder system temperature growth ΔTmax of several degrees has been
measured in the ferromagnetic resonance mode at a frequency of 8.9 GHz. The powders heat up the most in
the external field H coinciding with the ferromagnetic resonance field. The value of the ΔTmax effect depends
on the magnetization of a powder material. The results obtained allow us to propose a new magnetic hyper-
thermia method for biomedical applications.
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INTRODUCTION

The field of possible applications of magic
nanoparticles is continuously expanding. In addition
to the well-known and actively developing physical
ideas for use of magnetic nanoparticles in biomedicine
and microelectronics (spintronic devices and nonvol-
atile magnetic memory) [1, 2], new areas appear,
including ecology (removal of heavy metal ions) [3, 4]
and magnetic catalysis [5]. In biomedicine, there are
already approved and established approaches to appli-
cation of magnetic nanoparticles. Under magnetic
hyperthermia [6], an ac magnetic field is induced in a
certain area of the body where magnetic nanoparticles
were previously purposefully introduced. The heat
generated during the particle magnetization switching
processes leads to local heating of biological tissues
and, ultimately, to the destruction of unwanted (for
example, malignant) cells. In our opinion, the possi-
bilities of transforming the external effect (in the case
of hyperthermia, this is an external low-frequency ac
magnetic field) into local thermal heating has been
fully studied to date. Expanding the frequency range,
one can point to another possible method of hyper-
thermia: its implementation through ferromagnetic
resonance (FMR) [7]. This effect occurs when fre-
quencies of an applied microwave field and the mag-
netization vector precession coincide. Note that, in
the physical materials science of ferromagnets, FMR
is widely used as a simple and reliable technique for
determining the magnetic parameters: magnetization,

anisotropy of various types, exchange coupling con-
stant, etc. [8–12]. Experimentally, the use of FMR is
a well-developed area; therefore, the possibility of
modifying this technique to solve practical problems
does not cause difficulties.

Various approaches to measuring the thermal
effect value were proposed in the literature: these are
the temperature determination by resistance changes
[13], by thermal radiation [14–17], etc.

This work is aimed at studying the static and
dynamic magnetic properties of oxidized iron (hema-
tite α-Fe2O3, ferrihydrite 5Fe2O3⋅9H2O, and
maghemite γ-Fe2O3) powders in order to establish the
regularities and identify the parameters that determine
heating of these powders at under FMR. To measure
the heating value, a simple method of the direct tem-
perature measurement with a thermocouple is used.

EXPERIMENTAL
Antiferromagnetic ferrihydrite 5Fe2O3⋅9H2O and

hematite α-Fe2O3 powders were chosen as objects of
study owing to the availability of these materials and
previous studies on features of their structure and
magnetic properties [8, 18, 19]. As an object with
higher magnetization values, ferrimagnetic
maghemite γ-Fe2O3 powder obtained by chemical
deposition was chosen. Average particle size d of the
ferrihydrite, hematite, and maghemite powders used
was 3, 40, and 16 nm, respectively.
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Fig. 1. Hysteresis loops of the (a) hematite, (b) ferrihydrite, and (c) maghemite powders recorded at room temperature.
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Fig. 2. Ferromagnetic resonance spectra of (a) hematite, (b) ferrihydrite, and (c) maghemite recorded at room temperature.

6420

In
te

ns
ity

, r
el

. u
ni

ts

(a) (b) (c)

H, kOe
862 40

In
te

ns
ity

, r
el

. u
ni

ts

H, kOe
32

In
te

ns
ity

, r
el

. u
ni

ts
H, kOe
The static magnetic properties of particles were
studied on a LakeShore VSM 8604 vibrating sample
magnetometer (the measurements were carried out at
the Krasnoyarsk Regional Center for Collective Use,
Krasnoyarsk Scientific Center, Siberian Branch of the
Russian Academy of Sciences). The FMR was
observed on a Radiopan SE/X-2544 X-band EPR
spectrometer at a frequency of 8.9 GHz.

RESULTS AND DISCUSSION
The hysteresis loops of hematite, ferrihydrite, and

maghemite were recorded at room temperature
(Figs. 1a–1c). The coercivity Hc, remanent magneti-
zation Mr, and saturation magnetization Ms values are
INORGANIC MATE

Table 1. Properties of the powders

Sample ρ, g/cm3 d, nm Нс, Oe Мr, emu/

α-Fe2O3 5.3 40 575 0.21
5Fe2O3·9H2O 3.8 3 0 0
γ-Fe2O3 4.9 16 14 1.3
given in Table 1 together with the tabulated densities ρ
of the powders used and their sizes d.

Figures 2a–2c show the FMR curves for hematite,
ferrihydrite, and maghemite nanoparticles recorded at
room temperature. The parameters of the resonance
absorption curves—resonance field HR and linewidth
ΔH—are given in Table 1.

We studied the temperature changes ΔT of the powder
systems used upon time variation in different dc magnetic
fields and the microwave field (f = 8.9 GHz) of an elec-
tron spin resonance (ESR) spectrometer. The tem-
perature measurements of nanoparticles were carried
out with a T-type thermocouple with copper and con-
stantan electrodes, and the signal was recorded with an
RIALS: APPLIED RESEARCH  Vol. 15  No. 4  2024

g Ms, G НR, kOe ΔН, kOe ΔTmax, K (dT/dt)max
K/s

4.3 3.1 1.5 0.8 0.016
6.7 3.3 1.4 4.5 0.19
225 2.8 0.56 10 1.07
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Fig. 3. Change in temperature of the (a) hematite, (b) ferrihydrite, and (c) maghemite powders in different magnetic fields under
microwave pumping.
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Fig. 4. Heating rate of the (a) hematite, (b) ferrihydrite, and (c) maghemite powders in various magnetic fields under microwave
pumping.

H = 4 kOe

H = 1 kOe

H = 3.34 kOe
H = 3.5 kOe

H = 2 kOe
H = 2.92 kOe

40200
0

0.010

0.015

0.005

0.020

(a)

dT
/d

t, 
K

/s

dT
/d

t, 
K

/s

dT
/d

t, 
K

/s

(b) (c)

H = 3.15 kOe
H = 4 kOe

H = 0

Time, s
40200

0

0.1

0.2

Time, s
40200

0

0.4

0.8

0.6

0.2

1.0

Time, s
N307/1 two-coordinate curve plotter. Figure 3 shows
the results of the examination. In all the cases, we
observe a sharp increase in temperature at the initial
instant of time followed by a decrease in the tempera-
ture growth rate upon reaching the ΔTmax saturation.
The amount of particle heating depends, as can be
seen in Fig. 3, on the applied dc field strength. Figure 4
shows the time dependence of the heating rate of the
powder systems at different magnetic field strengths.
In the resonance field, the greatest growth of the tem-
perature of the powders and the highest heating rate
are observed. The maximum temperature growths
ΔTmax and heating rates are given in Table 1. The stron-
gest effect of heating of the powders in the FMR mode
at ~10 K at a heating rate of 1 K/s is observed for the
γ-Fe2O3 maghemite powders.

In addition, this γ-Fe2O3 powder system is charac-
terized by the maximum saturation magnetization
(273 G) at room temperature among the powder sys-
tems used. If we compare the heating effect on the
antiferromagnetic ferrihydrite 5Fe2O3⋅9H2O and
INORGANIC MATERIALS: APPLIED RESEARCH  Vol.
hematite α-Fe2O3 powders, we can conclude that the
value of the ΔTmax effect is determined by magnetiza-
tion M: the higher the M value, the higher the powder
heating temperature. However, it is still difficult to
establish the functional dependence of ΔTmax(Ms)
using the experimental data obtained.

CONCLUSIONS
In this study, the heat release of the hematite, ferri-

hydrite, and maghemite magnetic powders was mea-
sured in the FMR mode at different dc magnetic fields H.
It was shown that the greatest heating of the particle
system is obtained at a FMR field of H = HR and the
heating value ΔTmax increases with the M value. The
heating rates dT/dt of the investigated powders were
determined. The ferrihydrite and hematite powders
characterized by antiferromagnetic order have similar
room-temperature magnetizations (6.7 and 4.3 G),
similar resonance fields HR (3.3 and 3.1 kOe), and
similar FMR linewidths (1.4 and 1.5 kOe); however,
 15  No. 4  2024
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their heating rates differ by an order of magnitude: 0.19
and 0.016 K/s, respectively. Comparing the character-
istics (size d, coercivity Hc) of ferrihydrite 5Fe2O3⋅
9H2O and hematite α-Fe2O3 powders, we can con-
clude that the powder heating rate in the ferromag-
netic resonance mode is dT/dt ~ 1/d and dT/dt ~1/Hc.
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