= ПОВЕРХНОСТЬ, ТОНКИЕ ПЛЕНКИ =

УДК 538.955

К 300-летию Санкт-Петербургского государственного университета

ИССЛЕДОВАНИЕ ПОВЕРХНОСТНОГО МАГНЕТИЗМА В СИСТЕМАХ НА ОСНОВЕ MnBi₂Te₄ С ИСПОЛЬЗОВАНИЕМ МАГНИТООПТИЧЕСКОГО ЭФФЕКТА КЕРРА

© 2024 г. Д.А. Глазкова^{1,*}, Д.А. Естюнин¹, А.С. Тарасов^{2,3}, Н.Н. Косырев^{2,4}, В.А. Комаров^{2,3}, Г.С. Патрин^{2,3}, В.А. Голяшов^{1,5}, О.Е. Терещенко^{1,5}, К.А. Кох^{1,6}, А.В. Королёва¹, А.М. Шикин¹

¹Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

²Институт физики им. Л.В. Киренского, Федеральный исследовательский центр КНЦ СО РАН,

Красноярск, Россия

³Институт инженерной физики и радиоэлектроники, Сибирский федеральный университет, Красноярск, Россия

⁴Ачинский филиал Красноярского государственного аграрного университета, Ачинск, Россия

⁵Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия

⁶Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия

*E-mail: daria.a.glazkova@gmail.com Поступила в редакцию 10.04.2023 г. После доработки 10.04.2023 г. Принята к публикации 08.06.2023 г.

Материалы MnBi₂Te₄, Mn(Bi,Sb)₂Te₄ и MnBi₂Te₄(Bi₂Te₃)_{*m*} (где $m \ge 1$) относятся к классу магнитных топологических изоляторов. Для успешного применения данных материалов в устройствах наноэлектроники необходимо всестороннее изучение их электронной структуры и магнитных свойств в зависимости от соотношения атомов Bi/Sb и количества (*m*) блоков Bi₂Te₃. Изучались магнитные свойства поверхности соединений MnBi₂Te₄, MnBi₄Te₇ и Mn(Bi_{1-x}Sb_x)₂Te₄ (где x = 0.43, 0.32) при помощи магнитооптического эффекта Керра. Показано, что температуры магнитных переходов на поверхности и в объеме MnBi₄Te₇ и Mn(Bi,Sb)₂Te₄ существенно различаются.

DOI: 10.31857/S0023476124010155, EDN: slmdkk

ВВЕДЕНИЕ

Взаимосвязь электронных и магнитных свойств в сочетании с нетривиальной топологией в магнитных топологических изоляторах (МТИ) создает основу для реализации уникальных квантовых эффектов, таких как квантовый аномальный эффект Холла, состояние аксионного изолятора, фермионы Майораны [1–13]. Наиболее перспективными материалами для наблюдения перечисленных выше эффектов являются MnBi₂Te₄ и семейства материалов, созданные на его основе: Mn(Bi,Sb)₂Te₄ и MnBi₂Te₄(Bi₂Te₃)_m [14-16]. В электронной структуре топологических поверхностных состояний MnBi₂Te₄ возможно открытие аномально широкой, в сравнении с другими известными МТИ, энергетической запрещенной зоны. Температура магнитного упорядочения в MnBi₂Te₄ составляет $T_N = 24.5$ К [14] и является одной из наиболее высоких для известных МТИ. Благодаря данным особенностям исследование

соединения MnBi₂Te₄ и материалов, созданных на его основе, в последние несколько лет вызывало повышенный интерес [17-19]. Однако экспериментальные данные, характеризующие электронную и магнитную структуру этих материалов, существенно различаются. Так, при исследовании величины энергетической запрещенной зоны в точке Дирака были получены значения, изменяющиеся от единиц до десятков микроэлектронвольт [20]. По данным ряда работ предполагается, что причинами такого поведения могут выступать как структурные дефекты, влияющие на распределение топологических поверхностных состояний и их взаимодействие с атомами Mn [21], так и изменение магнитного порядка, в том числе вблизи поверхности [22].

Для $MnBi_2Te_4$ энергетически выгодным является антиферромагнитное (**АФМ**) упорядочение А-типа с магнитными моментами, направленными перпендикулярно поверхности (0001) [23].

Рис. 1. $MnBi_2Te_4$: а – ФЭСУР дисперсионная зависимость, измеренная в точке Г, б – РФЭС-спектр остовных уровней элементов, присутствующих в образце, положения уровней отмечены вертикальными линиями, в – зависимость магнитной восприимчивости от температуры, температура АФМ-упорядочения отмечена вертикальной линией, г – зависимость $S_{MOKF}(T)$ представлена точками, аппроксимация сигнала пиками Гаусса отмечена кривой.

Такая магнитная структура подтверждена разными экспериментальными методами: дифракцией нейтронов [24, 25], СКВИД-магнитометрией [26], рентгеновским магнитным циркулярным дихроизмом [14] и фотоэлектронной спектроскопией с угловым разрешением (ФЭСУР) [27]. Значения температуры Нееля, измеренные поверхностнои объемо-чувствительными методами, с высокой точностью совпадали.

Тем не менее магнитные свойства вблизи поверхности могут претерпевать изменения по сравнению с объемными магнитными свойствами. Для метамагнетиков, к которым принадлежит соединение MnBi₂Te₄, характерно послойное перемагничивание во внешнем магнитном поле [28, 29]. Такое поведение связано с уменьшением коэрцитивной силы поверхностного блока. Таким образом, изучение магнитных свойств вблизи поверхности требует дополнительного внимания.

В данной работе проведено исследование магнитных свойств материалов MnBi₂Te₄, MnBi₂Te₄(Bi₂Te₃) (т.е. MnBi₄Te₇) и Mn(Bi,Sb)₂Te₄ при помощи магнитооптического эффекта Керра (**MOЭК**). Исследована зависимость сигнала MOЭК от температуры. В качестве реперного образца для анализа полученных результатов выступал MnBi₂Te₄, для которого магнитные свойства широко изучены.

МАТЕРИАЛЫ И МЕТОДЫ

Монокристаллы MnBi₂Te₄, Mn(Bi_{1-x}Sb_x)₂Te₄ и MnBi₄Te₇ синтезированы вертикальным методом Бриджмена в ИГМ СО РАН.

Измерения магнитных свойств проведены в ресурсном центре "Центр диагностики функциональных материалов для медицины, фармакологии и наноэлектроники" Научного парка СПбГУ с использованием СКВИД-магнитометра с гелиевым криостатом производства компании Quantum Design.

Измерения ФЭСУР и РФЭС проводили в ИФП СО РАН (Новосибирск) на установке SPECS ProvenX-ARPES при hv = 21.22 эВ для ФЭСУР и hv = 1486.7 эВ для РФЭС. Чистые поверхности образцов получали сколом в сверхвысоком вакууме. Базовое давление в процессе эксперимента было на уровне ~3–5·10⁻¹¹ мбар. Дополнительные измерения РФЭС проводили в РЦ ФМИП СпбГУ на установке ESCALAB 250Xi при hv = 1486.7 эВ.

Измерение МОЭК проводили на установке NanoMOKE 2 (производства Durham Magneto Optics, Великобритания) оснащенной гелиевым криостатом (Oxford Instruments, Великобритания), электромагнитом (магнитное поле до 3.5 кЭ) и автоматизированным микроманипулятором, обеспечивающим перемещение криостата с образцом относительно луча лазера с шагом 1 мкм. Чувствительность установки составляет порядка 10⁻¹⁴ emu.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Получены спектры ФЭСУР (рис. 1а) и рентгеновской фотоэлектронной спектроскопии (РФЭС) (рис. 16) для характеризации электронной структуры и элементного состава исследуемого образца $MnBi_2Te_4$. На рис. 1а ясно видны состояния объемной валентной зоны и объемной зоны проводимости, а также широкая объемная запрещенная зона между ними (~200 мэВ). Топологические поверхностные состояния располагаются в области объемной запрещенной зоны. Такой вид электронной структуры вблизи уровня Ферми с центром объемной запрещенной зоны при энергии связи

Рис. 2. MnBi₄Te₇: $a - \Phi$ ЭСУР дисперсионная зависимость, измеренная в точке Г, б – РФЭС-спектр остовных уровней элементов, присутствующих в образце, положения уровней отмечены вертикальными линиями. На вставке – область 2*p*-уровня Mn; в – зависимость *S_{MOKE}(T)* представлена точками, аппроксимация сигнала пиками Гаусса отмечена кривой.

~0.25 эВ является характерным для данных материалов [14]. На рис. 16 показан РФЭС-спектр, на котором представлены пики остовных уровней. По интенсивности пиков была оценена концентрация атомов элементов на поверхности образца при помощи базы сечений фотоионизации Тржасковской [30]. Отклонение расчетной стехиометрии от стехиометрии, заявленной при росте, составило 1-2%, что соответствует погрешности метода измерения. Таким образом, по составу и электронной структуре поверхности исследуемый образец соответствует кристаллу MnBi₂Te₄. Зависимость магнитной восприимчивости от температуры $\chi(T)$, измеренная при помощи СКВИД-магнитометрии (рис. 1в), также демонстрирует типичную для соединения MnBi₂Te₄ картину [31]. Измерения проводили в поле 1 кЭ, приложенном параллельно кристаллографической оси с. Излом на графике зависимости $\chi(T)$ при 24.5 К (рис. 1в) свидетельствует об АФМ-упорядочении ниже данной температуры, а резкое увеличение магнитной восприимчивости (намагниченности) при 15 К характерно для ферромагнитного (ФМ) перехода.

Далее для данного образца были измерены зависимости сигнала МОЭК от приложенного магнитного поля $I_{MOKE}(H)$ при различных температурах в диапазоне от 4.5 до 40 К. Поле H (от -2 до 2 кЭ) прикладывали вдоль поверхности образца. В эксперименте зависимость $I_{MOKE}(H)$ имела форму восьмерки, а не типичной для данного метода петли гистерезиса. Необычная форма сигнала связана с приложением магнитного поля, недостаточного для поворота спина (спин-флоп перехода), перпендикулярно легкой оси намагниченности в образце

КРИСТАЛЛОГРАФИЯ том 69 № 1 2024

(оси с кристалла). В результате фактически измерялся парамагнитный сигнал, за исключением области температур с ФМ-упорядочением части образцов. Тем не менее в [32-34] показано, что магнитооптический сигнал может быть использован для определения температуры Нееля. В частности, наибольший оптический сигнал возникает из-за изменений в показателе преломления по оси, перпендикулярной вектору Нееля [34], что соответствует выбранной экспериментальной геометрии. Для анализа изменений полученных зависимостей *I_{МОКЕ}(H)* от температуры каждой зависимости был сопоставлен численный параметр – площадь внутри петли, а также амплитуда изменения сигнала. Полученная площадь петли сигнала, нормированная на амплитуду сигнала $S_{MOKE}(T)$ (рис. 1г), зависит от температуры. Отметим, что для медной пластины, на которой был закреплен образец, изменений параметров $S_{MOKE}(H)$ от температуры не наблюдали.

Значение $S_{MOKE}(T)$ (рис. 1г) претерпевает существенное изменение в окрестности температуры $T \approx 25$ K, которая соответствует температуре АФМ-упорядочения в MnBi₂Te₄. Для наглядности зависимость $S_{MOKE}(T)$ аппроксимировали пиками Гаусса. Аппроксимация дает положение пика при T = 24.8 K, что с учетом погрешности совпадает с объемной температурой Нееля. Также на зависимости видно изменение $S_{MOKE}(T)$ ниже 10 К. Из аппроксимации пиком Гаусса зависимости в данной области была получена температура $T \approx 7$ K, что согласуется с температурой ФМ-перехода, оцененной из зависимости $\chi(T)$ (рис. 1в). Однако температура поверхностного ФМ-перехода оказывается

Рис. 3. $Mn(Bi_{1-x}Sb_{x})_{2}Te_{4}$ при x = 0.32 (а-г) и x = 0.43 (д-з); а, д – ФЭСУР дисперсионная зависимость, измеренная в точке Г; б, е – РФЭС-спектры остовных уровней элементов, присутствующих в образцах, положения уровней отмечены вертикальными линиями, в, ж – зависимость магнитной восприимчивости от температуры, температура АФМ-упорядочения отмечена вертикальной линией, г, з – зависимость $S_{MOKE}(T)$ представлена точками, аппроксимация сигнала пиками Гаусса отмечена кривой.

ниже температуры объемного ФМ-перехода. Таким образом, температурные области пиков на зависимости $S_{MOKE}(T)$ связаны с температурами магнитного упорядочения системы. На основе анализа зависимости $S_{MOKE}(T)$ возможно определение температуры магнитного упорядочения для систем Mn(Bi_{1-x}Sb_x)₂Te₄ и MnBi₄Te₇.

На рис. 2а показана дисперсионная зависимость ФЭСУР для образца MnBi₄Te₇, характерная для образцов с данной стехиометрией [18]. Поверхность образцов MnBi₄Te₇ может иметь две возможные терминации: пятислойный блок Bi₂Te₃ или семислойный блок MnBi₂Te₄. На рис. 2а можно видеть смешанную дисперсионную зависимость. Такое изображение получается, когда фотоэлектроны детектируются с двух видов терминаций. Дисперсионная зависимость на рис. 2а отображает состояния объемной валентной зоны, объемной зоны проводимости и объемную запрещенную зону между ними. Топологические поверхностные состояния располагаются в объемной запрещенной зоне. На рис. 26 представлены обзорный РФЭС-спектр образца MnBi₄Te₇ и оцененные из спектра концентрации. Область 2*p*-уровня Mn дополнительно приведена в увеличенном размере на вставке. Стехиометрия образца соответствует шихте.

Зависимость $S_{MOKE}(T)$ для образца MnBi₄Te₇ (рис. 2в) имеет два пика при T = 11.3 и T = 21.3 K, в то время как объемная температура Нееля для MnBi₄Te₇ *T*_N = 13 К [35]. Пик при *T* = 11.3 К можно объяснить тем, что поверхностная температура Нееля для MnBi₄Te₇ несколько ниже объемной. Пик при T = 21.3 К характеризуется шириной, аналогичной $S_{MOKE}(T)$ пику образца MnBi₂Te₄ на рис. 1 г. Для образцов MnBi₂Te₄ и MnBi₄Te₇ положения пиков по температуре также близки. Таким образом, можно сделать вывод, что при сохранении формы электронных зон и стехиометрии на поверхности образец MnBi₄Te₇ способен проявлять магнитные свойства MnBi₂Te₄. Кроме того, на поверхности материала температура магнитного перехода ниже объемной температуры Нееля для MnBi₂Te₄.

Температуры магнитных переходов на поверхности для систем $Mn(Bi_{1-x}Sb_x)_2Te_4$ были изучены для стехиометрий с шихтами x = 0.2 и x = 0.3. Такие концентрации атомов Sb позволяют получить на поверхности кристаллов состояния электронной структуры, близкие к состоянию компенсированного полупроводника [19]. На рис. За, Зд показаны ФЭСУР-спектры образцов, из которых видно, что для образца с заявленной концентрацией атомов Sb x = 0.2 (рис. За) уровень Ферми локализован в объемной запрещенной зоне, т.е. достигнуто состояние компенсированного полупроводника. Образец с заявленной концентрацией атомов Sb x = 0.3 оказывается в состоянии дырочного легирования, и на дисперсионной зависимости рис. Зд можно видеть только часть состояний валентной зоны.

РФЭС-спектры образцов представлены на рис. 36, 3е. Рассчитанная по интенсивности пиков концентрация атомов Sb оказывается x = 0.32и x = 0.43 вместо заложенных при росте x = 0.2и x = 0.3 соответственно. В образцах Mn(Bi, Sb)₂Te₄ [19, 36] часто наблюдается увеличение концентрации Sb в кристалле по сравнению с шихтой. В остальном образцы соответствуют заявленному стехиометрическому соотношению.

Объемные магнитные свойства данных материалов широко изучены: образцы $Mn(Bi_{1-x}Sb_x)_2Te_4$ при x < 0.5 могут проявлять как чисто АФМ-свойства [37], так и находиться в смешанной фазе, проявляя одновременно ФМ- и АФМ-свойства [38]. Температура Нееля в обоих случаях близка к T = 24.5 K, а температура Кюри для второго образца ~17 К. На рис. Зв, 3ж представлены зависимости магнитной восприимчивости образцов Mn(Bi_{1-x}Sb_x)₂Te₄ (x = 0.32 и x = 0.43) от температуры $\chi(T)$, измеренные при помощи СКВИД-магнитометра. Измерения проводили в магнитном поле напряженностью 50 Э, приложенном вдоль кристаллографической оси с. На кривых магнитной восприимчивости присутствуют как характерный для АФМ-перехода излом при температурах T = 25.5 К (x = 0.32, рис. Зв) и T = 25 К (x = 0.43, рис. 3ж), так и возрастание $\chi(T)$, характерное для Φ М-перехода, при температуре $T \approx 17$ К для обоих образцов.

Однако температура магнитного перехода на поверхности, оцененная при помощи метода МОЭК, существенно отличается от объемной. На зависимости $S_{MOKE}(T)$ для образца $Mn(Bi_{1-x}Sb_x)_2Te_4$ $(x = 0.32, \text{ рис. } 3\Gamma)$ наблюдается единственный пик при T = 33.4 K, отличающийся от температуры объемного магнитного перехода приблизительно на 8 К. Такое значительное увеличение температуры перехода может быть вызвано изменением магнитного порядка в образце с АФМ на ФМ, который обусловлен увеличенным количеством дефектов замещения Mn_{Bi} и Bi_{Mn} и характеризуется температурой Кюри $T_{\rm C}=34$ К [39]. То что при измерениях магнитных свойств объема данная температура магнитного перехода не была обнаружена, может свидетельствовать о формировании поверхности при сколе объемного кристалла с большим количеством дефектов.

Эксперимент воспроизводится на образце с увеличенной концентрацией атомов Sb. На зависимости $S_{MOKE}(T)$ для образца $Mn(Bi_{1-x}Sb_x)_2Te_4$ (x = 0.43, рис. 33) наблюдается такой же ширины пик, располагающийся с учетом погрешности при той же температуре. Пик при температуре T = 13.7 K соответствует ФМ-переходу. Однако по сравнению со СКВИД-данными температура ФМ-перехода вблизи поверхности уменьшается.

выводы

При помощи МОЭК исследованы магнитные свойства поверхности материалов $MnBi_2Te_4$, $MnBi_4Te_7$ и $Mn(Bi_{1-x}Sb_x)_2Te_4$. Показано, что можно оценивать температуру магнитного перехода, используя МОЭК при направлении внешнего поля перпендикулярно к направлению магнитного момента в образце.

Для образцов $MnBi_2Te_4$ продемонстрировано, что температура $A\Phi M$ -перехода на поверхности соответствует объемной, в то время как температура ΦM -перехода ниже объемной.

Показано, что на поверхности $MnBi_4Te_7$ наблюдаются два магнитных перехода: один при температуре, соответствующей объемному магнитному переходу в $MnBi_4Te_7$, а другой при температуре, соответствующей объемному магнитному переходу в $MnBi_2Te_4$. Температуры магнитных переходов на поверхности $MnBi_4Te_7$ ниже объемных.

Для материалов $Mn(Bi_{1-x}Sb_x)_2Te_4$ (x = 0.32, 0.43) проведенный анализ показал значение температуры магнитного упорядочения ~33 К. Это может быть связано с изменением типа магнитного упорядочения с АФМ на ФМ за счет увеличения количества дефектов замещения в слоях Ві и Мп.

Работа выполнена при финансовой поддержке Санкт-Петербургского государственного университета (проект № 94031444) и Российского научного фонда (грант № 23-12-00016). Синтез образцов проведен в рамках проекта "Госзадание ИГМ СО РАН и ИФП СО РАН".

СПИСОК ЛИТЕРАТУРЫ

- Smejkal L., Mokrousov Y., Binghai Yan et al. // Nature Phys. 2018. V. 14. P. 242. https://doi.org/10.1038/s41567-018-0064-5
- Tokura Y., Yasuda K., Tsukazaki A. // Nat. Rev. Phys. 2019. V. 1. P. 126. https://doi.org/10.1038/s42254-018-0011-5
- Hasan M.Z., Kane C.L. // Rev. Mod. Phys. 2010. V. 82. art. 3045. https://doi.org/10.1103/RevModPhys.82.3045
- Xiao-Liang Qi, Shou-Cheng Zhang // Rev. Mod. Phys. 2011. V. 83. art. 1057. https://doi.org/10.1103/RevModPhys.83.1057

- Chao-Xing Liu, Xiao-Liang Qi, Xi Dai et al. // Phys. Rev. Lett. 2008. V. 101. art. 146802. https://doi.org/10.1103/PhysRevLett.101.146802
- Rui Yu, Wei Zhang, Hai-Jun Zhang et al. // Science. 2010. V. 329. P. 61. https://doi.org/10.1126/science.1187485
- Cui-Zu Chang, Jinsong Zhang, Xiao Geng et al. // Science. 2013. V. 340. P. 167. https://doi.org/10.1126/science.1234414
- Xiao-Liang Qi, Taylor L. Hughes, Shou-Cheng Zhang // Phys. Rev. B. 2008. V. 78. art. 195424. https://doi.org/10.1103/PhysRevB.78.195424
- Mogi M., Kawamura M., Yoshimi R. et al. // Nat. Mater. 2017. V. 16. P. 516. https://doi.org/10.1038/nmat4855
- Di Xiao, Jue Jiang, Jae-Ho Shin et al. // Phys. Rev. Lett. 2018. V. 120. art. 056801. https://doi.org/10.1103/PhysRevLett.120.056801
- Xiangang Wan, Turner A.M., Vishwanath A. et al. // Phys. Rev. B. 2011. V. 83. art. 205101. https://doi.org/10.1103/PhysRevB.83.205101
- Binghai Yan, Felser C. // Annu. Rev. Condens. Matter. Phys. 2017. V. 8. P. 337. https://doi.org/10.1146/ annurev-conmatphys-031016-025458
- 13. Armitage N.P., Mele E.J., Vishwanath A. // Rev. Mod. Phys. 2018. V. 90. art № 015001. https://doi.org/10.1103/RevModPhys.90.015001
- Otrokov M.M., Klimovskikh I.I., Bentmann H. et al. // Nature. 2019. V. 576. P. 416. https://doi.org/10.1038/s41586-019-1840-9
- Shikin A.M., Estyunin D.A., Klimovskikh I.I. et al. // Sci. Rep. 2020. V. 10. art. 13226. https://doi.org/10.1038/s41598-020-70089-9
- 16. Shikin A.M., Makarova T.P., Eryzhenkov A.V. et al. // Phys. B. Condens. Matter. 2023. V. 649. art. 414443. https://doi.org/10.1016/j.physb.2022.414443
- 17. Шилкин А.М., Зайцев Н.Л., Тарасов А.В. и др. // Письма в ЖЭТФ. 2022. Т. 116. С. 544. https://doi.org/10.31857/S1234567822200083
- Шилкин А.М., Естюнин Д.А., Глазкова Д.А. и др. // Письма в ЖЭТФ. 2022. Т. 115. С. 241. https://doi.org/10.31857/S1234567822040073
- Глазкова ДА., Естюнин, Климовских И.И. и др. // Письма в ЖЭТФ. 2022. Т. 115. С. 315 https://doi.org/10.31857/S1234567822050081
- Shikin A.M., Estyunin D.A., Zaitsev N.L. et al. // Phys. Rev. B. 2021. V. 104. art. 115168. https://doi.org/10.1103/PhysRevB.104.115168
- Garnica M., Otrokov M.M., Casado Aguilar P. et al. // npj Quantum Mater. 2022. V. 7. art. 7. https://doi.org/10.1038/s41535-021-00414-6

- Yu-Jie Hao, Pengfei Liu, Yue Feng et al. // Phys. Rev. X. 2019. V. 9. art. 041038. https://doi.org/10.1103/PhysRevX.9.041038
- 23. Eremeev S.V., Rusinov I.P., Koroteev Yu.M. et al. // J. Phys. Chem. Lett. 2021. V. 12. P. 4268. https://doi.org/10.1021/acs.jpclett.1c00875
- 24. Yan J.-Q., Zhang Q., Heitmann T. et al. // Phys. Rev. Mater. 2019. V. 3. art. 064202. https://doi.org/10.1103/PhysRevMaterials.3.064202
- 25. *Bing Li, Yan J.-Q., Pajerowski D.M. et al.* // Phys. Rev. Lett. 2020. V. 124. art. 167204. https://doi.org/10.1103/PhysRevLett.124.167204
- 26. Zeugner A., Nietschke F., Wolter A.U.B. et al. // Chem. Mater. 2019. V. 31. P. 2795. https://doi.org/10.1021/acs.chemmater.8b05017
- 27. Estyunin D.A., Klimovskikh I.I., Shikin A.M. et al. // APL Mater. 2020. V. 8. art. 021105. https://doi.org/10.1063/1.5142846
- Lei C., Heinonen O., MacDonald A.H. et al. // Phys. Rev. Mater. 2021. V. 5. art. 064201. https://doi.org/10.1103/PhysRevMaterials.5.064201
- 29. Wenbo Ge, Jinwoong Kim, Ying-Ting Chan et al. // Phys. Rev. Lett. 2022. V. 129. art. 107204. https://doi.org/10.1103/PhysRevLett.129.107204
- Band I.M., Kharitonov Yu.I., Trzhaskovskaya M.B. // At. Data Nucl. Data Tables. 1979. V. 23. P. 443. https://doi.org/10.1016/0092-640X(79)90027-5
- Rani P., Saxena A., Sultana R. et al. // J. Supercond. Nov. Magn. 2019. V. 32. P. 3705. https://doi.org/10.1007/s10948-019-05342-y
- 32. Боровик-Романов А.С., Крейнес Н.М., Панков А.А. и др. // ЖЭТФ. 1973. Т. 64. С. 1762.
- Saidl V., Nemec P., Wadley P. et al. // Nat. Photon. 2017. V. 11. P. 91. https://doi.org/10.1038/nphoton.2016.255
- Kexin Yang, Kisung Kang, Zhu Diao et al. // Phys. Rev. Mater. 2019. V. 3. art. 124408. https://doi.org/10.1103/PhysRevMaterials.3.124408
- 35. *Klimovskikh I.I., Otrokov M.M., Estyunin D.A. et al.* // npj Quantum Mater. 2020. V. 5. art. 54. https://doi.org/10.1038/s41535-020-00255-9
- Chaowei Hu, Shang-Wei Lien, Erxi Feng et al. // Phys. Rev. B. 2021. V. 104. art. 054422. https://doi.org/10.1103/PhysRevB.104.054422
- 37. *Bo Chen, Fucong Fei, Dongqin Zhang et al.* // Nat. Commun. 2019. V. 10. art. 4469. https://doi.org/10.1038/s41467-019-12485-y
- 38. Глазкова Д.А., Естюнин Д.А., Климовских И.И. и др. // Письма в ЖЭТФ. 2022. Т. 116. С. 793. https://doi.org/10.31857/S1234567822230082
- Yaohua Liu, Lin-Lin Wang, Qiang Zheng et al. // Phys. Rev. X. 2021. V. 11. art. 021033. https://doi.org/10.1103/PhysRevX.11.021033