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Abstract: The generally accepted model of the magnetic structure of an iron oxide core–shell nanopar-
ticle includes a single-domain magnetically ordered core surrounded by a layer with a frozen spin
disorder. Due to the exchange coupling between the shell and core, the spin disorder should lead to
nonuniform magnetization in the core. Suppression of this inhomogeneity by an external magnetic
field causes the nonlinear behavior of the magnetization as a function of the field in the region of the
approach to magnetic saturation. The equation proposed to describe this effect is tested using a mi-
cromagnetic simulation. Analysis of the approach to magnetic saturation of iron oxide nanoparticles
at different temperatures using this equation can be used to estimate the temperature evolution of
the core–shell coupling energy and the size of the uniformly magnetized nanoparticle core and the
temperature behavior of this size.

Keywords: magnetic nanoparticles; magnetization curve; core–shell particle; exchange coupling

1. Introduction

Magnetic nanoparticles of the magnetite–maghemite series have attracted close at-
tention in various fields, from paleomagnetism to biomedicine [1–10]. Bulk magnetite
Fe3O4 and maghemite Fe2O3 belong to the class of magnetically ordered substances with
negative exchange interactions, which results in the ferrimagnetic structure [11,12]. In
nanoparticles, ferrimagnetism is characteristic of the magnetic structure of the particle core
and causes the formation of the particle magnetic moment <µ>. The magnetic moments of
atoms in the surface layers of a particle are frustrated; therefore, the particle shell is in a
state with a frozen magnetic disorder (spin-frustrated configuration) [13–16]. The ordered
core/spin-frustrated shell structure manifests itself both in the magnetization dynamics of
a particle and in its total magnetic moment <µ> [17–20]. The quantity <µ> has been well
studied experimentally by describing the magnetization curves of the particles in the super-
paramagnetic regime using the Langevin equations [21–23]. In addition, the study of the
temperature evolution of the magnetization using the ZFC–FC protocol (zero field cooled-
field cooled curves) made it possible to estimate the mean blocking temperature at the
specific measuring time used in a selected method [24–27]. In combination with the value
of the particle size, this allowed the researcher to extract the effective magnetic anisotropy
constant [25]. For blocked nanoparticles (at temperatures below the blocking temperature),
one can expect the behavior described within the Stoner–Wohlfarth model [28–30]. For
ensembles of the particles that obey this model, the magnetic anisotropy constant can
be determined using the law of approach to magnetic saturation (LAMS) [31–35]. The
advantage of this technique is the ability to estimate the temperature evolution of the
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magnetic anisotropy constant of a nanoparticle, while the estimation based on the blocking
temperature suggests the anisotropy constant to be temperature-independent. In the LAMS,
in its classical form, a uniform rotation of magnetization within an individual particle is
assumed. Since particles have the composite core–shell structure, one can expect the experi-
mental manifestation of both the separate core and shell contributions to the magnetization
curve and the effects of the core–shell interactions. As a result of the exchange interaction
between the core and the shell, the spin disorder in the shell would induce inhomogeneous
magnetization in the core. Suppression of this inhomogeneity by an external magnetic field
causes the specific behavior of the magnetization in the region of the approach to saturation.
In this study, to describe this effect, a new form of the LAMS is proposed and tested. It is
shown that the analysis of the approach to magnetic saturation of iron oxide nanoparticles
at different temperatures with this equation can be used to separate the contributions of the
surface anisotropy related to the core–shell interface and the random effective anisotropy
that stabilizes the spin-disordered state in the shell.

2. The Forms of the LAMS

The magnetization of an ensemble of blocked single-domain particles with a randomly
oriented easy magnetization axis approaches saturation according to the law [31,36]

M = Ms

(
1 − 1

15

(
Ha

H

)2
)

(1)

where Ms is the saturation magnetization and Ha is the magnetic anisotropy field of a
particle related to the magnetic anisotropy constant K as Ha = 2K/µ0Ms. This formula
implies the uniform rotation of the particle magnetization. The additive contribution
of the spin-frustrated shell of a composite particle can be taken into account using the
term χ f ·H [15]. Due to the core–shell exchange coupling in a nanoparticle, the spin
disorder of the shell should induce the inhomogeneous magnetization in its core. The
depth of propagation of the magnetization disturbance from the surface layer can be

estimated using the so-called exchange size lex =
√

2A/µ0M2
s [37], where A is exchange

constant. Taking values of A = 1 × 10−11 J/m and Ms = 0.48 MAm−1 for magnetite, we
obtain lex ≈ 8 nm. This means that if the core diameter in a spherical particle is less than
16 nm, the magnetization perturbation propagating from the particle surface will cover
the entire core volume. Suppression of this inhomogeneity by an external magnetic field
should lead to the nanoparticle core magnetization behavior being more complex than
predicted by Equation (1) in the region of the approach to saturation. Here, we propose the
equation for the approach to saturation that takes into account the competition between the
exchange coupling, which promotes uniform magnetization, and the disordering impact of
the shell:

M = Ms

1 −
H2

sc +
1

15 (Ha)
2

H1/2
(

H3/2 + H3/2
ex

)
 (2)

where Hsc is the local random field induced by the core and spin-frustrated shell interaction.
This equation is empirical and built by analogy with the expression for ferromagnetic
media with the random magnetic anisotropy [38]. It has already been used to describe
the approach to magnetic saturation in nanoparticles [35,39–43], but, unfortunately, this
formula has not been well discussed and tested yet. In this work, we, to some extent,
eliminate this gap by discussing the meaning and parameters of the proposed equation.
Additionally, we report on its testing by the numerical experiment and experience using it
for obtaining a description of the nanoparticle magnetization curves.

The effect of the LAMS from competition between disorders induced by random
magnetic anisotropy and the ordering influence of positive exchange interaction has
been well studied within the theory of a ferromagnetic medium with random magnetic
anisotropy [44–46]. A nonuniform magnetization is induced by a local random field, but it
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becomes more homogeneous when exposed to external and exchange fields. In the case
of a particle, there will also be competition between the random field induced by the core
coated by spin-frustrated shell coupling and the external field, as well as the exchange
field, which favors uniform magnetization within the core. An analogy can be drawn by
giving the following meaning to the characteristic fields in Equation (2). The exchange
field Hex = A/µ0MsL2

c related to size Lc of the uniformly magnetized particle core and
exchange constant A is the field that separates the regimes of the correlated (Figure 1a)
and uncorrelated (Figure 1b) inhomogeneity of the magnetization in the core, while the
field Hsc is the local random field induced by the core and spin-frustrated shell interaction.
The type of the magnetization correlations in the core will be determined by the correlation
length lH =

√
A/µ0Ms H. The field dependence of this length leads to different asymp-

totic regimes in Equation (2), which are related to different inhomogeneity modes in the
fields H ≪ Hex (lH ≫ D, M ∝ H−1/2) and H ≫ Hex (lH ≪ D, M ∝ H−2).
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Figure 1. Nonuniform magnetization in the core of a particle caused by the frozen spin disor-
der on its surface (the external field is directed from bottom to top): (a) the mode with lH ≫ D
(H ≪ Hex = 2A/µ0 MsL2

c ) and (b) the mode with lH ≪ D (H ≫ Hex). D is the particle diameter.

Let us clarify the first inequality: the condition H ≪ Hex can be converted into
A/µ0Msl2

H ≪ A/µ0MsL2
c , which implies lH ≫ Lc or lH ≫ D, considering that the particle

diameter D gives a good approximation of the magnetization correlation length Lc. In addi-
tion, this inequality allows us to neglect the first term in the denominator in Equation (2).
Hence, we have M ∝ H−1/2. In the opposite case, H ≫ Hex, based on the same logic, we
have the inversion lH ≪ Lc or lH ≪ D. The physical meaning of the inequalities can be
seen in Figure 1. In the case shown in Figure 1a, the correlation length of the transverse-to-
field magnetization component of lH exceeds the diameter of the particle, which leads to
a quasi-uniform transverse component of magnetization in its core (the external field in
Figure 1 is directed from bottom to top). In the case shown in Figure 1b, the correlation
length of magnetization lH is noticeably smaller than the particle diameter, which leads
to inhomogeneity of the magnetization components transverse to the field. This, in turn,
entails another power-law behavior of the LAMS.

3. Micromagnetic Testing

Some of the above statements can be verified using the micromagnetic simulation.
The calculation of the micromagnetic states and magnetization curves was carried out
by solving numerically the Landau–Lifshitz equation using the finite difference method
using the OOMMF (Object-Oriented MicroMagnetic Framework 2.1) platform [47]. The
total energy of the particle was presented as Etot = Ee + Ea + Ez + Ed, where Ee is the
exchange energy, Ea is the magnetic anisotropy energy, Ez is the Zeeman energy, Ed is
the magneto-dipole energy. The total energy of the system is calculated as the sum
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of the magnetic moments of the cells. Each equilibrium state of the magnetic system
corresponds to a local minimum of the total energy functional. The exchange energy

contribution from cell i is given by Eei = ∑j∈Ni
Aij

(mi−mj)
∆2

ij
, where Ni is the set consist-

ing of the 6 nearest cells to cell i, Aij is the exchange coefficient between cells i and j,
and ∆ij is the discretization step size, between cell i and cell j, and mi is the component of
reduced (normalized) magnetization vector m. The anisotropy energy for cell i is given
by Eai = Ki

(
α2

1α2
2 + α2

2α2
3 + α2

3α2
1
)
, where α1 = mu1, α2 = mu2, and α3 = mu3, for reduced

(normalized) magnetization m and orthonormal anisotropy axes u1, u2, and u3. The Zee-
man energy for cell i is given by Ezi = −Ms(mH), where Ms is saturation magnetization
and H is an applied field. The Standard demagnetization energy Ed term in the OOMMF
package, built upon the assumption that the magnetization is constant in each cell. It
computes the average demagnetization field in each cell using formulae from [48,49] and
convolution via the Fast Fourier Transform.

Spherical nanoparticles 4–10 nm in size were examined. The cell size was chosen
within 0.5–1 nm, which is close to the magnetite unit cell size (0.84 nm). A nanoelement
simulating a spherical particle, even being composed of such fine cells, is not an ideal
sphere (Figures 1 and 2), which, however, reproduces, to a certain extent, the discrete
structure of real particles containing one crystalline grain. The shell thickness was chosen
to be approximately equal to the size of 1–2 cells (a layer with broken chemical bonds and
exchange couplings). The exchange constant was chosen to be Ac = 1 × 10−11 J/m in the
core and Ash = −1 × 10−11 J/m in the shell. This model makes it possible to investigate the
coupling between the magnetically ordered core and the shell with the antiferromagnetic
interaction. The cubic magnetic anisotropy constant was chosen to be equal to the constant
for bulk magnetite: K = −1 × 104 J/m3 [50].
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Figure 2. Cross sections of a core–shell particle. The ordered magnetization states in the core and the
disordered states on the surface can be seen.

In the surface layer of a particle, the frustrated (disordered) states of the magnetic
moment are observed (Figure 2), which are caused by the symmetry violation and a number
of nearest neighbors of the cell on the particle surface [15,16].

As can be seen from several particle cross sections presented in Figure 2, the magnetic
order is preserved in the particle core and is not observed on the particle surface. In
the particle core, the magnetization is somewhat non-uniform, which is noticeable when
compared with a particle of the same size that has no shell (Figure 3). This confirms the
ideas accompanying the discussion of Equation (2) and illustrated in Figure 1.
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Figure 3. The exchange coupling between the magnetically ordered core and magnetically disordered
shell leads to the inhomogeneous magnetization in the core: (a) Particle without shell and (b) particle
with the disordered magnetic shell.

The particle core, being single-domain, is magnetized by coherent rotation in fields
comparable with the anisotropy field of bulk maghemite (250 Oe [51]). In these fields,
the frozen magnetic disorder of the shell barely contributes to the particle magnetic mo-
ment (see upper left inset in Figure 4). This is reflected in the fact that the saturation
moment m0 determined from such loops is related to the parameter β = s/R (there, s is the
shell thickness and R is the particle radius) as m0 ∝ β3; i.e., it is proportional to the volume
fraction of the particle core (see lower right inset in Figure 4). In the fields much stronger
than the magnetocrystalline anisotropy field, the average projection of the magnetization
to the applied field slowly grows (see Figure 4). Against the background of the main linear
contribution, a certain nonlinear contribution can also be seen in this portion, which may
result from the above-described effect of the core–shell coupling leading to the behavior
described by Equation (2). The description of this segment of the approach to magnetic
saturation by a sum of the linear contribution and Equation (2) yields a satisfactory result
(Figure 4).
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Figure 4. Approach to magnetic saturation in the numerical simulation (m = M/Ms). The blue line
shows the contribution of the spin-frustrated shell and the black solid line, the total nanoparticle
response described by Equation (2). Upper left inset: hysteresis loops for a particle without and with a
shell. Dependence of the technical saturation magnetization m0 of a particle on the parameter β = s/R.
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4. Experimental Testing

The description of the experimental data on the approach to magnetic saturation
in magnetite and maghemite nanoparticles using the expressions based on Equation (2)
was first proposed in [17] and continued in [34–36,43,52–55]. Here, we summarize the
experience of such a description, supplementing it with the new data obtained on magnetite
nanoparticles coated with different biocompatible shells.

Since there are usually both superparamagnetic and blocked particles in a measured
powder sample, we have to give some additional explanations concerning the approach
to magnetic saturation behavior. For particles in the blocked state, at temperatures well
below the blocking temperature, one can expect the behavior typical of the single-domain
ferromagnetic particle described by the Stoner–Wohlfahrt model. In the superparamagnetic
regime, the average magnetization of a system of particles is described by the Langevin
function. Super-paramagnetic particles are meant to be the ones with the magnetic moment
repeatedly passing between several stable states during the measurement. These states
are determined by the balance between the magnetic anisotropy energy and the Zeeman
energy. Thus, the boundary temperature between superparamagnetic and blocked particles
(the blocking temperature), being a measure of the height of the potential barrier between
stable states, turns out to be the function of an external field and measurement time. As
the field increases, the barrier height decreases, leading to a decrease in the blocking
temperature [56,57]. In a sufficiently strong field, where the magnetic energy of a particle
is determined by the single minimum, the subdivision into the superparamagnetic and
blocked states seems to lose meaning. The magnetization of superparamagnetic particles is
described by the Langevin function. Note that the use of the Langevin function is justified
by the fact that we deal with classical spins. In this approach, the average magnetization
is only determined by the ratio between the Zeeman energy and the energy of thermal
fluctuations of the magnetic moment of a particle: µ0MsVH/kT, where V is the particle
volume. This model suggests the validity of the strong inequality KV ≪ kT, where K is the
nanoparticle anisotropy constant. The behavior of the magnetization in strong fields within
this “superparamagnetic” limit is described as M = Ms·(1 − kT/µ0 MsV·H). The allowance
for the anisotropy energy leads to the behavior [58]:

M = Ms·
(

1 − kT
µ0MsVH

− 4
15

(
K

µ0MsH

)2
)

(3)

for the particles with a randomly oriented easy magnetization axis. The anisotropy-
dependent term corresponds to the well-known behavior of polycrystalline ferromagnets in
strong fields [31,37] or systems of single-domain particles at kT ≪ MsVH (see Equation (1)
and the discussion about it). Taking into account the above arguments, we describe the
experimental magnetization curves in strong fields using the expression with the last term
described by Equation (2) with allowance for the response of the particle spin-frustrated
shell χ f ·H:

M = Ms·

1 − a
H

− b2

H
1
2

(
H

3
2 + H

3
2
ex

)
+ χ f ·H , (4)

where a = kT/µ0MsV and b =
√

H2
sc +

H2
a

15 (the both a and b in [A/m] units).
Fitting the approach to magnetic saturation using such an expression usually provides

a perfect description of the magnetization evolution in strong fields. Figure 5 shows
an example of fitting the magnetization curve for polyethylene glycol-coated iron oxide
nanoparticles at 50 K.
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Figure 5. Approach to magnetic saturation in polyethylene glycol-coated magnetite nanoparticles at
50 K [36] and data fitting using Equation (4). The lower panel shows the residual plot (the difference
between the measured M value and the predicted by Equation (4)).

The synthesis and some properties of these particles were described in [54]. Taking into
account the particle size (~10 nm) and the magnetization (Ms = 0.48 MAm−1 (92 Am2 kg−1)
for magnetite) at T ≈ 50 K in a field of µ0H ~ 1 T, the contribution a/H in Equation (4) is
about 1 × 10−3. The deviations of the magnetization from saturation, which we deal with
in the strong-field mode (Figure 5), are 1÷2 orders of magnitude greater than the term a/H.
Thus, in this case, we can assume that the main contribution to the M(H) dependence is
related to the next term in brackets in Equation (4). The parameters used for fitting in
Figure 5 are a, b, Hex, and χ f and the correlation best-fit parameter R2 is 0.988. The values of
parameters b and Hex obtained by fitting the magnetization curves for different magnetite
nanoparticle samples at different temperatures using Equation (4) are presented in Figure 6.
These parameters show a significant spread in b and Hex values and, at the same time, there
is a noticeable correlation between b and Hex.
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Figure 6. Correlation of parameters b and Hex in different magnetite nanoparticle samples: (1) mag-
netite nanoparticles with the polyethylene glycol shell [59] (magnetization curves were measured
at different temperatures, so one sample corresponds to several points); (2,3) magnetite nanopar-
ticles with the SiO2 shell [59] (4,5) magnetite nanoparticles with minopropyltriethoxysilane and
aminopropyltriethoxysilane/tetraethoxysilicate shells [60], (6) maghemite nanoparticles [17], and
(7) lamellar magnetite nanoparticles [55].



Magnetochemistry 2024, 10, 47 8 of 12

The observed correlation suggests the apparent interplay between the field Hsc re-
sponsible for the core–shell exchange coupling and the exchange field Hex inside the core
(supposing the negligible value of H2

a /15 as compared with H2
sc), as well as the univer-

sality of Equation (2) in describing the approach to magnetic saturation of magnetite-like
particles. The data shown in Figure 6 concern particles with non-metallic shells. Con-
sidering that, in recent years, a lot of the research has been devoted to metallic shells
such as Au and Ag, it will be interesting to test the applicability and universality of
Equations (2) and (4) to such objects in the future. Describing the interplay between the

fields Hsc and Hex as Hex = αHsc and using the definition b =
√

H2
sc +

H2
a

15 (see Equation (4)

with the description), we express the correlation between Hex and b: Hex = α

√
b2 − H2

a
15 .

The dependence expressed by this formula (see solid line in Figure 6) is similar to the data
obtained at α = 4 and µ0Ha = 0.3 T. The correlation in Figure 6 is almost linear. This
means that the contribution of Hsc to the measured parameter b is the basic one. The core
anisotropy constant recalculated as K = µ0Ha Ms/2 is K = 7.2 × 104 J/m3. This is notice-
ably greater in the absolute value than the constant of the magnetocrystalline anisotropy of
magnetite: Ku = −1.3 × 104 J/m3 [51]. However, the anisotropy constant of a nanoparti-
cle also contains the contributions of the surface magnetic anisotropy and dipole–dipole
interaction of a particle with the environment. The surface magnetic anisotropy contri-
bution can be estimated as 6ks/D [61] (D is the particle diameter and surface magnetic
anisotropy constant ks = 2.9 × 10−5 J/m2 for magnetite). In ensembles, where parti-
cles are, as a rule, arranged in chains, the magnetostatic contribution can be estimated
as Kmd = πM2

s (D/(D + 2t))2), where t is the spin-frustrated shell thickness. For a mag-
netite nanoparticle with a core diameter of D = 5 ÷ 15 nm and t = 1.7 nm [17], the sum
of the bulk, surface, and magnetostatic contributions is about (5 ÷ 8)× 104 J/m3. In the
experimental particle samples, for the data that are shown in Figure 6, the sizes lie within
the range used in the estimation. Thus, it can be seen that this estimate is consistent with
the estimate made from the data presented in Figure 6.

In Figure 6, not only are the data for different samples consistent, but so are the
data obtained on the same sample, the magnetization curve of which was measured at
different temperatures. This can be understood with the help of Figure 7, which shows the
temperature dependences for the parameters of Fe3O4 coated by SiO2 nanoparticles syn-
thesized and characterized as described in [60]. The size Lc of the uniformly magnetized
particle core was calculated as Lc =

√
2A/µ0 Ms Hex and the parameter Ksc was found

as Ksc = µ0Hsc Ms/2. The growth of the Ksc value with temperature should enhance core
magnetization. This is precisely the behavior observed in Figure 7 since the enhanced
inhomogeneity should lead to a decrease in Lc. Note that the ability to obtain informa-
tion about the magnetic inhomogeneity of an individual nanoparticle is an interesting
problem; to solve it, the authors of [62] performed complex magnetic small-angle neutron
scattering (SANS) and small-angle X-ray scattering (SAXS) measurements. The method
used by us to obtain such information is much more accessible. In Figure 7, next to the
size Lc, the average particle size determined by transmission electron microscopy in [60]
is presented.

The difference between this size and Lc can be considered as an estimate of the double
thickness of the spin-frustrated shell of a particle (the particle diameter is D = Lc + 2t,
where the Lc is assumed to be the core diameter and the t is the shell thickness). The
thickness of the magnetically disordered shell estimated from our data in such a way is
0.5÷1 nm, which agrees well with the thickness of 0.3÷0.6 nm estimated in [53,62].
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Figure 7. Energy Ksc of the core–shell coupling and size Lc of a uniformly magnetized core with the
example of Fe3O4 coated by SiO2 nanoparticles.

5. Conclusions

An equation has been proposed for the approach to magnetic saturation in magnetite-
like ferrimagnetic nanoparticles, which takes into account the exchange coupling between
the magnetically disordered shell and the core of a particle. Experimental and micromag-
netic testing was used to confirm the validity and universality of this equation. It was
shown that analysis of the approach to magnetic saturation of iron oxide nanoparticles
at different temperatures using the proposed equation makes it possible to estimate the
temperature behavior of the core–shell coupling energy, as well as the size of the uniformly
magnetized nanoparticle core and the temperature behavior of this size.
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