МИРЭА – Российский Технологический Университет

XXV Международная конференция

Новое в Магнетизме и Магнитных Материалах

СБОРНИК ТРУДОВ

1 — 6 июля 2024 года Москва

анализа и метода EDX (energy dispersive X-ray spectroscopy). Наряду со структурной характеризацией, изучались магнитные свойства полученных образцов. Исследованы температурные и полевые зависимости намагниченности людвигитов и гаудефройитов, уточнены температуры и характер фазовых переходов.

Исследование выполнено за счет гранта Российского научного фонда № 22-12-20019 (https://rscf.ru/project/22-12-20019/), Красноярского краевого фонда науки.

Список использованных источников:

- 1. Moshkina E., Seryotkin Y., Bovina A., Molokeev M., Eremin E., Belskaya N., Bezmaternykh L. Crystal formation of Cu-Mn-containing oxides and oxyborates in bismuth-boron fluxes diluted by MoO₃ and Na₂CO₃ // J. Cryst. Growth. 2018. V. 503. P. 1–8.
- 2. Sofronova S., Moshkina E., Nazarenko I., et al, Chemical disorder reinforces magnetic order in ludwigite $(Ni,Mn)_3BO_5$ with Mn^{4+} inclusion // J. Magn. Magn. Mater. -2018.-V.465.-P.201-210.
- 3. Moshkina E., Krylov A., Kokh D., Shabanova K., Molokeev M., Bovina A., Plyaskin M., Rostovtsev N., Bezmaternykh L. Multicomponent Flux Growth and Composition Control of Cu₂MnBO₅:Ga Ludwigites // CrystEngComm. 2022. V. 24. P. 3565-3575.
- 4. Moshkina E., Seryotkin Y., Bayukov O. et al, Flux Growth and Phase Diversity of Triple Oxides of Transition Metals $(Mn,Fe,Ga)_2O_3$ in Multicomponent Fluxes Based on Bi_2O_3 -MoO₃-B₂O₃-Na₂O // CrystEngComm. 2023. V. 25. P. 2824-2834.
- 5. Moshkina E., Bovina A., Molokeev M. et al, Study of flux crystal growth peculiarities, structure and Raman spectra of double (Mn,Ni)₃BO₅ and triple (Mn,Ni,Cu)₃BO₅ oxyborates with ludwigite structure// CrystEngComm. 2021. V. 23 (33). P. 5624-5635.
- 6. Moshkina E., Belskaya N., Bashleev Z., Molokeev M., Soloviev L., Shabanova K. Crystal growth of $ReCa_3Mn_3O_3(BO_3)_4$ (Re=Gd, Y) gaudefroyite: Phase sequence and equilibrium study in multi-component fluxes // J. Cryst. Growth. -2022. -V. 600. -P. 126917.
- 7. Gao Jianhua, Li Shuai. BiSr₃(YO)₃(BO₃)₄: A New Gaudefroyite-Type Rare-Earth Borate with Moderate SHG Response // Inorg. Chem. 2012. V. 51. P. 420–424.

УДК 538.955, 54.057

Формирование, структура и магнитные трансформации поликристаллического Ni₂CrBO₅ со структурой людвигита

Бельская Н.А.

м.н.с, ФТИ им. А.Ф. Иоффе РАН

Еремин Е.В.

д.ф.-м.н., с.н.с., Институт физики им. Л.В. Киренского ИФ СО РАН

Васильев А.Д.

к.ф.-м.н., с.н.с., Институт физики им. Л.В. Киренского ИФ СО РАН

Гаврилкин С.Ю.

к.ф.-м.н., н.с., Физический институт им. П. Н. Лебедева РАН

Красилин А.А.

д.х.н., зав. лаб, в.н.с., ФТИ им. А.Ф. Иоффе РАН

Казак Н.В.

д.ф.-м.н., с.н.с., Институт физики им. Л.В. Киренского ИФ СО РАН

Аннотация. В работе представлен способ получения однофазного никель-хромового оксибората Ni_2CrBO_5 со структурой людвигита твердофазным методом. Измерения намагниченности и теплоемкости показали, что соединение испытывает переход в магнитоупорядоченное состояние при $T_N=140~K$. При T=30~K наблюдаются аномалии намагниченности и теплоемкости, возможно связанные с упорядочением одной или нескольких магнитных подрешеток.

Ключевые слова: смешанно-валентные оксибораты, людвигиты, мультиферроики, твердофазный метод синтеза, поликристаллы, антиферромагнетики

Formation, structure and magnetic transformations of polycrystalline Ni₂CrBO₅ with ludwigite structure

Belskaya N.A.

PhD-student, junior researcher, Ioffe Institute

Eremin E.V.

Dr.Sc., senior researcher Kirensky Institute of Physics, Federal Research Center KSC SB RAS

Vasiliev A.D.

PhD, senior researcher Kirensky Institute of Physics, Federal Research Center KSC SB RAS

Gavrilkin S.Yu.

PhD, senior researcher, Lebedev Physical Institute RAS

Krasilin A.A.

Dr.Sc., leading researcher, head of laboratory, Ioffe Institute

Kazak N.V.

Dr.Sc., senior researcher Kirensky Institute of Physics, Federal Research Center KSC SB RAS

Annotation. The work presents a method of obtaining single-phase nickel-chromium oxyborate Ni_2CrBO_5 with ludwigite structure by solid-phase method. Magnetization and heat capacity measurements showed that the compound experiences a transition to a magnetically ordered state at $T_N = 140$ K. At T = 30 K, anomalies of magnetization and heat capacity are observed, possibly related to the ordering of one or more magnetic sublattices.

Keywords: mixed-valent oxiborates, ludwigites, multiferroics, solid-phase synthesis method, polycrystals, antiferromagnetics

Оксибораты переходных металлов со структурой людвигита представляют класс магнетиков с фрустрацией обменных взаимодействий и чрезвычайно интересны с точки зрения магнетизма, поскольку демонстрируют богатый спектр магнитных явлений: случайные спиновые цепочки, спиновые лестницы, дальний магнитный порядок, состояние спинового стекла [1, 2, 3]. Структура людвигита является квазидвумерной, содержит четыре неэквивалентные катионные позиции, которые с разной вероятностью заняты двух- и трехвалентными ионами (рис. 1). Ионы двухвалентных металлов предпочитают занимать неэквивалентные кристаллографические

позиции М1, М2 и М3, соответствующие позициям 2а, 2b и 4g по Вайкоффу, соответственно. Эти позиции образуют плоскости, разделенные боратными группами и кристаллографической позицией М4, которую заполняют трехвалентные ионы. Экспериментального подтверждения существования смешанно-валентного Ni₃BO₅ до сих пор не получено. Однако замещение Ni³⁺ на Mn³⁺ или Fe³⁺ приводит к формированию фазы со структурой людвигита [3, 4]. Среди переходных металлов ион Cr^{3+} занимает особое место благодаря магнитоэлектрическим эффектам, обнаруженным в редкоземельных ортохроматах $ReCrO_3$ (Re – редкоземельный ион) [5] и недавно в Cu_2CrBO_5 со структурой людвигита, в котором одновременно возникает спонтанная поляризация и антиферромагнитное упорядочение [6]. В связи с этим особый интерес представляет получение оксибората Ni₂CrBO₅ со структурой людвигита, в котором замещение Ni³⁺ на Cr^{3+} может повлиять на функциональные свойства материала и расширить предполагаемые области его применения.

Соединение Ni_2CrBO_5 было получено твердофазным методом. Фазовый состав образцов в процессе поисковых исследований контролировался методом порошковой рентгеновской дифракции. После подбора условий термообработки и соотношения оксидов (Ni_2O_3 , Cr_2O_3 , B_2O_3) был получен однофазный порошкообразный образец Ni_2CrBO_5 . Обнаружена орторомбическая структура с пространственной группой *Pbam* (55). Параметры элементарной ячейки составляют a=9.20195 Å, b=12.11049 Å, c=2.98407 Å, V=332.545244 Å 3 . Было обнаружено нетипичное для людвигитов катионное распределение: кристаллографические позиции M1 и M3 заняты ионами Ni^{2+} , M2 почти полностью занята ионами Cr^{3+} , а позиция M4 занята атомами Ni^{2+} и Cr^{3+} в соотношении 0.5/0.5 (рис. 1), валентные состояния для каждого кристаллографического узла были уточнены используя метод сумм валентных связей (BVS).

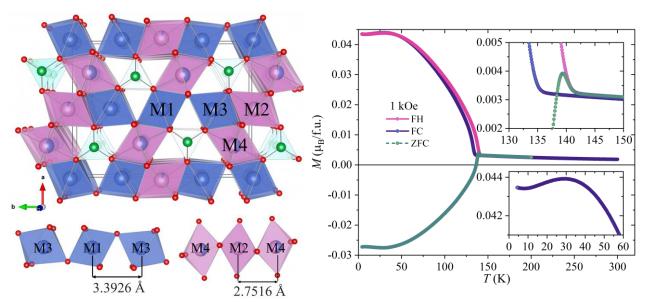


Рис.1 - Кристаллическая структура Ni₂CrBO₅ (ab-плоскость) - два типа триад выделены синим и розовым цветом. Бор-кислородные треугольники показаны зеленым цветом. Внизу показаны самые длинные и самые короткие межионные расстояния в триадах M3-M1-M3 и M4-M2-M4, соответственно

Puc.2 - Температурные зависимости намагниченности Ni_2CrBO_5 , измеренные в режимах с нулевым охлаждением (ZFC), полевым охлаждением (FC) и полевым нагревом (FH), $H=1\ \kappa \Im$. Верхняя вставка: увеличенный масштаб кривых M(T) вблизи магнитного перехода T_N . Нижняя вставка: куполообразная аномалия намагниченности (FC).

Измерения намагниченности, измеренные во внешнем магнитном поле 1 кЭ, выявили две температурные аномалии: высокотемпературную при 140 К и куполообразную аномалию около 30 К (рис. 2). Отрицательная парамагнитная температура Кюри-Вейсса, найденная из обработки высокотемпературной части обратной магнитной восприимчивости по закону Кюри-Вейсса, указывает на преобладание антиферромагнитных взаимодействий, приводящих к установлению антиферромагнитного порядка при T_N=140 K, ниже этой температуры наблюдаются явления реверса намагниченности. Температурные зависимости удельной теплоемкости, измеренные во внешнем магнитном поле 0.9 и 90.9, содержат λ - пик вблизи 140 K, что позволяет заключить, что претерпевает фазовый переход второго рода парамагнитного соединение магнитоупорядоченное состояние при T_N. Наши результаты показали, что Ni₂CrBO₅ является своеобразным людвигитом как по структурным, так и по магнитным свойствам, где цепочки Сг, вероятно, играют решающую роль в межподрешеточных взаимодействиях, уменьшая фрустрацию обменных взаимодействий и, таким образом, поддерживая дальний магнитный порядок. При этом Ni₂CrBO₅ обладает самой высокой температурой Нееля среди известных людвигитов.

Работа выполнена при финансовой поддержке Российского научного фонда в рамках проекта 24-12-20012.

Список использованных источников:

- 1. N. V. Kazak, Anisotropic thermal expansion and electronic transitions in the Co_3BO_5 ludwigite // Dalton Trans. -2022. -No51. -P. 6345-6357.
- 2. N. V. Kazak, Spin state crossover in Co₃BO₅ // Phys. Rev. B. − 2021. −№103. − P. 094445.
- 3. E. M. Moshkina, Magnetism and structure of Ni_2MnBO_5 ludwigite // J. Magn. Magn. Mater. 2016. – $N_2402.$ P. 69–75.
- 4. J. C. Fernandes, Magnetic interactions in the ludwigite Ni₂FeO₂BO₃, Phys. Rev. B. − 1998. −№58. − P. 287–292.
- 5. B. Rajeswaran, Ferroelectricity Induced by Cations of Nonequivalent Spins Disordered in the Weakly Ferromagnetic Perovskites, $YCr_{1-x}M_xO_3$ (M = Fe or Mn), Chem Mater. 2012. –№24. P. 3591–3595
- 6. F. Damay, High temperature spin-driven multiferroicity in ludwigite chromocuprate Cu₂CrBO₅, Appl. Phys. Lett. 2021. –№118. P. 192903.