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In the context of the 21st century and the fourth industrial revolution, the
substantial proliferation of data has established it as a valuable resource,
fostering enhanced computational capabilities across scientific disciplines,
including physics. The integration of Machine Learning stands as a prominent
solution to unravel the intricacies inherent to scientific data. While diverse
machine learning algorithms find utility in various branches of physics, there
exists a need for a systematic framework for the application of Machine Learning
to the field. This review offers a comprehensive exploration of the fundamental
principles and algorithms of Machine Learning, with a focus on their
implementation within distinct domains of physics. The review delves into the
contemporary trends of Machine Learning application in condensed matter
physics, biophysics, astrophysics, material science, and addresses emerging
challenges. The potential for Machine Learning to revolutionize the
comprehension of intricate physical phenomena is underscored. Nevertheless,
persisting challenges in the form of more efficient and precise algorithm
development are acknowledged within this review.
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1 Introduction

The evolution of programming languages within the context of machine learning
techniques is marked by significant milestones. Notably, Alan Turing’s publication of
“Computing Machinery and Intelligence” introduced the Turing test, laying the
groundwork for AI exploration through human-computer textual interaction [1].
Moreover, the pioneering work of Marvin Minsky and Dean Edmonds in developing
Stochastic Neural Analog Reinforcement Calculator (SNARC), the first artificial neural
network (ANN) employing 3,000 vacuum tubes to simulate a 40-neuron network, stands as
a seminal moment in machine learning history. Additionally, the coining of the term
‘artificial intelligence’ by John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude
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Shannon, among other pivotal events, played a foundational role in
the emergence of AI. Newell and Simon’s 1956 creation, the Logic
Theorist [2] marked a pivotal achievement as it operated as a
computer program capable of proving theorems in symbolic logic
fromPrincipiaMathematica. This groundbreaking program simulated
human problem-solving abilities and significantly influenced the
burgeoning field of information-processing psychology, shaping the
foundational principles still integral to cognitive psychology and
human factors studies today. Frank Rosenblatt’s development of
the perceptron, an early form of an artificial neural network
(ANN) [3–5], revolutionized machine learning by introducing a
model capable of learning from input data and adjusting its
parameters to make predictions. Although limited in solving only
linearly separable problems, the perceptron laid the foundation for
modern neural networks, inspiring subsequent advancements in the
field of artificial intelligence and pattern recognition [6]. Oliver
Selfridge’s 1959 paper, “Pandemonium: A Paradigm for Learning,”
[7] introduced a revolutionary model in machine learning, presenting
a framework of interconnected ‘demons’ responsible for cognitive
tasks like pattern recognition. This hierarchical model emphasized the
collaboration of simpler components to achieve complex cognitive
functions, influencing the evolution of neural networks and
significantly impacting the fields of artificial intelligence and
cognitive psychology. These milestones collectively define the
trajectory of programming languages in shaping the landscape of
machine learning advancements. In general, ML algorithms are

divided into supervised and unsupervised learning [8] as shown in
Table 1 and Figures 1 and 2.

Apart from Supervised and Unsupervised learning,
reinforcement learning [10] is widely used in different aspects of
robotics. In reinforcement learning based on the actions of
algorithms in the environment, it is given some rewards.
Considering the goal of maximizing the rewards, the algorithm
learns on its own. Using reinforcement learning makes it easier to
design complex, hard-to-hand-engineer frameworks, and rules that
are necessary for robots to perform a task. Creating rules becomes
complex because the real environments that robots face are not
controllable, so a robot trained in a controlled environment with
deterministic rules will perform poorly in real-world instances.
Through trial-and-error interactions with its surroundings, a
robot can independently learn the best behaviour through
reinforcement learning (RL) [11]. Further in this section, we will
be discussing all these learning processes along with different
algorithms in detail.

In Supervised Learning [12], the network is provided with an
output for every input pattern. The goal of these algorithms is to
map input x to output y. The weights used by the model are updated
during the prediction process such that the model produces outputs
close to the actual output. As evident from Table 1, supervised
learning is utilized for regression and classification-based problems.
The goal of regression is to predict one or more target continuous
outputs from a given input vector [13]. Similar to regression,
classification happens to be one of the most common tasks in
ML. Here the discriminant is a function that considers the input
and maps it to one of the classes, i.e., discrete outputs [14]. It should
be noted that input vectors also can contain continuous and/or
discrete parameters. The continuous input data can be easily treated
by ML, but discrete data should be encoded or treated by Decision
Tree only. There are many predefined models in ML following
multiple methodologies e.g., Decision Trees follow the divide and
conquer algorithms [15], Naïve Bayes algorithm [16] follows a
probabilistic approach, and so on. The simplest model in
classification is logistic regression [17] which uses the Gradient
Descent approach for parametric estimation. Based on the number
of classes i.e., 2 or more, the classifiers are divided into binary and
multivariate classifiers. A comparative analysis of Supervised ML
Techniques is provided in Table 2. However, it is important to note
that there may be several drawbacks of using some methods that
although are powerful, fail to account for various case scenarios. One
such technique is the Decision Tree. There are several limitations in
the use of Decision Trees. One significant limitation of the Decision
Tree method is its comparatively low model accuracy when
compared to other methods using the same data set [18–20]. The
number of samples plays a crucial role in determining the depth of
the Decision Tree, which in turn affects the accuracy of its

TABLE 1 Difference between supervised and unsupervised learning.

Supervised Learning Unsupervised Learning

Learns mapping functions from input to output Models distribution of the data to learn more about it

Requires both input and output Only input is required

Used in regression and classification Used in clustering and association

FIGURE 1
Classification of the machine learning algorithm [9].
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predictions. Furthermore, both the root and each node of the
Decision Tree divide the samples in the feature space into two
groups using a plane perpendicular to the feature parameter axis,
resulting in a rather coarse division. These factors hinder the
widespread application of Decision Trees in various domains.
Second one is overfitting. Decision Trees can be prone to
overfitting, especially if they are very deep. As a result, the model
may fit the training data too closely, leading to poor generalization
on new data [18]. Third one is sensitivity to noise. Decision Trees
can be sensitive to noise in the data, as they aim to create rules that
best separate the training examples. Therefore, if the data contains
noise or outliers, Decision Trees may create incorrect splits [18–20].
Forth one is inefficiency with large datasets. Building and using
Decision Trees can be computationally expensive, especially with
large volumes of data. This can limit their practical use in some
cases. Last one is multicollinearity issue. Decision Trees may struggle
with handling multicollinearity, where features in the data are highly
correlated with each other. This can result in incorrect splits and
reduced model effectiveness [18–21]. While Naive Bayes presents a
viable classification approach, its reliance on assuming distinct and
independent features poses limitations in practical scenarios. The
algorithm’s inability to generate predictions in the absence of
training instances for a particular class results in zero
probabilities, rendering it unsuitable for real-life applications
where comprehensive training data might not cover all possible

scenarios. This issue is commonly referred to as the ‘zero
probability/frequency problem’ in the Naive Bayes model [22].
Future research efforts must focus on mitigating this challenge to
enhance the algorithm’s applicability in real-world prediction tasks.

In unsupervised learning, our available data is solely the input.
Here, the aim is to find regularities and (dis)similarities in the input
data [23]. This is also called descriptive or knowledge discovery.
Unsupervised Learning is widely used in discovering clusters [15],
latent factors [24] and graph structures [25]. To build clusters
multiple algorithms like K-means [26] and Hierarchical
clustering [27] are used. In image analysis, the dimensions of
images notably impact the reduction of algorithmic time
complexity. To address this, we utilize Principal Component
Analysis (PCA) [28], an unsupervised technique that condenses
high-dimensional image data into a lower-dimensional space. PCA
identifies and captures key variations within the dataset,
streamlining subsequent computational tasks like feature
extraction and classification by emphasizing crucial image
information while reducing computational overhead.

In the realm of physics, the choice between supervised and
unsupervised learning techniques hinges on the nature of the
available data and the specific objectives of the analysis. In
scenarios where labelled datasets are abundant and well-defined,
supervised learning proves to be a powerful tool [29]. For instance,
in experimental setups where outcomes are known and categorized,

FIGURE 2
Schematic classification of ML.
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such as particle identification in high-energy physics experiments,
supervised learning algorithms like convolutional neural networks
can efficiently classify and predict outcomes based on training data
[29]. On the other hand, unsupervised learning techniques shine
in situations where the data lacks clear labels or predetermined
classifications. In experimental investigations where patterns or
anomalies are sought without prior knowledge, clustering
algorithms like k-means or hierarchical clustering can uncover
hidden structures within datasets [30,31]. An example could be
the analysis of cosmicmicrowave background radiationmaps, where
unsupervised techniques can reveal subtle patterns or anomalies that
might elude human intuition. Table 2 and Table 3 display a
comparisons of supervised and unsupervised techniques.

In reinforcement learning, we have a learner who is a decision-
making agent that takes actions in an environment and receives a
reward for their action in trying to solve a problem. After a set of
trial-and-error runs, it learns the best policy to maximize the reward.
However, in the modern era, Deep Learning is a widely popular tool.
The major reason for preferring Deep Learning over ML is the
capability of extracting features automatically [32,33]. However, the

major requirement here is to have a lot of data. There exists a diverse
array of algorithms within Deep Learning such as Multilayer
Perceptron [21], Recurrent Neural Networks [22], and
Convolutional Neural Networks [23], Generative Adversarial
Networks (GANs), Long Short-Term Memory Networks
(LSTMs), Autoencoders, Transformer Networks, Reinforcement
Learning models [34–38] such as Deep Q-Networks (DQN),
Capsule Networks (CapsNets) and various other architectures
designed to address specific tasks, each offering unique
capabilities and applications within the realm of Deep Learning
[39–41]. Deep Learning has also been attractive in recent days due to
better activation functions, better optimization functions, and better
regularization techniques.

A Multilayer Perceptron [39,42,43] is a class of feed-forward
neural networks that particularly involves one input and output
layer and multiple hidden layers. It is a supervised learning
technique that has nonlinear activation functions and is trained
using a backpropagation algorithm [43]. Similarly, the major
advantage of Convolutional Neural Networks [41] is their ability
to extract features automatically. This reduces the tasks of extracting

TABLE 2 Comparative analysis of various Supervised Machine Learning Techniques. Green means excellent feature, orange—average feature, red—bad
feature.

Supervised
machine
learning

Precision/
Accuracy

Explainability Parametric
model?

Number of
hyperparameters
for tuning model

Desirable
number of
samples

Discrete
input

parameters

Input data
normalization

Neural Nets Very high Very low,
“black box”

Yes, many
parameters for

fitting

A lot of. Number of
hidden layers and

number of neurons in
them

High.
Typically, the
number of
experiments
exceeds the
number of
parameters
being fitted,
and it is often
above 1,000

Often treated
incorrectly

Desired

K-nearest
neighbors

Average Very low,
“black box”

No. This is non-
parametric
model

Very low. Only number of
nearest neighbors

Average.
Precision

highly depends
on number of

samples.
Usually more

than
100 desired

Cannot be
treated correctly

Very important

Decision Tree Very low Very high. The
rules obtained
from root and

nodes

No. This is non-
parametric
model

Very low. Typically, only
the depth of the tree is

considered

Low. A
minimum of
30–50 samples
is considered
the lower
threshold

Can be used
even together

with continuous
input

parameters

Not necessary

Random Forest Average Average. The
importance of

parameters reveals
the key factor

No. In consists
of Decision

Trees which are
non-parametric

Very low. Typically, the
depth and number of
trees are the most

commonly considered
hyperparameters

Low. A
minimum of
30–50 samples
is considered
the lower
threshold

Can be used
even together

with continuous
input

parameters

Not necessary

Enhanced
Decision Treea

Average High Yes, several
parameters

should be fitted

Very low. Typically, only
the depth of the tree is

considered

Low. A
minimum of
30–50 samples
is considered
the lower
threshold

Can be used
even together

with continuous
input

parameters

Not necessary

a- suggested by authors Supervised Machine Learning method.
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features using multiple image processing algorithms. Having enough
data for training, this algorithm can be the best option in multiple
places including applications like image captioning [44], image
classification [45] and object localization [46]. When it comes to
time series algorithms, Recurrent Neural Networks (RNN) [47] are
widely used. They are special types of NN particularly meant to deal
with sequential data. The output of the network acts as feedback to
the preceding neuron which allows sharing of parameters. This
algorithm along with some modifications can be widely used in
multiple applications such as weather forecasting [48], and the
prediction of missing data [49]. High Throughput Computation
(HTC) involves using distributed computing facilities for tasks
requiring high computational power [50] typically provided with
clusters and workstations. The tasks on HTC can take a long time
varying from a few weeks to a few months. In science, it is widely
used in the field of material sciences [51–53].

In spite of ML being a popular tool and finding several application
in physics and chemistry, it is not as widespread in these fields as it
should be. It seems that the problem is associated with the complexity
and diversity of ML methods which have their own hidden
disadvantages and specialitied. So actually one can find a big gap
between ML and physics because a physicist knows how to collect
correct data, but does not know how to treat it correctly and vice versa
with ML specialists. We think that in order to make a real ML
revolution physicists should use ML as a mandatory tool. The
current review is aimed to spread ML in physics by discovering
important instruments and highlighting the “underwater rocks” of
ML for non-specialists. Additionally the review highlights the
problems related to physics (for example: lack of data collection;
mixed discrete and real parameters as input data; obtaining the
simplest rules from the model) and even some ways of how they
can be resolved. The review will hence of interest to ML specialists in
order to understand how to improve somemethods andwrite code. The
last but not the least problem is that the results of ML models usually
cannot be interpreted well even by specialists in ML and this is
important to the field of Physics. The current review highlights, for
physicists, in the shortest way which methods should be used and why
in order to get an interprettable model.

2 History

It is difficult to pinpoint exactly the first-time when ML was
used, but looking at its history we can apprehend that it has been
recounted with several important events. The entire timeline of the
evolution of ML is neatly summarised in these articles [54–56]. The
foundation of the Bayes Theorem dates back to 1763 [57] which was
further followed by the invention of various statistical techniques
like the least square method in 1805 [58] and Markov Chains in
1913 [59]. Walter Pitts, a logician, and cognitive psychologist, and
Warren McCulloch, an American neurophysiologist wrote a paper
in 1943 related to human cognition in which they quantitatively map
out mental processes and decision-making which is considered to be
the first neural model invented [60]. Furthermore, Alan Turing’s
proposal of the Turing Machine in 1950 [1] was one of the most
significant events. This was an artificially intelligent machine that
could learn on its own. This discovery piqued the curiosity of many
academics, and it played an essential role in the development of the
field into what it is today.

The success ofML in recent decades has been boosted by advances
in technology and computational capacity. As the area of ML grows in
prominence, more scientists and researchers are becoming interested
in its applications in a variety of disciplines. As mentioned by Carleo
et al. both the disciplines of physics andMLhave a similar approach to
solving problems but differ in terms of the interpretation of results
[61]. In physics, results are gained by scientists applying their
knowledge and intuition to solve issues, whereas, in ML,
algorithms supply the essential “intelligence” by identifying
underlying patterns in data. Consequently, while some advocate
for applying ML in physics, others remain skeptical due to a lack
of comprehension regarding the acquisition of results. The integration
of ML as a tool in physics is a relatively recent concept. The link
between statistical mechanics and learning theory began in the mid-
1980s, when statistical learning from examples overtook logic and
rule-based AI, owing in large part to contributions by statistical
physicists. This was a collaborative effort between two key papers,
Hopfield’s neural-network model of associative memory [62], which
prompted the rich application of notions from spin glass theory to

TABLE 3 Comparative analysis of various Unsupervised Machine Learning Techniques. Green means excellent feature, orange—average feature, red—bad
feature.

Unsupervised machine
learning

Vector values in
latent space

Parametric
model?

Number of
hyperparameters for

tuning model

Distribution of vector
values in latent space

Principal Component Analysis Negative and positive
numbers

No. This is non-
parametric model

Very low. Only number of components non-Gaussian

Nonnegative Matrix Factorization Only positive numbers
which is important for
physical parameters

No. This is non-
parametric model

Very low. Only number of components non-Gaussian

Autoencoder Can contain negative and/
or positive or discrete

numbers

Yes, many parameters
for fitting

A lot of. Number of hidden layers and
number of neurons in them

non-Gaussian

Variational Autoencoder Can contain negative and/
or positive or discrete

numbers

Yes, many parameters
for fitting

A lot of. Number of hidden layers and
number of neurons in them

Gaussian

Balanced Iterative Reducing and
Clustering using Hierarchies

(BIRCH)

Discrete No. This is non-
parametric model

Very low. Only number of clusters non-Gaussian
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neural-network models, and Valiant’s theory of the learnable [63],
which paved the path for rigorous statistical learning in AI.

3 Recent trends in machine learning
in physics

The field of Machine Learning is a versatile domain that lies at the
frontier of cutting-edge computer science and is allowing us to push
the limits of computing to the aid of science. Today, we are
surrounded by, generate and record an immense amount of data
every second - which has paved the way for advancedAI algorithms to
analyse trends by drawing information from data in various fields in
science, education, manufacturing, healthcare, telecommunications,
marketing, transportation, social networking, and physics [64,65].
Albeit being a very new field, Machine Learning is highly researched,
with various new algorithms and strategies arising to tackle different
problems and implement solutions to support both theoretical and
experimental physics through simulation, trend analysis, and various
other models which have helped us deepen our understanding of the
universe by big measures [66,67]. Often advances in physics can help
accelerate the growth and effectiveness of Machine Learning itself,
through research as well as through the investigation of specific
domains which directly impact computing technology, for
instance, research in quantum computing has significantly helped
to accelerate Machine Learning in a world where Moore’s law is
approaching its limits [61,68]. While futuristic technologies like
quantum computing hold immense promise for revolutionizing
computational capabilities, this review primarily focuses on
contemporary advancements in machine learning within physics.
However, it is important to note that the intersection of quantum
computing and machine learning presents a compelling direction for
potential future applications in solving complex computational
challenges within the realm of physics.

3.1 Automated Machine learning

Many different Machine Learning approaches have been
formulated to identify as well as solve problems across various
fields. Most problems can be mainly divided into classification
analysis, regression analysis, data clustering, association rule
learning, feature engineering for dimensionality reduction, as well
as deep learning methods [64]. As discussed above, unsupervised
learning is a part of ML where the algorithm identifies trends in data
by itself, without the need for labels. A recent development in the
field of unsupervised learning is Automated Machine learning or
AutoML. The goal of AutoML is to provide techniques that
construct appropriate Machine Learning models with little to no
human involvement [69]. AutoML focuses on automating the
construction and training of Machine Learning models which
include pre-processing, algorithm selection, and hyperparameter
tuning [3]. The problem of hyperparameter tuning has been
researched and has led to the development of various techniques
such as Feature Engineering, which revolves around automating the
selection of the most discriminant features for a particular Machine
Learning problem [69,70]. Meta-learning is an AutoML practice
consisting of a series of methods that utilize available metadata and

those generated from a problem, concerning the types of datasets,
algorithms, benchmark numbers, and other statistical figures to help
automate the optimization of Machine Learning algorithms as well
as model comparison [71]. For example, learning curve prediction
allows a machine to predict the performance of Machine Learning
models on given problems as well as to compare the performances of
chosen models pre-hand [72]. Architecture search is yet another
AutoML method that attempts to evaluate the best possible
architecture and model that suits a given problem [69,73]. The
likelihood function assesses a statistical model’s fit to observed data
across various parameter values, while the log-likelihood function
simplifies computations by converting products into sums and
enhancing numerical stability. These functions are pivotal in
optimizing parameters for smoother algorithm convergence and
in choosing the most suitable models for the given data [74].

3.2 Explainable AI

Although there has been substantial progress in Machine
Learning methods over the past years leading to many algorithms
being developed and adopted for solving problems, it has also
resulted in cutting-edge Machine Learning algorithms becoming
highly complex both syntactically and architecturally. Explainable
AI (XAI) is a development in a class of AI that aims at reducing the
barrier of complexity and allowing a better human understanding of
Machine Learning and AI models in general [75]. Implementing
XAI models can lead to a move from “black-box” models toward
more transparent Machine Learning models and hence expand our
scope for the application of Machine Learning to various other
domains [76,77]. In the field of physics, there is a lot of debate
regarding the adoption of Machine Learning for computationally
intensive tasks and the resolution of new science because of their
potential agnostic nature and the “black box” characteristic making
the use of such models ‘opaque’ to the understanding [61]. XAI is a
frontrunner in resolving the ‘opaqueness’ and revealing the scientific
underpinnings left within the workings of a model applied to a
research problem, which can also result in the discovery of newer
science [78]. Through the use of XAI and interpretable models, we
can achieve more clarity with the use and implementation of models
on problems, leading to a significant boost in the propagation and
development of research, especially in the core sciences.

The XAI aims not only to “get the rules”, but also to understand
where the model works and where it does not. Investigators cannot
trust a model if they do not understand its uses and the cases where it
most often does not work. Even 1% of really bad forecasts can reduce
the use of themodel inmedicine, in driving a car, that is, in areas where
a person’s life is decided. The XAI should solve mistrust problem and
increase the pace of technological development in theML field. Physics,
chemistry and medicine offer devices/materials that can endanger the
life of a person or even the whole of humanity. However, on the way,
we can find several problems that prevent us from getting the XAI
model. One of the problems is that there are numerous numbers of
discrete feature parameters in these fields e.g., types of medication,
treatment regimens in medicine; types of chemical compositions
dissolved in solution in chemistry; atom types in physics, all of
them can be hardly presented as numbers. For example, there are
several ways to enumerate, Na, Mg, Al, O, Ca, Sc atoms (Table 4).
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Using atom weight, electronegativity, ion radii, electron
configuration seems to be most specious, but in this case each
atom in the chemical formula can combine 11 and more real
number parameters, most of them really correlate with others but
cannot be diminished easily, and feature parameter vector
becomes really large which quench explainability. The « one
hot » encoding also leads to a large number of feature
parameters. Moreover, further interpretation of ‘1’ and ‘0’ is
really hard. The “label” case is invalid at all, because it is not
understandable why O ion has greater weight than Na, but lower
than Ca. One can see that a lot of ML algorithms cannot be applied
with discrete parameters in order to make XAI. At least 1 ML
method, named Decision Tree, can work with discrete parameters
as is, without transformation to the real numbers. This is the most
interpretable ML algorithm with the highest XAI performance.
However, it suffers from low prediction accuracy. Ensemble of
Decision Trees, named Random Forest, intends to increase

accuracy, however, drastically losing explainability. Therefore,
the global mathematical aim is to find a method which can still
work with discrete parameters as is, and give high accuracy and
explainability. Until it is found, the Decision Trees seems to be the
most appropriate for some cases.

Further improvement of the Decision Tree model seems to be
related to enhancing of data sorting procedure and segregation.
Currently, continuous feature data x1, x2 . . . , xn and outputs y are
sorted by first feature parameter x1, and segregated into two datasets
with the lowest average MSE (regression task) or lowest average Gini/
Entropy values (classification task). After that, the same procedure
continues with x2, x3, . . . , xn feature parameters. The best segregation
is chosen and used as a root of the tree. The procedure repeats several
times with two appeared segregated data. As a result, the model has a
complex segregation surface, which consists of straight planes x1 = a1,
x2 = a2, etc. (Figure 3A). This procedure can be changed by sorting
data by a*x1+b*x2, c*x1+d*x3, or even a*x1+b*x2+c*x3, where

TABLE 4 The example of different ways to enumerate atom types.

Atom Physical numbers One hot
encoding

Label

Weight, Electronegativity, ion radii, electron configuration (s-,p-,d-,f-electron
number in each shell)

Na 22.99 000,001 1

0.93

1.9

5, 6, 0, 0, 1, 0, 0, 0

Mg 24.305 000,010 2

1.31

1.6

6, 6, 0, 0, 2, 0, 0, 0

Al 26.982 000,100 3

1.61

1.43

6, 7, 0, 0, 2, 1, 0, 0

O 15.999 001,000 4

3.44

0.6

4, 4, 0, 0, 2, 4, 0, 0

Ca 40.08 010,000 5

1

1.97

8, 12, 0, 0, 2, 0, 0, 0

Sc 44.956 100,000 6

1.36

1.62

8, 12, 1, 0, 2, 0, 1, 0
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a, b, c, ..—are real numbers. Further segregation should be done like in
simple DT. As a result, the model has a simpler segregation surface
a*x1+b*x2+c*x3, as it has been presented in Figure 3A. Such Enhanced
DT can increase precision/accuracy by using the same number of tree
branches in comparison with usual DT, and has the same
explainability.

The same improvement can be done with DT which treats
discrete feature parameters x1, x2, . . . , xn. Currently, DT segregates

data by only one discrete parameter in x1, for example, by x11, after
that by x12, x13, . . . and chooses the lowest average MSE (regression
task) or lowest average Gini/Entropy values (classification task). The
same procedure continues for x2, x3, . . .xn feature parameters and
the best segregation is chosen as a root of DT (Figure 3B). The
Enhanced DT can segregate data using one, two or more discrete
parameters simultaneously (Figure 3B). Further segregation should
be done like in simple DT.

FIGURE 3
(A) Workflow of y = red/blue class segregation with continuous x1, x2 feature parameters using DT and Enhanced DT. (B)Workflow of y = red/blue
class segregation with discrete x feature parameters (star, circle, square, pentagon) using DT and Enhanced DT.
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It is expected that Enhanced DT can give impulse to XAI model
creation in many spheres, including in physics and chemistry where
the rules and understanding of model work is preferable.

3.3 Physical-informed machine learning

To date, modelling and predicting the dynamics of multiphysics
and multiscale systems have made great strides by numerically solving
partial differential equations (PDEs) using finite differences, finite
elements, spectral and even meshless methods. However, modelling
and predicting the evolution of nonlinear multiscale systems with
inhomogeneous cascades-of-scales inevitably faces severe challenges
and introduces prohibitive costs and multiple sources of uncertainty
[79]. Another problem is physical tasks withmissing or noisy boundary
conditions, which cannot be solved through traditional approaches.
Machine learning methods which use many observable datasets can be
used to identify multi-dimensional correlations and manage such
problems, but predictions may be physically inconsistent or
implausible even for well-fitted purely data-driven models. To fit
this problem G.E. Karniadakis with collaborators suggested physics-
informed neural networks—neural networks that are trained to solve

supervised learning tasks while respecting any given law of physics
described by general nonlinear partial differential equations [79,80].
The core idea is to use Physics-informed neural networks (PINN) by
constructing a neural network (NN) u(x,t; θ) with θ the set of trainable
weights w and biases b. After that, the measurement data {xi, ti, ui } for
u and the residual points {xj, tj } for the PDE is specified and the loss L is
also specified by summing the weighted losses of the data together with
PDE. So that the NN is trained to find the best parameters θ* by
minimizing the loss L (Figure 4A). This method was successfully
applied to extract edge plasma behaviour for magnetic confinement
fusion which is important to reactor performance and operation
(Figure 4B).

4 Applications of machine learning
in physics

4.1 Astronomy and astrophysics

The field of astrophysics is very data-intensive, with huge
amounts of computationally worthy data being produced by
instruments around the globe. For example, the Gaia Data

FIGURE 4
(A) Physics-informed neural networks (PINNs) was used to accurately reconstruct the unknown turbulent electric field (middle panel) and underlying
electric potential (right panel), directly from partial observations of the plasma’s electron density and temperature from a single test discharge (left panel).
The top row shows the reference target solution, while the bottom row depicts the PINN model’s prediction [81]. (B) Principal scheme of Physics-
informed neural networks (PINN) [81].
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Release 3 alone (DR3) contains more than 1.812 billion light sources
with five to six parameter solutions (Brown et al. 2021). Such an
immense amount of data has a lot of potential in store for Machine
and Deep Learning applications which may help resolve what is not
initially apparent. ML is slowly finding itself commonplace in the
field of astronomy for automation of data-filtering and significantly
increased workflow.

4.1.1 Gravitational wave detection
The detection of gravitational waves from the GW150914 black-

hole merger (BHM) event using the Laser Interferometer
Gravitational-wave Observatory (LIGO) [83] made waves in the
astrophysics community. This was further followed by the detection
of more high-energy events including BHMs with objects nearing
50☉ and beyond [84,85] Gravitational wave (GW) detections were
crucial evidence to validate yet another aspect of Einstein’s General
Relativity and this has been made possible by rigorous astrophysics
simulations of super heavy objects like black holes [86]. Observing
such events also yields massive amounts of data, allowing us to
deduce the nature of the event in question as well as the astronomical
parameters of the objects involved.

LIGO currently employs the “matched-filtering” algorithm as
the primary GW detection method. However, this matched-
filtering approach has inconsistent behaviour [87] and may
overlook GW signals produced by smaller events, black-hole
binaries, and other compact binary interactions, according to
various investigations. Several promising methods rooted in
deep learning have been able to replicate the result of a
matched filtering algorithm. A deep learning-based approach
was provided by Gabbard et al. (2017) who used whitened time
series data as input of measured gravitational-wave strain, while
using data from simulated binary black hole mergers as training
and testing data [88]. The training datasets consist of 4 × 105

independent timeseries data, 50% of the data with signal-to-noise
and the rest with only noise data. A CNN approach was used and
yielded results that are close in accuracy to matched filtering [89].
Later, Yan et al. (2022) proposed MNet-Shallow and MNet-Deep
which are Neural-Network equivalents to the matched filtering
method, and exceed the previous strategy in terms of
computational efficiency in detecting GW from LIGO noise
[90,91]. Mnet-Shallow is a shallow neural network approach,
while Mnet-deep is a deep learning approach. The L1 strain
data from the LIGO O2 run is used as noise data after down
sampling and dividing the data into 0.6 s segments.

Other deep-learning methods such as deep-filtering which
employ GPU-accelerated CNNs trained on GW signal injections
into simulated noise with a high signal-to-noise ratio (>90%) have
shown promise in outperforming current methods used to detect
GWs [92,93]. This accelerated computational method allows for
real-time verification of detection results by conventional
matched-filtering methods due to the reduction of waiting time
from CPU hours. Deep filtering also shows promise in making
automated GW detection faster. Shen et.al. (2017) perform an
experiment on gravitational denoising using variational
autoencoders (VAEs) [94–98] which introduced the Staired
Multi-Timestep Denoising Autoencoder (SMTDAE) based on a
sequence-to-sequence bi-directional long-short term memory
recurrent neural network (LSTM-RNNs) [37,95,99–102]. It is a

model trained on white Gaussian noise capable of removing LIGO
input data as well as simulated noise, achieving excellent
performance in both scenarios according to the report. Later,
Wei and Huerta (2020) also propose a DL-based GW denoising
approach by applying WaveNet to noise-contaminated binary
black hole merger waveforms [103,104]. The study also finds
that CNNs are best suited to remove noise from binary black
hole GW events [41,93]. The tuned WaveNet model is used to
denoise signals embedded into simulated Gaussian noise as well as
raw LIGO noise, obtaining consistent results with denoising binary
black hole merger signals with moderate signal-to-noise ratio
[105–107]. Recently, Powell et. al. (2023) have applied
generative adversarial networks (GANs) to successfully generate
artificial noise artefacts into GW merger signals for the purpose of
providing test data to studies like those done by Wei and Huerta
(2020), as mentioned above [103,108]. The study also investigates
an experiment on benchmarking the accuracy of the GANs at
simulating real noise and glitches similar to the ones observed at
LIGO, KAGRA and VIRGO detectors by classifying them into
types of glitches in GW detectors using CNNs, achieving a
classification accuracy of over 99% over 22 types of
glitches [93,108–110].

4.1.2 Transit event vetting
It is possible to identify the existence of exoplanets through

continuous photometry of candidate stars over a large time period to
look for periodic dips in observed flux. The captured flux for each
particular system after processing can be plotted over time and can
be analysed as light curves. Several space and ground-based missions
have been deployed to observe a multitude of stars simultaneously.
Kepler performed highly sensitive photometry on ~500,000 stars in
Cygnus and Lyra with a very large field-of-view (FOV) of 115 square
degrees till it was retired in 2018 [111]. The Kepler Science
Processing Pipeline compiled the Threshold Crossing Events
(TCEs) identified by Kepler into data releases [112]. However,
these data releases demanded human intervention for the
removal of false positives. Later, the Transiting Exoplanet Survey
Satellite (TESS) made use of four wide-field optical CCD cameras
capable of surveying the sky in 600–1,000 nm bandpass [113] with
an observing sector of 24 × 24° each, for a total sector of 24 × 96°.
TESS proceeded to survey <75% of the night sky and confirmed
special candidates named TESS objects of interest (TOIs) which are
potential or confirmed exoplanet-harboring systems. TOIs are
usually released after passing diagnostic and filtering tests to
separate exoplanet candidates from false positives, and further
data validation through close inspection by special vetting teams
[114]. The TESS Science Office (TSO) has released a list of
2,545 objects which include 120+ confirmed exoplanets, and
757 objects with rp < Rearth

, [115]. Data from Kepler and later,
(TESS) contained false positives stemming from various sources, a
large chunk of which was attributed to eclipsing binaries. Manual
screening of light curves is hence unreasonable because of the time
taken to validate transit events by humans.

Recently, automatic vetting of transit data, also called Auto-Vetting
has been experimented with to some degree in the past few years. Many
auto-vetting methods have been developed using Machine Learning
(ML) and Deep Learning (DL) algorithms. A Random Forest-based
model was developed by McCauliff et. al. to classify TCEs into
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subclasses of either Planet Candidates (PCs) or False Positives (FPs) and
achieve an error rate of 5.85% [116]. Robovetter, by Coughlin et al., was
the first major algorithm capable of entirely replacing human-aided
vetting and producing fully automated catalogues from the Kepler
transit data pipeline, and classifying it into either PCs or FPs using
several flags to identify the source of each non-transit-like event [117]. A
Locality Preserving Projectionmetric (LPP) defined by Thompson et. al.
in 2015 was used by Robovetter for dimensionality reduction and
K-nearest neighbours for classification [118].

Later, several projects would bring promising results when dealing
with classification on TESS Data Releases, by Osborn et al. in
2019 using a neural network model by Ansdell et al. and produced
97% precision and 92% accuracy on simulations created by the Lilith
model [119]. Further, a transfer learning approach through a model
pre-trained onKepler DR24 data was utilized by Stefano et al. on TESS
ExoFOP data producing significant results [120]. Agnes et. al (2022)
proposed themodels ExoSGANand ExoACGAN in their study which
utilizes semi-supervised and auxiliary classifier GANs to train a
discriminator model by generating artificial exoplanet transit event
data against which the discriminator model could be trained. The
ExoACGANmodel produced an accuracy of 99.8% with an F-score of
97.6%, with only 8 out of 5,050 non-exoplanet stars beingmisclassified
as exoplanet systems [109,121,122].

4.2 Fluid systems and dynamics

It is known from the theory of fluid systems that the transport of
conserved quantities or evolution of observed phenomena can be
simplified by a small number of coherent structures or several
dynamic processes [123]. This possibility motivates scientists to
extract these essential mechanisms from measurements. Several
statistical tools, such as variance analysis, conditional averaging,
principal component analysis or proper orthogonal decomposition
(POD) (Figure 5) [123,124] were used to describe complex
fluid behaviour.

4.2.1 Dynamic mode decomposition in
fluid systems

There are other data-driven approaches that are actively developing
for fluid systems at present and complement the main methods based
on model building. For example, the dimensionality reduction
technique for sequential data streams, known as dynamic mode
decomposition (DMD) can extract spectral information (Figure 6)
from observed data sequences and emphasize various extensions and
generalizations [123]. DMD is a factorization and dimensionality
reduction technique for data sequences, i.e., Unsupervised ML
method, which was first introduced by Schmid as a numerical
procedure for extracting dynamical features from flow data [125].

There is Extended DMD (EDMD) [123] which is the DMD
extension that utilizes a larger set of observable functions to obtain
more accurate approximations. The EDMD can be assumed as a
higher-order Taylor series expansion near equilibrium points,
whereas the standard DMD only captures the linear term.
Recently [123] Machine Learning techniques have been used to
optimize the methodology. For example, an autoencoder
[94,96–98,126] (Figure 7), which solves the problem of EDMD,
namely, how to choose a set of nonlinear observables has been used.

4.2.2 Sparse identification of nonlinear dynamics
One of the urgent tasks of nonlinear dynamic systems is the

discovery of governing equations from the data, and advances in
sparse regression allows for the extraction of the structure and
parameters of a nonlinear dynamical system from data [127]. The
smallest number of terms can be extracted which can describe the
dynamics without losing important information, which correlates
with the well-known Occam’s razor approach. S.L. Brunton together
with K. Champion suggested and demonstrated how deep neural
networks together with sparse identification of nonlinear dynamics
(SINDy) can be used to solve this complex task [127,128]
(Figure 8A). The main idea is to use the SINDy autoencoder
method [94,96–98,126] for the simultaneous discovery of
coordinates and parsimonious dynamics (Figure 8B). It discovers
intrinsic coordinates z from high-dimensional input data x and a
SINDy model captures the dynamics of these intrinsic coordinates.
The active terms in the dynamics are identified by the nonzero
elements in Ξ, which are learned as part of the Neural Net training.
The time derivatives of z are calculated using the derivatives of x and
the gradient of the encoder ϕ [127]. The detailed scheme to use this
method for a Lorentz system is demonstrated in (Figure 8C) and
several discovered equations obtained in such a way from the data
are demonstrated as well.

4.3 Nuclear and particle physics

After the completion of the standard model with the discovery of
the Higgs Boson [129], the field of high-energy physics is entering a
new phase and is being led by well-funded and large-scale
experiments like the Large Hadron Collider (LHC). These
experiments output large amounts of data which have sown seeds
of potential in ML methods to probe observations yet unexplained
by the standard model.

4.3.1 Nuclear mass prediction
The application of ML in the nuclear physics domain certainly

is not new. Gazula et al (1992) worked towards applying
artificial neural networks to predict nuclear mass excesses and
nuclear stability and analyse neutron separation energies through
a feedforward neural network (Figure 9) [130]. Further, feedforward
neural nets were trained to learn atomic masses. Nuclear spins
and parities and generate highly accurate predictions for test nuclei
[131]. With progress in ML algorithms, new strategies were
adopted to study nuclear spins and parities, as well as beta-
decays. Clark and Li et. al. (2006) reported a study that applied
SVMs that worked on atomic and mass numbers of several
elements and was able to predict nuclear masses, and beta-decay
lifetimes as well as deduce the spins/parities of nuclear ground
states [132].

More recently, Carnini et. al. (2020) brought major
improvements in nuclear mass prediction models by using the
decision tree algorithm to enhance the accuracy of the liquid
drop mass model and the Duflo-Zuker mass model. They
commented that even simple algorithms like decision-trees show
promise in improving the description of nuclear masses [133]. Later
Kernel Regression (KR) model and Artificial Neural Networks
(ANNs) were applied to liquid drop mass models [134,135].
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4.3.2 Event selection and classification in high-
energy particle collisions

ML is an integral part of modern-day high-energy experiments.
ML found great success in automating event selection from amultitude
of signals produced in a high-energy collision and distinguishing
wanted particle signals from the background. Byron et. al. (2004)
utilized boosted decision trees for particle identification (PID) at
Fermilab, following which, ML has found a wide range of

applications in particle physics and PID [136]. The idea of
classifying high-energy subatomic particles, known as Jett
Classification, encompasses a wide range of classification problems
such as identifying jets from heavy and light quarks, gluons, W, Z and
H bosons [137]. Precise and effective data analysis is very important for
such events. Baldi et. al. (2014) concluded that deep networks (DNs)
with low-level features outperformed shallower networks with a similar
HIGGS benchmark [138] and hence investigated a supersymmetric

FIGURE 5
Example of application data matrix D factorization into modes Φ, amplitudes diag(ξ), and dynamics C, applying (A) spectral analysis and (B) model
reduction [123].

FIGURE 6
Example of application DMD to extract representative dynamic modes. (A) Most unstable dynamic mode, (B–D) dynamic mode from the unstable
branch, (E, F) dynamic modes from the stable branch [125].
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particle search algorithm based on DL to improve upon the PID power
of particle detector experiments, noting that the DN can also be used a
standalone module inside a larger neural network classifier [139]. The
ALICE project at the Large Hadron Collider (LHC) is an integral
experiment for PID and utilizes a random forest approach to detect
ultrarelativistic particles in heavy-ion collisions across a broad
momentum range [140]. RNNs were utilized as the first tools for
flavour-tagging, which is the classification of particle jets into either
light-flavoured or heavy-flavoured quarks by spatially discriminating
them since heavy quarks decay quickly in the order of picoseconds
[137,141]. The JETNET package was used in flavour-tagging
operations in LEP to classify b and c quarks by E.Boos who used a
feedforward model for jet classification [4,142].

Perhaps one of the most important uses of Machine Learning
based classification in High Energy Physics is the development of
the Toolkit for Multivariate Analysis (TMVA) in the ROOT

analysis package, a library developed by the Hoecker et. al.
(2009) of the CMS collaboration. This method employs several
Machine Learning techniques and most notably the widely used
Boosted Decision Tree (BDT) classifier, trained on one million
simulated events from reconstructions of the CMS detector
[143,144]. The classification categories are split based on the
momentum of the dimuon pair and presence of high-invariant
mass dijet pairs, looking for vector-boson fusion events. The
training sample for the project was split into a 75% training and
25% testing regime. The experiment optimizes for maximum
signal strength using multivariate ML and reported a 23%
increase in signal sensitivity [136,143–146].

Later, G. Aad and B. Abbott from the ATLAS Collaboration
produced updated results on the experiment, utilizing an algorithm
called XGBoost, which also inherited the 14 kinematic variables and
12 categories with the intent to optimize signal strength contrast

FIGURE 7
Example of autoencoder (the encoder and decoder parts consist of multiple layers of neural nets) which can be used in EDMD [123].

FIGURE 8
(Continued).
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with the background [147,148]. The project achieved 50% higher
expected sensitivity than the ATLAS result which can be attributed
to the increase in luminosity from the algorithmic refinements and
analysis. The study also analyses a search for Higgs decay that
analysed jet topologies of two types based on data from CERN
(2016)—resolved-jets and merged-jets [145,149]. Gradient boosted
BDT is used to enhance the separation between the signal and the
background for the resolved jet topology with 4 classification
categories and 25 variable inputs during training [146]. There
has been a paradigm shift towards DL from BDT as newer
studies opt for Deep Neural Network implementations for
multivariable classification of particles and jets [150]. Another
experiment by the CMS collaboration (2017) to measure quark-
antiquark pairs used feedforward Neural Networks comprising of
three hidden layers for classification the single lepton channel, and
BDTs in the dilepton channel. This experiment provided the first
evidence for ttH production resulting from H → b�b decay.
Carminati et. al. (2020) from CERN document cell and feature
trained DNN based multivariable classification of particles
compared against BDTs trained only on features [151,152]. Two
cases are picked for benchmarking against BDTs, charged pions (π±)
and natural pions (π0) occurring in electromagnetic calorimeter
environments. A dataset comprising of 4 × 105 training and 105

testing events was selected for the experiment on a DNNmade up of
4 hidden layers, each layer with 256 individual neurons. The cell
based DNN improved on the accuracy of the BDT based approach
with 87.2% accuracy over 83.1% accuracy from BDTs when

classifying π0 against photons (γ) and 99.4% accuracy over 93.8%
accuracy from BDTs when distinguishing π± against electrons (e).
The study reports a signal efficiency of 9.4% over background signal
than the BDT approach, a significant improvement.

Another attempt was made by Guest et. al. (2016) using a deep-
learning-based solution by utilising a database of training samples
for three classes of jets (light-flavour, charm, heavy-flavour quarks),
trained on feedforward, Long Short-Term Memory (LSTM) and
Outer Recursive Networks (ORNs). The feedforward networks with
9 fully connected layers with a learning rate of 0.01 produced an
area-under-curve accuracy (AUC), with larger AUC indicative of
better performance - of 0.939. The study found that LSTM models
best fit the jet classification problem have a small size of the hidden
state representation. The LSTM and ORM produced an AUC of
0.939 and 0.937 respectively [100–102,153]. [153]Recently CNN and
image classification methods as a basis to classify particle jets were
also experimented upon by several studies because of the inherent
similarity of HEP detectors to image pixels, with a few managing to
outperform shallow neural networks at jet detection [93,154,155]. It
is important to note that experiments at LHC may share scope for
Machine Learning based cooperation with other particle detection
experiments such as neutrino detectors, and searches for darkmatter
particles [156].

Keck (2017) proposes FastBDT, a Boosted Decision Tree
(BDT) based implementation for multivariate classification in
the Belle II experiment at the SuperKEKB collider. In the study,
the author benchmarks FastBDT against conventional Stochastic

FIGURE 8
(Continued).
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Gradient Boosted Decision Tree implementations and provided
similar classification strength with less CPU time [157–159].

Hong et. al. (2021) propose a BDT based implementation to
keep up with high data rates and volumes of the future LHC
experiments [137,160,161]. The solution is presented in the form
of a software package called FWXMACHINA applied to two
classification problems—distinguishing photons vs. electrons
and event classification for Higgs Bosons produced by vector
boson fusion in contrast to the multijet classification method
[129]. The study also offers several optimization strategies to
decrease latency at the nanosecond interval that can be
implemented to FWXMACHINA in six sequential steps,
achieving a latency of 10 ns.

4.3.3 Fast simulation in particle collisions
A simulation is a powerful tool in the physical sciences since it

allows physicists to study and observe complex systems that may be
difficult or impossible to observe directly as well as visualize and
display important findings or theories. Simulations have proven as a
reliable way of computationally solving various enigmas in physics
since they can be used to test and predict the outcomes of a theory or
experiment virtually, quickly and repeatedly. Simulation is essential
in the field of particle physics since it allows particle physicists to
visualise the interactions of various particles by modelling particle
interactions based on acquired data to very high precision. However,
this task is computationally very demanding and often requires
millions of CPU hours. The GEANT4 simulation toolkit is a staple

FIGURE 8
(Continued). (A) Example of autoencoder architecture: the encoder ϕ(x) which maps the input data to the intrinsic coordinates z, and decoder ψ(z)
which reconstructs x from the intrinsic coordinates, both consist of multiple layers of neural nets [128]. (B) Schematic of the SINDy algorithm,
demonstrated on the Lorenz equations [127]. Several discoveredmodels as the examples. (A–C) Equations, SINDy coefficients Ξ, and attractors for Lorenz
(A), reaction–diffusion (B), and nonlinear pendulum (C) systems [128].
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library to simulate Monte Carlo samples of high-energy particle
interactions with visualization tools, with the drawback of a large
computational footprint (Rahmat et al.; Agostinelli et al. 2003;
Allison et al. 2006; Aad et al. 2008, 2010). The ATLAS
experiment in LHC required billions of CPU hours with
consuming a significant portion of the computational resources
allotted to LHC, with Monte Carlo particle simulations taking up
more than 50% of WLCG workload [167–170]. To simulate such
large number of events, in the order of 1017 background interactions
requires a lot of computational time [169,171].

To combat the high computational footprint and time taken by
Monte Carlo simulations in particle physics, Oliveira and Paginini et.al.
(2017) developed Location Aware Generative Adversarial Networks or
LAGANs. LAGANs could successfully reconstruct jet images, which
are two-dimensional representations of a radiation pattern from the
scattering of quarks and gluons at high energy [172,173]. LAGAN
utilises two-dimensional convolutional layers with leaky rectified
activation to accurately simulate the location-based data from high
energy particle jets [174]. Further, Paginini et. al. (2017) extended
their knowledge from LAGANs to CaloGAN, a Deep Neural Network
(DNN) model utilising GANs to produce electromagnetic calorimeter
simulations about 100,000 times faster than the conventional Monte
Carlo approach [169,172,175]. CaloGAN converges the implicit
probability function f on the hypothetical data generation to ensure
a realistic simulation. In an experiment, CaloGAN was used to learn
and simulate GEANT4 data distributions of γ, e+, and π+ using a
training dataset consisting of images that represent the pixelwise energy
depositions in calorimeter layers [176]. It is also interesting to note that
the model penalizes any absolute deviation between nominal and
reconstructed energy, i.e., |E0 - Ê|.

Further research and development activity at CERN as
documented by Vallecorsa (2018) and Carminati et. al. (2020) for
the GeantV project—the successor of GEANT4 for faster and
accessible simulation of particle showers—details on the three-
dimensional GAN application on high-energy particle physics to
simulate 3-D particle showers. The studies evaluate GeantV 3-D
GAN as a proof of concept for utilizing GANs to simulate particles at
desired energies [163,172,177,178]. This model utilizes DNNs and
CNNs for the purpose of classification, energy regression and fast

simulation of particles in high-energy collision environments using
Machine Learning, in order to match the load of high data volumes
from future projects, like the High Luminosity LHC cycle projected
in 2025 [93,150,160]. The discriminator and generator models in the
Deep Convolutional GAN consist of multiple 3D convolution layers
as well as the use of batch normalization layers to improve
performance [179,180]. The size and number of filters optimizing
the transverse and longitudinal showers shape generations, allowing
it to perform three-dimensional image reconstruction of particle
showers. The study also stresses the performance leap in fast
simulation of particle showers when GANs are used, by
approximately 6 orders of magnitude, with the GAN based
approach taking about O(10–3) ms per event simulation in
contrast with conventional approaches which may take
several minutes.

Another study by Ghosh (2019) explores various Variational
Autoencoder (VAE) [94,96–98,126] as well as GAN methods
utilized for fast simulation comparable to full simulation by
Geant4 [95,181,182]. The VAE consists of two stacked neural
networks made up of four hidden layers that act as encoders and
decoders for the VAE. The model is conditioned on the energy of the
incident particle which allows it to control the specificity of the
energy the particle showers are generated at. The encoder and
decoder work in tandem in the algorithm which is based on a
latent variable model; the encoder compresses the input into a lower
dimensional latent space and the decoder reconstructs a new model
from this latent representation by learning the inverse mapping of
this data. This allows the decoder to generate new data samples
independently of the encoder [182].

Graph Neural Networks (GNNs) are Machine Learning models
that utilize learning set elements and their pairwise relations have
also provided interesting solutions to problems in HEP [183,184]
Qasim et. al. (2019) utilize GNNs for the purpose of calorimeter
particle shower reconstruction through two distance weighted graph
models—GarNET and GravNET. GravNET utilizes a nearest
neighbour approach for neighbours in a latent space, and
GarNET uses aggregated nodes which are n number of additional
nodes in the graph. These nodes represent and provides an output
for the energy of a calorimeter cell that corresponds to a particle

FIGURE 9
Neural Network that us taught to distinguish between stable and unstable nuclides (A). DeviationMexp–Mcalc of learned values of atomicmasses Q17
from their experimental values [130].
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[183–185]. Keisler (2020) proposes a loss formulation through the
object condensation method. The method offers a simplified
approach to particle reconstruction and particle flow simulation
applications through a graph reduction—this is done by condensing
multiple representative points and properties into a single particle
[185,186]. It is interesting to note that the object condensation
method may also be applied to overlapping particles or objects with
a lack of spatial boundaries [187]. The author compares the
performance of the algorithm with a much larger LHC
environment, with the algorithm producing less fake particle
rates and higher efficiency [184,186]. Hariri et al. (2021) propose
a Graph Variational Autoencoder based model that combines the
properties of GNNs and VAEs. This model, called GVAE, learns
compressed data representations for particle reconstruction in high
energy environments. The authors also explore the addition of
spatial graph convolutional layers to this model aiming at
compressing the graphs into representative nodes. The study also
benchmarks GVAE on several GPUs to rank performance
scaling [183,184,188].

4.4 Material science

Material Science is a field where research is data-driven, and
deals with physical and chemical constants on a scale that most other
branches of physics do not. This has led to producing large datasets
and endeavours to automate the prediction and resolution of
material properties as well as material discovery from known
data. Machine learning plays a crucial role in advancing material
sciences by revolutionizing the way materials are discovered,
designed, and optimized. Traditional methods for exploring new
materials were time-consuming and labour-intensive, relying
heavily on trial and error [189]. Machine learning, however, has
transformed this approach by efficiently analysing vast datasets and
identifying complex patterns within them. Through algorithms and
predictive modelling, machine learning accelerates the identification
of novel materials with desired properties, such as strength,
conductivity, or thermal resistance [190]. Additionally, it aids in
understanding the relationships between the atomic or molecular
structure of materials and their resulting characteristics, enabling
scientists to make informed decisions during the materials
design process.

HTC in material science represents a transformative approach
that leverages advanced computational methods to accelerate the
discovery, design, and optimization of materials. HTC is recognized
as an emerging area in computational materials design. It combines
advanced thermodynamic and electronic-structure methods with
intelligent data management and analysis techniques, enhancing the
understanding and development of new materials [191]. The
integration of HTC with data science technologies has shown
significant potential in accelerating the discovery and design of
novel materials. The vast amount of data generated from HTC
[191,192], alongside density functional theory calculations, is being
increasingly used with machine learning techniques. This
integration is key to accelerating materials discovery and design,
making the process more efficient and data-driven [193]. HTC
enables the completion of material screenings in large parameter
spaces, which would be impractical with manual methods. This is

made possible through the design of effective HTC systems based on
first-principles calculations, providing a practical approach to screen
materials for desired applications such as magnetic materials [194],
biomaterials [195], li = ion batteries [196], catalysis [197],
optoelectronics [198], and many others.

4.4.1 Material discovery and prediction of material
properties

The use of ML for the synthesis of new materials as well as
assessing their properties dates back to the 1960s with the Dendritic
Algorithm project (DENDRAL) [199,200]. DENDRAL employed an
expert system for organic molecular structure synthesis by
employing a constrained generator (CONGEN). Modeling and
prediction of chemical/molecular properties of known or
unknown compounds through ML may take two routes—the first
incorporating the physical laws governing atoms and chemistry with
ML, and the other dives directly into the prediction of physical
properties and structure of a given material, with the latter being
usually more computationally intensive [201]. Advanced techniques
such as random sampling and simulated annealing algorithms
which employ Monte Carlo simulations [202] as well as genetic
models such as those studied by Bush et. al. that was able to
successfully predict crystal structures of Li3RuO4 [203], Gottwald
et. al. (2005) which employed genetic algorithms to calculate zero-
temperature phase diagrams to predict candidate solid crystal
structures that a given fluid may freeze in. However, the
prediction of valid organic or crystal structures was either
inefficient or inaccurate mainly due to time and computing
constraints. Recent interest and development in ML technologies,
as well as the increased abundance of specific data, has sparked
several successful studies in this field. ML provides a promising
solution to this problem, which was pioneered by Corey and Wipke
in 1969 through expert systems [204]. Recent advancements in
structure predictions, made by Coley et. al (2017), use a dataset of
experimental reaction records consisting of over 15,000 patents to
train a network that produces and ranks reactions that would most
likely produce a chemical compound by predicting a small set of
atoms and bonds in the reaction center and then producing all
possible candidates and bond configurations [205]. Ren et. al (2018)
study an iterative and high throughput ML based approach aimed at
discovering metallic glasses [206,207]. The study uses four different
supervised ML models including a retuned model by Ward et. al.
(2016) and various models trained on sputtering data, and is
benchmarked against Ward’s model [208]. The ML model is
trained on 6,789 melt-spinning experiments [209]. The model
also discovers a previously unexplored Co-V-Zr ternary which
indicates a large region of metallic glasses. K. Schütt et. al (2014)
presented anML to predict electronic state densities at Fermi energy,
employing the use of a spin-density dataset to train their model
[210]. Later in 2018, Schütt et. al. present SchNet—a deep learning
model consisting of continuous filter CNNs (O’Shea and Nash 2015;
Schütt et al. 2018). SchNet is a DL implementation, a variation of the
Deep Tensor Neural Network (DTNN) architecture—instead of
tensor layers, it features continuous filter convolutions with filter
generating networks [212–214]. The model can build and learn on
atom-wise embeddings and layers of those embeddings and predict
material properties through a sum over atom-wise calculation which
can be approximated by taking an average of atomic contributions to
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the material’s properties. SchNet was trained with a learning rate
decay of 0.96/10,000 steps, on the QM9 dataset of over 1.31 × 105

organic molecules [215–217]. The algorithm fails to perform when
predicting the electronic spatial extent and polarizability of the
molecule, but does well in the other 8 properties predicted by the
model. Interestingly, SchNet requires only 750 epochs to reach
convergence in the study. SchNet is also able to learn and predict
the formation energies of materials, achieving an absolute mean
error of 0.127 eV/atom when trained on the Materials Project
repository [218]. As a final study, the model is used to study the
molecular dynamics of C20-fullerene to resolve the basic properties
of the molecular system, and achieves an error in nuclear and
quantum effects by the scale of 0.5%/nm and high accuracy
energy predictions.

Behler et. al (2016) applied kernel regression to successfully
predict the electronic properties of metal oxides and elastic (shear
and bulk modulus) of 1,173 crystals [219]. Improving on that, de
Jong et. al (2016) used an ML model called gradient boosting
multivariate local regression framework to predict bulk and shear
moduli for inorganic compounds using a catalogue of over
1900 compounds as their database, intending to find super-hard
materials. The study yielded a relative error of <10% and a root
mean square (RMS) error of 0.075log(GPa) (Figure 10) [200,220].
The utilization of ordinal networks, combined with deep
convolutional neural networks (CNN) and complexity-entropy
methods, represents an innovative approach in exploring physical
and optical properties of liquid crystals. This integrative
methodology enables a comprehensive analysis to decode
intricate patterns within liquid crystal structures, offering deeper
insights into their characteristics and behaviors [221–223].

Qiao et. al. produced OrbNet, an ML method utilizing a graph
neural network (GNN) architecture that takes rules from quantum
mechanics into account allowing it to outperform previous models
to predict chemical synthesis and electronic-structure energies with
very high accuracy and achieving a 33% improvement in prediction
accuracy over the second-best method [224,225]. Choudhary et. al.
(2020) introduce The Joint Automated Repository for Various
Integrated Simulations through Machine Learning (JARVIS-ML)
for the purpose of accelerating material discovery [226,227]. This
package was used in 2019 to discover materials that can be used to
build solar cells. The lack of proper materials to build solar cells is a
critical hurdle to solving sustainable and cheap renewable energy
problems. This was achieved by using JARVIS-ML to predict
materials with high spectroscopic limited maximum efficiency
(SLME), finding over 1900 potential materials with an SLME
higher than 10% [228]. More recently, Chen et. al. (2021) used
random forests on a training dataset of over 10,000 compounds and
over 60 attributes to predict elastic properties for the discovery of
potential super-hard materials. Further, the study also substantiates
its results through evolutionary structure prediction and density
functional theory [229].There are several machine learning tools
that have emerged from the abundance of vast datasets and the
development of like the aforementioned predictive models.
PyMatGen [230] stands as a cornerstone tool, playing a pivotal
role in advancing research and discovery. Developed in Python
[231], PyMatGen offers a comprehensive suite of functionalities
tailored for materials analysis, particularly in the realm of
crystallography and electronic structure [232,233]. Its application

spans from the generation and manipulation of crystal structures to
the calculation of electronic and thermodynamic properties.
Researchers widely embrace PyMatGen for its robustness in
automating repetitive tasks, facilitating high-throughput
computations, and enabling the systematic exploration of
materials databases [234,235]. PyMatGen is closely linked to
other essential technologies and tools in materials informatics,
forming a synergistic ecosystem. Integration with databases like
the Materials Project [218] and MatCloud [236] provides a vast
repository of materials data for exploration. Furthermore, the
combination of PyMatGen with machine learning libraries such
as scikit-learn [237] or TensorFlow [238] allows for the development
of predictive models, enhancing the efficiency of property prediction
and materials discovery. Close ties with visualization tools like
VESTA [239] enhance the interpretability of complex crystal
structures, offering researchers a comprehensive toolkit for
materials exploration and design [240].

Matminer [241], a powerful Python library tailored for data
mining in materials science, has found widespread utility across
various domains within the field. One prominent application is in
the extraction and analysis of materials data from diverse sources
[242,243]. Researchers employ Matminer to seamlessly retrieve
information from databases, research papers, and experimental
datasets, streamlining the process of aggregating data for
materials informatics. Additionally, Matminer facilitates the pre-
processing and featurization of raw data, enabling efficient
utilization in machine learning workflows [244]. In the realm of
property prediction, Matminer is instrumental in constructing and
fine-tuning predictive models, allowing scientists to forecast
material behaviors and characteristics. Its versatility extends to
applications such as high-throughput screening, where the library
aids in the systematic exploration of large materials databases to
identify promising candidates for specific applications.

ElemNet has emerged as a transformative tool in various facets
of material science research due to its unique ability to automatically
learn material properties from elemental compositions using deep
learning [245]. In the realm of materials informatics, ElemNet has
been instrumental in predicting the stability of crystal structures,
offering a departure from traditional machine learning approaches
that necessitate manual feature engineering. Researchers leverage
ElemNet to analyze vast datasets, such as those from the Open
Quantum Materials Database, enabling efficient identification of
stable compounds and the exploration of previously uncharted
material compositions. Furthermore, ElemNet finds application
in the rapid screening of material candidates, facilitating
combinatorial investigations across a wide composition space. Its
speed and accuracy advantages over conventional ML models make
ElemNet particularly valuable in accelerating the materials discovery
process. Beyond stability predictions, ElemNet has been adopted for
tasks like property optimization, aiding researchers in tailoring
materials with specific engineering properties.

DeepChem [246], a powerful open-source deep learning
framework, has made significant contributions to material science
research across diverse applications. One key application lies in its
role in molecular property prediction, where DeepChem’s deep
learning models analyze and predict various molecular properties,
such as binding affinities, electronic structures, and chemical
reactivities. The framework facilitates the development of
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accurate and efficient models for drug discovery and materials
design [247]. DeepChem is also instrumental in the field of
cheminformatics, enabling the analysis of chemical datasets,
structure-activity relationships, and the identification of novel
compounds with specific properties. Furthermore, in materials
informatics, DeepChem supports the prediction of material
properties based on molecular structures, aiding researchers in
the exploration and optimization of materials for various
applications, including catalysis, energy storage, and electronic
devices. Its flexibility and versatility make DeepChem a valuable
tool for researchers seeking to leverage the capabilities of deep
learning in unraveling the complexities of materials science.

Citrination, the materials data platform developed by Citrine
Informatics, has become an invaluable resource in advancing
material science across various domains. Its application spans a
wide range of areas, with one of the key contributions being in
materials discovery and design [248]. Citrination serves as a
centralized hub for materials data, allowing researchers to access
and analyze an extensive collection of experimental and
computational data. This facilitates the rapid identification of
trends, correlations, and patterns, enabling scientists to make
informed decisions in materials research. Few other software that
harness the power of ML is shown in Table 5.

4.5 Nanophysics

The last few decades have seen an incline in the use of AI tools in
the research of nanotechnology [249]. The scale of nanotechnology
is a double-edged sword, where it provides huge technological
breakthroughs but the price of developing technology in this
domain is limited by its sheer size because of the difficulties
encountered in the development, design, and manufacture of
such technology. The physical laws at this scale differ from what
is relevant in macroscopic situations [249,250].

4.5.1 Design of nanoscale computation systems
The idea of Nanoscale devices or Nanodevices is incredibly

valued today because of space constraints on computing devices. As
more and more computational power gets packed in a smaller
volume day by day, Moore’s law is reaching its very limits for
traditional transistors, because of quantum mechanical effects
coming into play [68,249]. Nanocomputers are a front-running
and promising solution to this problem [251]. There have been
several initial attempts at nanocomputer construction [252,253].
Early attempts have been made to apply reinforcement learning by
Lawson (2004) to program randomly placed “nano-electric
components” with the vision of reducing manufacturing costs for
highly detailed small computing devices which use transistors [254].
Optimization techniques for nanoscale circuits have emerged, and a
study by Bahar et. al (2003) used Markov Random Fields for circuit
framework optimization. Improving on that, Kumawat et. al. (2005)
proposed probabilistic modelling approaches for the optimization of
nanocircuit designs, which aim on making nanocomputers more
reliable and remove defects using Markov Random Fields and
Probabilistic Decision Diagrams, with Probabilistic Decision
Diagrams having the least time complexity amongst the
approaches featured in the study [255]. ML has also seen recent
use to design computers that can enable high-throughput
calculations as well as solve complex optimization problems [249].

4.5.2 Finding and analysing nanomaterials
Similar to material science, ML models have been used to classify

and predict nanomaterial properties. For example, artificial neural
networks (ANNs) have been popular in resolving the properties of
thin-film nanomaterials because of their nonlinear nature [249]. Xu B.
et. al. (2004) used an ANNwith a LevenbergMarquadt algorithm as an
optimizer to predict Poisson’s Ratio, Young’s modulus, and other
elastic properties of a thin film substrate by feeding surface
displacement responses into the neural network. Out of the
96 samples used in the study, training data consisted of 80 samples

FIGURE 10
Comparison of DFT training data with predictions for e elastic bulk modulus K (A) and shear modulus G (B). Training set consists of 65 unary, 1,091
binary, 776 ternary, and 8 quaternary compounds [220].
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and the remaining 16 samples were used as testing data for the ANN,
producing a relative error of 4.0% for Poisson’s ratio, 0.48% for Young’s
modulus, and 4.9% for density thickness [256]. Further, ANNs were
also used by Jiangong et. al. (2007) used anANN to calculate dispersion
curves of a functionally graded material (FGM) plate. This study, like
the previous one, used the Levenberg-Marquardt algorithm to hasten
the learning process of the neural network [257]. Aside from thin-film
nanomaterials, kinetic models have been constructed for steam in
naphtha surrogates in a NiMgAl catalyst using ANNs trained for
kinetic model discrimination recently by Natalia et. al. (2022) [258]
which derived from a study by Amato F. et. al. The model
demonstrated an overall accuracy of 74.9% for the test set data
containing 800 samples [5] to evaluate kinetic data (Figure 11).

NanoSolveIT [259]is a groundbreaking research project
dedicated to advancing safety assessments of engineered
nanomaterials (ENMs). By leveraging advanced computational
models, the project focuses on predictive toxicology to anticipate
and understand potential risks associated with nanomaterials. These
computational tools use sophisticated algorithms to simulate various
scenarios, incorporating physicochemical properties, exposure
conditions, and toxicological outcomes. Notably, NanoSolveIT
excels in data integration, consolidating information from diverse
sources into a comprehensive database. This integrated approach
provides a holistic understanding of nanomaterial behavior.

4.6 Thermodynamics

Thermodynamics is referred to as the science of the relationship
between heat, work, temperature, and energy [260]. Thermodynamics,
in its broadest sense, is concerned with the transfer of energy from one
location to another and from one form to another. Heat can be defined
as an interaction distinguishable from work. It involves energy and
entropy transfers [261]. In the development of chemical engineering
processes, the thermodynamic properties of complex systems are
critical. Predicting the thermodynamic parameters of complex
systems across a large range and describing the behaviour of ions
and molecules in complex systems remains difficult. Because it can
explain complicated relationships beyond the capabilities of standard
mathematical functions, ML emerges as a powerful tool for resolving
this challenge. ML can be applied in three major areas of molecular
thermodynamics. In the first area, ML is used to predict the
thermodynamic properties of a broad spectrum of systems based on
known data. The second area is to integrate ML and molecular
simulations to accelerate the discovery of materials. The third area is
to develop an ML force field for eliminating the barrier between
quantum mechanics and all-atom molecular dynamics simulations.
The applications in these three areas illustrate the potential ofML in the
molecular thermodynamics of chemical engineering [262].

4.6.1 Machine learning assisted thermodynamical
simulations

MLapproaches are effective in automatically distinguishing different
phases of matter, and they offer a fresh perspective on the study of
physical events. On training a restricted Boltzmann machine (RBM) on
data constructed using Monte Carlo simulations of spin configurations
taken from the Ising Hamiltonian at various temperatures and external
magnetic fields, an astute observation was found that the trained RBM’s

flow approaches the spin configurations of the maximum feasible
specific heat, which mirror the Ising model’s near-criticality area. The
trained RBM converges to the critical point of the lattice model’s
renormalization group (RG) flow in the exceptional case of the
vanishing magnetic field. Instead of linking the recognition technique
directly with the RG flow and its fixed points, the findings show that the
machine recognizes physical phase transitions by identifying particular
attributes of the configuration, such as the maximization of the specific
heat, suggesting the importance of using ML methods [263].

In another study, a numerical investigation of entropy generation
and heat convection was performed in a hybrid nanofluid (Al2O3-Cu-
water) flowing around a cylinder embedded in porous media. Results
obtained after using an artificial neural network for predictive analysis
of the generated data show that when the Reynolds number,
permeability parameter, or volume percentage of nanoparticles
increases, the heat transmission of the system increases. The
functional forms of these dependencies, on the other hand, are
complicated. The effect of increasing nanoparticle concentration on
entropy generation is found to be nonmonotonic. To establish
correlations for the shear stress and Nusselt number, particle swarm
optimization is applied to the simulated and forecasted data. This shows
how artificial intelligence algorithms can forecast the thermohydraulics
and thermodynamics of thermal and solid-state systems [264].

Activity coefficients are an important feature in chemical
engineering that may be used to describe chemical and phase
equilibria as well as transport processes. They are a measure of the
non-ideality of liquid mixtures. Despite the availability of
experimental data on thousands of binary combinations, prediction
approaches are required to compute the activity coefficients in many
relevant mixtures that have yet to be studied. A probabilistic matrix
factorization model for predicting the activity coefficients in arbitrary
binarymixtures is proposed in this paper which despite the absence of
physical descriptors for the components under consideration
surpasses the state-of-the-art method, which has been honed over
three decades and requires significantly less training (Figure 12) [265].

From soap bubbles to suspensions to polymers, many-body
systems learn and remember patterns in the forces that push them
out of balance. This knowledge could be applied to computing,
memory, and engineering. Until now, thermodynamic parameters
like work absorption and strain have been used to detect many-body
learning. This study [266] goes beyond the macroscopic qualities that
were initially specified in equilibrium contexts by using representation
learning, a machine-learning model in which information squeezes
via a bottleneck, to quantify statistical ML. Quantification of four
aspects of many-body systems’ learning by computing bottleneck
properties is done: classification ability, memory capacity,
discriminating ability, and novelty detection. The method is
demonstrated by numerical simulations of a standard spin glass.
While offering a unified foundation for many-body learning, the
suggested technique appears to be more accurate and precise in
detecting and quantifying learning by matter.

The complicated effects of molecule configurations and/or
interactions on the thermodynamic properties must generally be
taken into account when establishing a reliable equation of state
for predominantly non-ideal or multi-component liquid systems. In
this aspect, ML has a lot of promise for learning thermodynamic
mappings directly from existing data instead of using equations of
state. A study presents a generic ML framework for predicting the
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thermodynamic parameters of pure fluids and their mixtures based on
high-efficiency support vector regression. To accurately forecast the
thermodynamic parameters of three common pure fluids, the
suggested framework consisting of a gaussian kernel is used in
conjunction with training data gathered from a high-fidelity
database. The mean square errors in the forecasts are extremely
low. Furthermore, for ternary mixtures of pure fluids, no loss in
prediction accuracy is attained at the cost of a modest increase in the
volume of training data provided by state-of-the-art molecular
dynamics simulations. The findings show that ML has a lot of

potential for creating accurate thermodynamic maps of pure fluids
and their mixes. The proposed methodology could pave the stage for
the faster study of novel or complicated systems with possibly
extraordinary thermodynamic features in the future [267].

4.7 Biophysics

When underlying physical rules are applied in physics, equations
can become too difficult to solve. Therefore, approximate practical
methods are required. This is where ML comes into play, as it has
recently had a considerable impact on the development of
approximate approaches for large atomic systems [268]. In
biophysics, principles of physics, chemistry, mathematical analysis,
and computer modeling are applied to biological systems to
understand the structure, dynamics, interactions, and ultimately
the function of biological systems at a fundamental level.
Biophysics aims to explain the biological function in terms of
unique molecular physical features. The structure and behaviour of
single biological molecules, as well as the greater architecture into
which they organize, are the focus of most research in biophysics.
Some of this work entails developing new techniques and devices for
observing these dynamic structures in action [269].

Various deep learning (DL) methods have emerged in differential
programming as a powerful tools for processing sensory inputs.

TABLE 5 Software applications harnessing machine learning in material science.

Software name Description ML techniques used Application in material
science

Materials Project Database and tools for computational materials science Neural Networks, Random Forest Materials property prediction, Phase
stability

AFLOW Automatic FLOW for materials discovery Support Vector Machines, Random
Forest

High-throughput materials discovery

Mendeley Data Research data repository for materials science Neural Networks, Clustering Data-driven materials research

NOMAD The Novel Materials Discovery Laboratory Neural Networks, Decision Trees Materials property prediction,
Discovery

Atomistic Simulation
Environment (ASE)

Simulation tools for atomistic simulations Neural Networks, Clustering Atomistic simulations, Material
characterization

MedeA Materials Exploration and Design Analysis Random Forest, Bayesian Networks Materials modeling, Simulation

Ovito Visualization and analysis software for atomistic
simulation data

Neural Networks, Clustering Atomistic simulations, Data analysis

pyiron Integrated development environment for computational
materials science

Neural Networks, Decision Trees Materials simulation, Analysis

Materials Studio Materials modeling and simulation software Support Vector Machines, Neural
Networks

Materials modeling, Simulation

AiiDA Platform for automated simulations and data analysis Neural Networks, Decision Trees Automated simulations, Data analysis

Quantum ESPRESSO Integrated suite of open-source codes for electronic-
structure calculations

Neural Networks, Clustering Quantum materials simulations

VASP Vienna Ab initio Simulation Package Random Forest, Neural Networks Electronic structure calculations

CP2K Atomistic and molecular simulations Decision Trees, Neural Networks Quantum dynamics simulations

CASTEP Electronic structure calculations Support Vector Machines, Random
Forest

Materials modeling, Simulations

ABINIT Atomic-scale materials simulations Neural Networks, Clustering Electronic structure calculations

FIGURE 11
Typical Neural Net architecture for application in kinetics [5].
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Bespoke machine learning models, tailored to specific scientific
domains, integrate domain-specific knowledge directly into their
architecture, by using DL models like convolutional networks and
joint visual-textual neural networks fostering innovation in scientific
problem-solving throughmachine learning [270]. Recent studies have
showcased the advancements of ML and DL in diverse biomedical
applications, including ML-driven real-time simulators for left
ventricular mechanics [270–272], predicting abnormalities in
Aortic Aneurysm Expansion [271], genomics [273], next-
generation sequencing [274], proteomics [275], structure prediction
[274], and Super-Resolution 4D Flow MRI [276]. One such tool,
4DFlowNet, a DL-based model, generates noise-free, super-resolution
4D flow phase images from synthetic 4D flow MRI data using Deep
Learning and Computational Fluid Dynamics. The tool mimic the
actual scans, exhibiting promising accuracy with absolute relative
errors of 0.6%–5.8% and 1.1%–3.8% in phantom and normal
volunteer data, respectively. There were several other tools which
employed ML algorithm and listed in Table 6.

Apart from various softwares which includes ML techniques to
optimize the results, ML has been widely used analyzing in several
clinical data. Palumbo et al. [277] compared several ML models to
analyze the FTIR spectra to substantiate the utilization of FTIR data
in quantifying clinical parameters for diagnosing abnormalities.
Similarly, NB, XGB, MLP, LR, KNN, RF, SVM, PLS-DA, and
MLPNN (acroyms are at the end) were commonly used ML
algorithms to diagnose various disease based on FTIR data
[278–280]. The work of Behler and Parrinello led to one of the
first applications of ML in biophysics [281–288]. They created
Behler-Parrinello networks which aim at learning and predicting
potential energy surfaces from QM data and combine all of the
relevant physical symmetries and parameter sharing for this
problem. ML is being used to solve the problem of molecular
simulation. A significant amount of work is done to come up
with ML approaches that can accurately reproduce free energy
surfaces and global potential energy surface (PES) for small
molecules [211,284,288–292] and elemental materials
[211,219,281,283,293]. More applications involve the usage of ML
in the design of a coarse-grained model of the complex molecular
system such as protein, and in Kinetics to learn the embeddings used
in equations and in Sampling and Thermodynamics to sample
probability distributions using generative learning
[95,109,294–296]. Compared to regular ML problems there is an
advantage in making decisions and interpreting results when
working with molecular problems. This is because researchers
know a significant number of physical principles that reduce the
possible predictions to meaningful ones.

Another work by M. Sivaramakrishnan et. al (2022) developed a
model called EnsembleQS (Figure 13). It was a stacked
generalization ensemble model that used the concept of Gradient
Boosting Machine (GBM)-based feature selection. It was developed
with the aim of effectively identifying quorum sensing (QS)
peptides, as a possible therapeutic method for bacterial control
has been found as the creation of antibodies against such QS
molecules. The superiority of the model was demonstrated when
it outperformed finely tuned baseline classifiers On selected GBM
features (791D). When the model was further evaluated on an
independent dataset of 40 QS peptides, it demonstrated an
accuracy of 93.4% with Matthew’s Correlation Coefficient (MCC)

and area under the ROC curve (AUC) values of 0.91 and 0.951.
These findings imply that EnsembleQS will effectively complement
proteomics research and serve as a helpful computational
framework for predicting QS peptides [297]. Waibel et al.
developed a diffusion-based model DISPR which leverages 2D
microscopy images to predict realistic 3D cell shapes, showcasing
its utility in solving inverse biomedical problems and enhancing
feature-based cell classification [298].

5 Outlook

5.1 Advantages of machine learning
in physics

The ability to make predictions is one of the important
applications of ML. There are generally two main classes of
problems that enable us to choose between a physics-based
model and data-driven model.

1) We have no direct theoretical knowledge of the system but we
have a lot of experimental data on how it behaves; In such cases
given enough examples an ML model should be able to learn
the underlying pattern by itself between the information you
have about the system (the input variables) and the outcome
you would like to predict (the output variables).

2) We have a good understanding of the system and we are also
able to describe it mathematically: In these situations using
physics-based models are often a good approach but this does
not mean ML is useless for such tasks. On the contrary,
combining physics with ML to create hybrid models is an
exciting area to explore.

3) Hybrid Models are used to reduce computational costs. In
some instances, physics-based models can be used to solve a
problem but solving the physical equations could become very
complicated and time-consuming. Using a hybrid model
provides an alternate way in which the intended task could
be performed by learning from the underlying data. Even
though the training phase for such models takes some amount
of time, once the model is trained, making new predictions is
significantly straightforward [299].

4) One of the major advantages of using ML in physics is the
speed at which results are obtained, for example, a neural
network once trained properly, provides the output of a new
sample efficiently and accurately. Additionally, ML can
discover new patterns in the data by learning themselves
and providing useful insights.

In CERN’s Large Hadron Collider (LHC), particles collide every
25 nanoseconds. Processing and analysing these collisions have to be
done in an automated and robust way. This is done using ML
techniques such as unsupervised learning. Unsupervised learning
also allows researchers to see all possible deviations from the
hypothesis before concluding. Convolutional Neural Networks
perform very well in situations involving the translation of
images. For example, consider an image of a cat, if the cat is
moved to a different section of the image, it is still a picture of a
cat. The generic ML techniques of the past were not able to detect
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this translation but since advancements in deep learning technology,
researchers are now able to automatically incorporate this
translational symmetry. This has led to much more robust
answers [300]. Physics-Informed Neural Network (PINNs) a
scientific ML technique used to solve problems involving Partial
Differential Equations (PDEs). PINNs approximate PDE solutions
by training a neural network to minimize a loss function. Physics-
informed ML can be widely used in personalized medicine in which
an individual’s genetic profile is used to guide decisions regarding
the prevention, diagnosis, and treatment of disease [301].

5.2 Disadvantages of machine learning
in physics

A lot of samples are required to train the model and collecting
them in physical settings is expensive. Also, in some cases where
enough samples are present, it still might not be enough to prevent
catastrophe in high-stakes situations. Self-driving cars make
moment-to-moment decisions based on billions of samples. But
that still is not enough to eradicate all potential fatalities. As the
physics-based models are trained on samples they do not extrapolate
well on previously unseen data. This is because neural networks are
very good for interpolation, but not good for extrapolation. When a
neural network is trained using a collection of samples derived under
similar conditions predictions will likely be very good and they can
accurately represent high-dimensional functions. But when it is
trained using samples that were derived under different
conditions, the results can be unpredictable or wrong [79].

We suggest the quality mark (QM) for SupervisedML in order to
analyse whether a small number of training datasets is enough for
good extrapolation or not. The beneficial is that this QM is general
for both classification and regression ML tasks. This QM is involved
asQM = AAD/MAE, where AAD is the average absolute deviation of
Yi values (continuous numbers or label numbers for discrete values)

from the whole dataset: AAD � (1/n)∑N
i�1|Yi − <Yi > |, <Yi > is

an average of <Yi > � (1/n)∑N
i�1Yi , MAE is the mean absolute

error:MAE� (1/n)∑Ntest
i�1 |Yi − Ŷi|, Ŷi is predicted values for the test

dataset using MLmodel. The best way to estimateMAE is by using a
repeated k-fold cross-validation procedure. Checking QM for
several representative datasets from Machine Learning Repository
[302] revealed that good values areQM > 1.7, and very goodQM > 3.
TheQM can be used for a small number of training datasets, the data
can be accumulated step by step, and ifQM reached 1.7-2 value, then
it can be concluded the data amount is enough to use/analyze the
ML model. Such a strategy excludes excess costs for collecting data,
especially in physical/chemical settings. Similar work was recently
done with prediction quantum yield for ns2 metal halides [303], rare
data were collected step by step from the literature and stopped after
the QM reached good values. The AAD of quantum yields for all
compounds was equal to AAD = 36.6 andMAE after repeated 5-fold
cross-validation was equal to MAE = 15+/-5, leading to QM =
2.44 which was a good sign to stop collecting data because ML
reached nice quality of prediction. It should be noted that in many
cases, ML researchers aim to obtain the best accuracy/MAE and
select Neural Networks with the best precision of prediction.
However, in physics and chemistry, the explanation is a top

priority and the Decision Tree model is preferable, but it has low
precision of prediction. Our strategy helps an investigator to
withdraw from the race for best accuracy, suggesting reaching
just good QM values in the range 1.7-3, concentrating on
explanation of results and choosing Decision Trees as a
preferable instrument.

In addition, QM metric well works with imbalanced data, when
there is an unequal distribution of classes/continuous numbers in
the dataset. Let’s consider the dataset with ninety-nine “0” and one
“1” classes. If classification ML model always predicts “0” class, the
accuracy will be 99%, assuming high precision of prediction. Of
course, well-known ROC curve and AUC score can be used to reveal
this error in the classification task, however large data amount is
preferable. In the case of regression ML model, the MAE will be
equal to 1/100 = 0.01 which is a small error, and the model can be
wrongly accepted as good. However, according to our scheme, AAD
of the whole data equals to AAD = 0.004 and QE = AAD/MAE =
0.004/0.01 = 0.4 which is much smaller than 1. and model cannot
be accepted.

We have shown that the biggest problems in application of ML
in physics are:

1. Physicists/chemists usually can collect small data which is
usually imbalanced, but ML demands a lot of data and all
quality metrics (ROC, Accuracy, MAE, etc.) are based on large-
scale data. We suggested one new quality mark (QM), which
seems to work even with small data and even with imbalanced
data, but it should bemathematically explained, tested carefully
by AI specialists and/or suggested as a new quality metric for
small and imbalanced data.

2. Physicist/chemists usually demand an explanation of the model,
but a lot of ML methods are « black box». Moreover, usually
feature parameters consists of mixed discrete and/or real values.
Only Decision Tree can be accepted as « white box» and can
workwithmixed discrete/real feature values, and we have at least

FIGURE 12
A probabilistic matrix factorization model for predicting the
activity coefficients in arbitrary binary mixtures [265].
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one instrument which is very good for scientists. But we
highlighted that the segregation mechanism based on sorting
among only one feature parameter is not good. Such a
mechanism sometimes generates a lot of rules and complex
segregation lines even for a simple dataset. We suggested

Enhanced Decision Tree which includes segregation among
all feature parameters at once, which can produce a smaller
number of rules with the strongest power (Figure 2). However,
this mechanism should be coded and tested, which demands the
efforts of AI specialists.

FIGURE 13
EnsembleQS framework for predicting QS peptides [297].

TABLE 6 Software Applications Harnessing Machine Learning in biophysics.

Software name ML techniques used Application in biophysics

Rosetta Deep Learning, SVM, Random Forest Protein structure prediction, Protein design

GROMACS Neural Networks, Clustering Molecular dynamics simulations

FoldX Decision Trees, Neural Networks Protein stability prediction

Modeller Bayesian Networks, Neural Networks Protein structure modeling

PyRosetta Deep Learning, SVM Protein structure prediction, Protein design

Schrödinger Suite SVM, Random Forest, Neural Networks Drug discovery, Protein modeling

CHARMM Neural Networks, Clustering Biomolecular simulations

EMAN2 Neural Networks, Clustering Electron microscopy data processing

NAMD Neural Networks, Markov Models Biomolecular simulations

HADDOCK SVM, Neural Networks, Clustering Protein-protein docking

IMP Bayesian Networks, Clustering Integrative modeling of biomolecules

MM/PBSA Random Forest, Neural Networks Calculation of binding free energies

CNS Neural Networks, SVM Structural biology, Biomolecular simulations

ROSETTA Commons Deep Learning, SVM, Random Forest Protein structure prediction, Protein design

LAMMPS Neural Networks, Clustering Biomolecular simulations
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