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Abstract: The present study considers the samples of an Ti-6Al-4V alloy obtained by selective laser
melting with the addition of a 10% Cu-Al powder mixture. The microstructure, elemental composition
and phase composition, as well as the physico-chemical properties, have been investigated by
the methods of electron microscopy, X-ray phase analysis, and bending testing. The obtained
samples have a relative density of 98.5 ± 0.1%. The addition of the Cu-Al powder mixture facilitates
supercooling during crystallization and solidification, which allows decreasing the size and changing
the shape of the initial β-Ti grains. The constant cooling rate of the alloy typical for the SLM
technology has been shown to be able to prevent martensitic transformation. The formation of a
structure that consists of β-Ti grains, a dispersed eutectoid mixture of α-Ti and Ti2Cu grains, and a
solid solution of Al in Cu has been revealed. In the case of doping by the 10% Cu-Al mixture, the
physico-mechanical properties are improved. The hardness of the samples amounts to 390 HRC,
with the bending strength being 1550 ± 20 MPa and deformation of 3.5 ± 0.2%. The developed alloy
can be recommended for applications in the production of parts of jet and car engines, implants for
medicine, and corrosion-resistant parts for the chemical industry.

Keywords: titanium alloys; Ti-6Al-4V; powders; additive technologies; selective laser melting;
microstructure; physico-mechanical properties

1. Introduction

Selective laser melting (SLM) is one of the technologies for the production of 3D items,
including those of rather complex shapes. SLM involves layer-by-layer selective deposition
of an initial material using a laser. Powders and powder mixtures are used as an initial
material. The SLM technology is characterized by a number of significant advantages
compared to similar techniques: a large working area allows us to obtain items of a rather
large size, with carefully elaborated smaller elements and a sufficiently good quality of the
surface [1–3]. The peculiarity of the SLM technology is residual porosity and defects of
shape of the outer surface, which leads to the necessity of post-processing [4,5]. Moreover,
upon cooling, the layers undergo shrinkage with the increasing inner strain, which can
result in the deformation of the item and in the formation of cracks [6,7]. In the fabrication
of products by the SLM method, use is made of metal powders and a wide range of powder
alloys based on iron, nickel, titanium, aluminum, and cobalt. The powders have to be
homogeneous in their chemical composition, include particles of spherical shape, and be
characterized by high fluidity and packing degree [8–10]. In the samples obtained by the

Metals 2024, 14, 991. https://doi.org/10.3390/met14090991 https://www.mdpi.com/journal/metals

https://doi.org/10.3390/met14090991
https://doi.org/10.3390/met14090991
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0002-3369-4112
https://doi.org/10.3390/met14090991
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met14090991?type=check_update&version=2


Metals 2024, 14, 991 2 of 14

SLM technology under the conditions of highly localized melting and fast solidification,
pores are formed due to low fluidity and agglomeration of powders, their non-spherical
shape, as well as non-uniform packing of particles in a layer occurring when the material is
loaded into the melting zone [6,11].

In the application of the SLM technology, the alloy Ti-6Al-4V is a popular mate-
rial [12–16]. The alloy is used in the production of fans of jet engines, engine valves in
cars, knee and hip implants in biomedicine, as well as in the fabrication of corrosion-
resistant pipes for the chemical industry [16]. Samples obtained by SLM technology have
a complex structure, frequently due to the prevailing needle-like α’-phase, which occurs
in columnar grains of the β-phase, which results in low plasticity and impact strength
of the material [17]. It is found that during the formation of the material there occurs
an anisotropy of properties between the vertically and horizontally deposited samples,
with a cyclic elastoplastic anisotropy being observed [18–20]. Alloys doped with copper
are promising for investigation. The titanium-based copper-containing alloy formed is
shown to have good mechanical properties [7,21–27], resistance to corrosion [28,29], and
antibacterial properties [29–31]. The disadvantage of adding Cu to this alloy is connected
with its tendency towards the formation of an intermetallic compound Ti2Cu, resulting in
increased fragility [23,26,27,32,33].

Traditional casting is used to produce Ti-6Al-4V alloys doped with copper; upon
equilibrium solidification, there occurs the segregation of Cu with pores and large grains
being formed [21,33]. There are also technologies for obtaining copper-doped alloys using
electron beam additive manufacturing with the simultaneous feeding of two different
metallic wires. The increase in the copper content in the alloy from 0.6 to 9.7 wt.% resulted
in the size reduction of the initial columnar β-Ti grains and their transformation to equiaxed
ones [32]. This effect is due to the impact of copper on the accelerated development of the
area of constitutional supercooling when grains are generated and formed.

In the case of additive manufacturing Ti–8.5% Cu, the area of constitutional supercool-
ing is eight times larger in size as compared to Ti-6Al-4V, subjected to the same conditions
of laser treatment. Sufficient constitutional supercooling can efficiently compensate for the
impact of the high heat gradient and provides an opportunity for heterogeneous nucleation
in the constitutional supercooling area and for achieving the complete transformation from
the columnar β-Ti grain structure to the equiaxed one. The larger the amount of dissolved
copper, the faster constitutional supercooling occurs and, consequently, the formation of an
equiaxed grain of the β-phase accompanied by its decrease in size [5,26,27,32].

The alloy Ti-6Al-4V was chosen as the main component for this research since it has
excellent mechanical and corrosion-resistant properties. The addition of the Cu-Al mixture
to the Ti-6Al-4V powder allows the formation of a phase of an Al solid solution in Cu, which
strengthens the eutectoid mixture (α-Ti + Ti2Cu). The aim of this study is to investigate the
impact of doping the alloy Ti-6Al-4V obtained by the SLM technology with the mixture
of Cu and Al powders on the microstructure, phase-formation, and physico-mechanical
properties (porosity, binding strength, and Young’s modulus).

2. Materials and Methods

Samples of two types were used (those of rectangular section, with a width of 5 mm, a
height of 5 mm, and a length of 55 mm; and cylindrical ones, with a height of 10 mm and
a diameter of 10 mm) in the amount of 10 samples per each dimension type. The printer
ASTRA 420 [34] produces the diameter of the spot of 60–2000 µm, with the time of focusing
being less than 0.2 sec and with there being a possibility to change the power from 100 to
500 W for the IR laser with the wavelength of 1080 nm. For building various items, the
printer allows reaching rates of 15 cm3/m. The application of the powder is carried out
with the step of 1µm, with the build chamber size being 420 × 420 × 280 mm and the
medium being the vacuum or inert atmosphere (Ar).

The powders were mixed in a ball mill (RETSCH MM 400, Haan, Germany) at a
vibration frequency of 30 s−1 in two steps for 50 min. Grinding balls were not used
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since it was necessary to prepare a uniform mixture without additional grinding of the
initial powders.

The microstructure in the mode of backscattered electrons (BSE) and secondary elec-
trons (SE) was investigated by the method of scanning electron microscopy (SEM) with an
electron microscope JSM-7001F (JEOL, Tokyo, Japan) equipped with a system of microanal-
ysers, Oxford Instruments (Abingdon, UK). The elemental composition of the phases was
determined at certain points and across the area. The application of the BSE method allows
us to obtain images of phases in the shades of the gray color, where the phases that include
heavier elements have the light-gray color and the phases that include lighter elements are
dark gray. The SE method gives information about the morphology of the sample surface.
For the investigation of the microstructure and elemental composition on the surface of
the samples, cross sections were made with the sequential application of abrasive paper
(400, 800, 1200, and 2400 grit) and polishing using diamond suspension with a grain size of
0–1 µm and 0–0.5 µm on the installation BUEHLER: Beta Grinder-polisher, Vector Power
Head (Stuttgart, Germany). For revealing the structure, the cross-sections were etched with
the Kroll’s reagent (4 mL HF, 10 mL HNO3, and 86 mL H2O).

The phase composition of the samples was determined with an X-ray diffractometer
Bruker D8 (Karlsruhe, Germany) with a linear detector VANTEC equipped with CuKα-
radiation with the following parameters: step—0.02◦/step, angle range—2θ from 10◦ to
90◦, and accumulation time—1 s/step.

The density of the samples was estimated by the method of hydrostatic weighing using
an analytical scale METTLER TOLEDO XP 205 (Greifensee, Switzerland) equipped with a
special module and software for density calculation. The values of density were obtained
with an accuracy of up to 10−4 g/mm3. The porosity was calculated using the formula
P = (1 − ρ/ ρc)× 100%, where ρ is the measured sample density; ρc is the density of the
compact material 90%(Ti-6Al-4V)-10%(95%Cu-5%Al). ρc = C1 × ρ1 + C2 × ρ2 + C3 × ρ3,
where C is the amount, %; ρ is the density, g/mm3 of the components of the samples
Ti-6Al-4V, Cu, and Al, respectively.

The bend tests were carried out with a universal testing machine, Tinius Olsen H25KT
(Kongsberg, Norway), using the three-point bend method. A localized load is applied
on a sample located on two supports. After the post-processing, the sizes of the samples
corresponded to the standard ISO: length of 50 mm; width of 10.0 ± 0.1 mm; height of
5.0 ± 0.1 mm. The bending strength and Young’s modulus were calculated using the
special software Horizon, including the built-in library of test techniques and formulas for
calculating mechanical properties according to the ASTM and ISO standards.

The Rockwell hardness measurement was carried out with a hardness measuring
device ITBRV-187.5-M (Moscow, Russia) by pressing the diamond cone into the surface
with a pressure of 1600 MPa and a time of pressing of 15 s. Cross-sections were made on
the samples; for obtaining valid results, hardness was measured five times, with the mean
value being estimated.

3. Results and Discussion

Copper and aluminum powders, as well as an alloy powder of Ti-6Al-4V were used for
the fabrication of the samples. The elemental composition of the powders is presented in
Table 1. The particles of Ti-6Al-4V are of spherical shape and have the size d = 30 ± 20 µm
(Figure 1a). The SEM images of the initial Ti-6Al-4V alloy particles, which were the main
components of the samples, were processed using the software Axio Vision 4.3 (Carl Zeiss,
Baden-Württemberg, Germany) based on the obtained data, their size distribution was
plotted. The average diameter of the powder particles was d = 30 ± 20 µm, the particle
distribution almost obeys the normal law, which corresponds to the requirements for the
initial material for the SLM process. The Al nanopowder is stabilized with palmitic acid in
the amount of 10 wt.%, being of spherical shape and having the diameter d = 80 ± 20 nm
(Figure 1b). The Cu electrolyte powder is of dendrite shape and has the following dimen-
sions: lcp = 75 ± 25 µm, hcp = 25 ± 5 µm (Figure 1c).



Metals 2024, 14, 991 4 of 14

Table 1. The elemental composition of the initial powders, wt.%.

Ti-6Al-4V
Ti V Al Fe O

86.45–90.9 3.5–5.3 5.3–6.8 to 0.6 to 0.02

Cu
Cu O S Pb Fe

99.0–99.95 - - - 0.1–0.4

Al
Al Al2O3 palmitic acid

85–87 5–7 8–10
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Figure 1. The SEM images of the initial powders: (a) Ti-6Al-4V; (b) Al; (c) Cu, (d) the mixture of the
powders (Ti-6Al-4V)-(Cu-Al) with the indicated areas for the composition analysis. S1, S2 show the
location of the elemental composition determination.

The required microstructure parameters of the obtained material are formed, depend-
ing on the SLM modes, shape, and size of the powders, character of their thermodynamic
interaction, etc. The SLM method usually uses spherical powders of the same chemical
composition. The simultaneous application of powders that are different in composition,
density, shape, and size can result in residual porosity and, as a consequence, in a change
in the physico-mechanical properties. In our case, due to the difference in shape, size, and
density of the initial powders, the mixture was prepared in two stages: first, the Cu and Al
powders were mixed in the ratio Cu:Al = 95:5 (wt.%) for 20 min. During the second stage,
the 10 wt.% mixtures of the Cu-Al powder and 90 wt.% of the Ti-6Al-4V powder were
mixed into a uniform compound for 30 min using a vibration ball mill. The percentage
ratio between Ti-6Al-4V and Cu was chosen based on the analysis of the data presented
in [24,26–28,30,32,35]; the authors doped the Ti-6Al-4V alloy with copper in an amount
from 0.6 to 15 wt.%. Doping with aluminum nanopowder in the amount of 0.5 wt.%, in
our opinion, allows us to obtain dispersed inclusions of the copper-based solid solutions,
which will be located in the grains of eutectoid mixtures.
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The powder mixture consists of spherical particles of Ti-6Al-4V and dendrite Cu
particles, with aluminum nanoparticles being distributed on their surface during mixing
(Figure 1d). The uniform distribution of aluminum is confirmed by the chemical compo-
sition estimated by EDS on the surface of the Ti-6Al-4V and Cu particles. In spectrum
1 (Table 2), obtained on the surface of the Ti-6Al-4V particle, the Al content is ≈8 wt.%;
however, in the alloy it amounts to ≈6 wt.%. For the sample composition in spectrum
2 (Table 2), aluminum is also shown to be present on the particle surface in the amount
of ≈18 wt.%. This allows one to draw the conclusion that the small particles on the surface
of the Ti-6Al-4V and Cu powders represent aluminum. The developed specific surface of
the dendrite Cu particles allows Al nanoparticles to be efficiently distributed inside the
dendrites, which can provide a sufficient rate of the exothermal reaction for the formation
of the Cu-Al solid solution. As a result, dispersed inclusions of the Cu-Al solid solution are
formed in the intermediate layers. In the process of mixing, there occurs the formation of
combinations of (Ti-6Al-4V)–Al and Cu-Al powders, which allows the components in the
three-phase mixture to be uniformly distributed upon filling the chamber of a device for
3D printing and a homogeneous structure to be formed during laser melting.

Table 2. The elemental composition of the spectra obtained from the mixture of the powders of
(Ti-6Al-4V)–Al, Cu-Al, wt.%.

Number of the Spectrum Al Ti V Cu Total

1 8.04 87.89 4.07 0 100.00
2 17.73 3.45 0 78.82 100.00

The SLM modes are chosen based on the analysis of the data presented in [5,16–19,22].
During the sample fabrication by the SLM method, the laser spot diameter (d) was 170 and
190 µm, the power P varied from 225 to 350 W with the step of 25 W, and the powder layer
thickness was 50 µm. The speed of laser motion was constant and amounted to 350 mm/s.
The present study considers the influence of the laser spot diameter and laser power on the
microstructure and properties of the obtained samples.

The mechanical properties are structurally sensitive and depend on the defects typical
for materials obtained by the SLM method, such as pores and cracks. For compounds
produced by the SLM technology, the presence of residual porosity is typical. The hardness
and porosity of the samples obtained with a spot diameter of 190 µm and with different
laser power are presented in Figure 2. In the case of close values of the sample porosity, the
difference in the values of hardness can be due to the non-uniform distribution of the phases
in the structure. Moreover, the mixture of the initial powders used included powders of
different shapes, sizes, and densities. The aluminum particles of spherical shape and
the dendrite particles could have been insufficiently uniformly distributed relative to the
Ti-6Al-4V particles; the indenter could have detected either groups of grains that consisted
of intermetallic compounds having high hardness, a large pore, or an agglomeration of
small pores.

As follows from the curve (Figure 2), the density of the samples is less sensitive to
the laser power at 325 and 350 W. In the low laser power region (lower than 300 W), the
energy density in the SLM process is not high enough for the particles to be completely
melted, and the width of the melt pool is small, which leads to insufficient fusion between
the powder layers and to the formation of pores (Figure 3a). This was the reason for
incompletely melted powder particles being detected in the pores between the scanned
layers in the samples obtained at d = 170 µm and P = 225 W (Figure 3b). The analysis of the
microstructure, porosity, and hardness made it possible to determine the optimum SLM
mode for obtaining samples from the alloy powders and mixtures (Cu-Al). A higher density
(4.96 g/cm3) and minimum porosity (1.5%) were obtained at P = 325 W and d = 190 µm
(Figure 3c).
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Figure 3. The SEM images of the sample microstructure: (a) with large interlayer pores (d = 170 µm,
P = 225 W); (b) with the analyzed region of the particle content in an interlayer pore (d = 170 µm,
P = 225 W); (c) general layout of the optimum structure (d = 190 µm, P = 325 W); and (d) with small
gas pores (d = 190 µm, P = 325 W). S1 shows the location of the elemental composition determination.

Pores of two types were detected in the samples. Large pores were formed along the
previous melted and crystallized layer as a result of the incomplete melting of the powder
of the new layer (Figure 3a). Small gas pores were formed due to the incomplete release
of gases from the melt during laser melting (Figure 3d). Pores of the first type have an
elongated shape and large size, from 10 to 200 µm in length (Figure 3a), sometimes with
unmelted particles inside (Figure 3a,b). The elemental composition of spectrum 1 (Figure 3b
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and Table 3) corresponds to Ti-6Al-4V. Pores of the second type have a diameter from 10
to 100 nm and a round shape (Figure 3d). Pores of both types are present in the samples
obtained in all the SLM modes, but their number is small at P = 325 W and d = 190 µm,
and their size is less than 20 µm (Figure 3c). Non-uniform areas containing a layered
structure that included waves with a height of 50–100 µm were detected in the image of
the microstructure of the Ti-6Al-4V alloy upon the addition of the 10% Al-Cu mixture
into its composition (Figure 3c). The layer-by-layer fabrication of samples by SLM results
in multiple heat cycles in the layer that crystallized earlier and, as a consequence, to the
appearance of the wave-shaped layered structure.

Table 3. The elemental composition of an unmelted particle in an interlayer pore.

Elemental Composition wt.% at.%

Al 6.14 10.42
Ti 90.23 86.31
V 3.64 3.27

For the samples Ti-6Al-4V and 90%(Ti-6Al-4V)–10%(Cu-Al), obtained by SLM at
P = 325 W and d = 190 µm, 3-point bending tests were carried out to estimate the strength
and elastic modulus (Table 4).

Table 4. The mechanical properties of the samples based on Ti-6Al-4V.

Composition
Elastic

Modulus,
GPa

Bending
Strength,

MPa

Hardness,
HRC

Hardness,
HB Reference

Ti-6Al-4V (casting) - 1816 - - [35]
Ti-6Al-4V (SLM) 128 948 - - [33]
Ti-6Al-4V (SLM) 39 1300 29 300 This study
90%(Ti-6Al-4V)–

10%(Cu-Al) (SLM) 50 1550 45 390 This study

Our results show that the introduction of the Cu-Al mixture into Ti-6Al-4V allows an
increase in the elastic modulus by ≈25% and those of the bending strength by ≈20%, as
compared to the samples of the Ti-6Al-4V composition. The sample deformation amounts to
3.5 ± 0.1%. The increase in strength is associated with the presence of the eutectoid mixture
and its high dispersion in the (Ti-6Al-4V)–(Cu-Al) samples. The decrease in ductility
is apparently caused by the presence of dispersed Ti2Cu particles in the primary β-Ti
grains [27,30,36]. The analysis of the surface of typical fractures of the samples (Figure 4)
shows a mixed type of destruction, namely a quasi-plastic one. On the fracture surfaces,
fragments were identified showing both brittle (Figure 4a) and ductile fractures (Figure 4b).

The study of the microstructure using the BSE method allows one to identify phases
containing elements with different atomic numbers. The phase containing light elements
has a dark gray color, while the phase containing heavier elements has a light gray color.
This distribution of elements is confirmed by EDS mapping of the sample obtained at
P = 250 W and d = 170 µm (Figure 5). In Figure 5a, one can clearly see incompletely melted
particles of the Ti-6Al-4V alloy of a dark gray color (Figure 5b,c), surrounded by a light
gray interlayer. The interlayer contains evenly distributed copper (Figure 5d). In addition,
cracks were detected in the sample (Figure 5a), which may be due to the high cooling rate
during SLM and too rapid crystallization. The presence of the incompletely melted particles
and cracks allows making an indirect conclusion that the SLM parameters P = 250 W and
d = 170 µm are not sufficient to obtain high-quality materials of this composition.
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The introduction of Cu-Al into the Ti-6Al-4V alloy promotes the transformation of the
shape of the α-Ti and β-Ti grains from the columnar to a more equiaxed one and greater
grain size distribution due to the accelerated development of the constitutional supercooling
area. Layer-by-layer fabrication of samples using SLM results in multiple thermal cycles
above and below the eutectoid reaction temperature (792 ◦C) in the previously crystallized
layer. At the same time, the cooling rate of β-Ti decreases, which most likely prevents the
martensitic transformation and formation of the α′-phase and promotes the transformation
β-Ti→α-Ti + Ti2Cu [36–38]. SLM provides a relatively constant cooling rate of the alloy,
leading to the formation of a more uniform microstructure (Figure 6a), regardless of the
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size of the sample. The sufficiently high cooling rate promotes the formation of eutectoid
mixtures consisting of thin plates located between the equiaxed α-Ti and β-Ti grains. Based
on the BSE image analysis (Figure 6b), one can conclude that the light-colored plates contain
the main amount of copper, most likely Ti2Cu, with darker α-Ti plates located between
them. The distance between the Ti2Cu plates, i.e., the width of the α-Ti phase in the samples
obtained by SLM, is 50 ± 20 nm (Figure 6b). It is known that after heat treatment of the
cast material a similar structure is formed; however, the width of the α-Ti phase is about
150 nm, and after cooling in a furnace it amounts to ≈1 µm [39]. This is due to the interplate
distance being dependent on the distance over which the atoms diffuse, and this distance
is limited by the high cooling rate upon SLM.
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The elemental composition of the sample phases was studied by analyzing the data
obtained by the EDS method and taking into account the phase diagrams [40]. A typical
BSE image of the microstructure is shown in Figure 7a, while the concentration distribution
of chemical elements along the line with a step of 10 µm is given in Figure 7b. The elemental
composition of the spectra is presented in Table 4. The sharp peaks in the concentration
curves (Figure 7b) allow one to conclude that the composition obtained at these points
corresponds to the intermetallic compound formed. These peaks of Cu and Ti can be
observed at a point of spectrum 2 (Table 4), which was acquired for the light gray plate. The
composition of the phases, represented by spectra 3 and 4, is close to the composition of
Ti-6Al-4V, in which up to 1.8 wt.% Cu is dissolved. It is shown in [27,39] that the solubility
of copper in α-Ti reaches 1.8 wt.%, while in β-Ti, it amounts to 6.6 wt.%.
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For a more accurate characterization of the dispersed phases having a size smaller
than 0.5 µm, the elemental composition was determined directly from the dark and gray
regions (Figure 8). It should be noted that the region of generation of characteristic X-ray
radiation is 1.5–2 µm, which is significantly larger than the size of the dispersed phases,
and therefore, all the chemical elements included in the composition of this material are
present in the spectra (Table 5).
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Table 5. The elemental composition of the sample (Ti-6Al-4V)–(Cu-Al).

Number of the Spectrum Al Ti V Cu
wt. at. wt. at. wt. at. wt. at.

1 4.46 8.35 58.47 61.74 1.99 1.98 35.09 27.93
2 5.91 10.19 85.13 82.64 3.44 3.14 5.51 4.03

The elemental composition of the phase, represented by spectrum 2, is close in com-
position to the Ti-6Al-4V alloy, in which 5.5 wt.% Cu is dissolved. The analysis of the
composition of spectrum 1 (see Figure 8) shows a significant decrease in the titanium
content, compared to the Ti-6Al-4V alloy, as well as 35 wt.% Cu. Based on the fact that the
region of the signal generation significantly exceeds the size of the light phase for which
spectrum 1 was obtained, its elemental composition also includes the composition of the
dark phase (see spectrum 2). Thus, spectrum 1 can be assumed to consist of the Ti2Cu
phase and Al solid solution in Cu (light phase) and Ti-6Al-4V (dark phase), with 5.5 wt.%
Cu being dissolved. The obtained phase composition is confirmed by the data of X-ray
phase analysis. The dispersed inclusions of the Al solid solution into Cu located between
the particles of Ti2Cu (see Figure 8; Table 5, Spectrum 1) result in the particle size reduction
in the intermetallic compounds, which leads to an increase in the strength of the obtained
material (see Table 4).

Figure 9 shows the X-ray diffraction patterns of the Ti-6Al-4V powder, mixture of (Ti-
6Al-4V)–(Cu-Al) powders, and (Ti-6Al-4V)–(Cu-Al) sample obtained by the SLM method.
The analysis of the X-ray diffraction patterns revealed the presence of the α-Ti and β-Ti
phases in all the samples (Figure 9a–c). The presence of copper was confirmed in the
mixture of the powders (Ti-6Al-4V)–(Cu-Al) (Figure 9b), and in the sample obtained by the
SLM method, the α-Ti, β-Ti and Ti2Cu phases were identified.
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Figure 9. The X-ray diffraction patterns of (a) powder Ti-6Al-4V, (b) powder mixture (Ti-6Al-4V)–
(Cu-Al), and (c) SLM (Ti-6Al-4V)–(Cu-Al).

The results obtained using the XRD method confirm that the structure of the (Ti-6Al-
4V)–(Cu-Al) alloy obtained by the SLM method is formed by the phases α-Ti, β-Ti, and a
eutectoid mixture of α-Ti and Ti2Cu.

4. Conclusions

The effect of adding a 10% mixture (95% Cu-5% Al) on the physical and mechani-
cal properties, microstructure, elemental, and phase composition of the 90%(Ti-6Al-4V)–
10%(Cu-Al) alloy obtained by the SLM method was studied.

The main results are as follows:
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(1) In the case of doping the Ti-6Al-4V alloy with an additive of 10 wt.% (95% Cu-
5%Al), samples without fractures and large pores were obtained. Higher density and
minimum porosity of 1.5 ± 0.1% were obtained at laser power of 325 W and a laser
spot diameter of 190 µm, which is a feasible SLM mode for Ti-6Al-4V alloys doped
with 10 wt.% (95% Cu-5%Al).

(2) The addition of 10% (Cu-Al) led to a change in the microstructure: a decrease in the
grain size and the transformation of the columnar shape of the α-Ti and β-Ti grains
into a more equiaxed one. The structure of the 90%(Ti-6Al-4V)–10%(Cu-Al) alloy
obtained by the SLM method is formed by α-Ti, β-Ti phases, dispersed phases of an
Al solid solution in Cu, and a eutectoid mixture of α-Ti and Ti2Cu. Copper was found
to be partially dissolved in α-Ti and β-Ti during crystallization.

(3) Doping Ti-6Al-4V with the Cu-Al mixture led to a significant increase in the strength
and hardness of the samples. The increase in strength of the (Ti-6Al-4V)-(Cu-Al) alloy
may be associated with a large volume fraction of the eutectoid mixtures formed by
the dispersed α-Ti and Ti2Cu plates.

The results presented in the given study show Cu-Al to be a promising dopant in
developing high-strength alloys based on Ti for applications in the production of parts
of jet and car engines, implants for medicine, and corrosion-resistant parts for chemical
industry, etc. It can be assumed that increasing the amount of additionally introduced
aluminum and simultaneously decreasing the amount of copper with the component ratio
of 90% (Ti-6Al-4V)–10%(Cu and Al) allows us to obtain a more uniform microstructure and
increasing the strength of the material.
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