o

50]1 USSR ACADEMY OF SCIENCES SIBERIAN DIVISION

INSTITUTE OF NUCLEAR PHYSICS

preprint 257

il T
S -y / @,
/ f { F.J4 & / i [ . . ol -

I.B.Khriplovich

GREEN FUNCTIONS IN THE THEORIES
WITH NON-ABELIAN GAUGE GROUP

&~ =Y
Lt } . )
# i ! i ¢ ra - el H o gh LS _.-F"’

;

NOVOSIBIRS
1968



I ..E .Khl“lplGViCh

GREEN FUNCTICNS IN THE THEORIES
WITH NON-ABELIAN GAUGE GROUP

abstract

The Yang-Mills field is considered in the radiation gauge.

Ite Hamiltonian as a function of the independent canonical vari-
ables is written down as infinite series in the coupling constant,
Therefore when passing to the diagram technique the graphs without
any analogue in guantum electrodynamics arise here. The use of N-
products when writing an interaction Hamiltonian is shown to be
superfluous in the spinor electrodynamics and inadmissible in the
scalar electrodynamics and in the Yang-Mills theory. The general
structure of the Green function of the Yang-Mills field is consi-
dered. Then the Green function is Computed in the second order of
' ’ntibn:ttaﬁa&; !%‘ts Hhﬁ!& ﬁhnt neither Yang~M1lls, nor gra-

i : erturbati theory. Beyond

perturbation theory arising of mass o* the e fleld .requlres at
any rate the satisfaction of the conditions even more stringent
than those of the photon mass arising. It is shown how the number
of degrees of freedom of the vector tield in the radiation gauge
increases from two to three when the field acquires mass.
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1. INTRODUCTION

The interest in the quantum theory of the fields with non-
abelian gauge group stems first of all from attempts to quantize
the gravitational field for which the role of such a group play
coordinate transformations. Extremely complicated structure of the
gravitational field equations compelled theorists to turn firstly
to the study of a more simple model - the Yang-Mills theory which
possesses the non-abelian gauge group generalizing the isotopic
spin group/1/.

On the other hand the interest in models of the Yang-Mills
type was stimulated by the discovery of vector mesons forming 180-
topic and unitary multiplets. It should be noted here that since
the vector meson masses differ of course from zero, the question
is widely discussed whether a field of the Yang-Mills type as well
as neutral one can acquire physical mass when it has no bare one
/2,3/. The substantial part of the present paper is dedicated %o
the consideration of tThis question.

The investigations by Feymman/4/, and then by DeWitt/5/, Fad-
deev and Popov/6/ and Mandelstam/// showed that the use of covari-
ant gauges in the theories with non-abelizan gauge group is connec-
ted with serious difficulties. Essentially in this case the unita-
rity condition is violated when computing the closed loops formed
by gravitons or Yang-Mills mesons/4/. To make the ends meet one
has to introduce new diagrams with loops formed by some fictitious
particle, vector one in the case of the gravitational field and
scalar one in the Yang-Mills case/4-7/.

Due to thesc difficulties resorting to the radiation gauge in
theories with non-—abelian gauge group becomes especially natural
/8/« Well-known loss in the automatism of computations due to non-
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covariance of the method seems not too substantial on the present“
stage of investigations since now we cannot go all the same hey?na
the lowest orders of perturbation theory. But the gain is thatiln

this formulaticn all the unphysical degrees of freedom, unphysical
field variables are excluded. '

At the beginning of the second section of the pres??t ?IﬁlCle
the quantization of the electromagnetic field in the raélatlon
gauge is carried ouv by the scheme considered in/9/; this part‘of
the work is of the methodical character mainly. Then the quest%on
of the use of N-products in quantum electrodynamics and Yang-Mills
theory is discussed. The diagram technique and the str?cture ??‘
Green functions in electrodynamics in radiation gauge 1S consider-

ed. It is shown now the number of degrees of freedom of the vector
Pield without bare mass that acquires the physical mass (?uc¥ &
possiblility was pointed by Schwinger/%/) increases in radiation
gauge from WO to thrae. ‘ a8

The third section of the paper 1s dedicated to the ?ﬂu?tlﬂ?t‘
jon of the Yang-Mills f£ield in the radiation gauge. ?n distinction
from electrodynamics, here the Hamilbtonian may be written as an
explicit function of independent canonical variables ao inf?ni:;
sepies in coupling constant only. Due to this ciroumstance 1n- e
Yang-Mills theory new types of diagrams without any analogue 1n

Tro amics arise.
quant;i iizcgouii; section general properties of.the iang—mil%s |
Green function in the radiation gauge are investigated, its disti-
ion O oton one is discussed.

nthoghiTCZm;iiai?on of the Yang-Mills Green functio? in the ?ni
order of perturbation theory is carried out in the flf?h sec#?o:.
It is shown here that the Yang-Mills field cannot acqulr? maiq 1?
~erturbation 1heorye. The same assertion may be madgwfor the EraV1—
;ational field too. The possibility of arising of t?e mass o{ A
Yang-Mills and gravitational field beyond perturbation theory 1s

discussed.

2.RADIATION GAUGE IN QUANTUM ELECTRODYNAMICS

The Lagrangian density in spinor electrodynamics may be writ-

ten as
A i O A

4 is the Pagrangian density of the spinor particles whose

current density'ﬁég, serves as the source of the electromagnetic
field. '

Here

Introduce the canonical momenta of the field

S V4
4, &S

R 4 A
=i == -2A) =123 ©

The difficulty connected with vanishing of the momentum conjugated
with the time component of the field is well known. It is the re-
sult of the fact that the vector-potential has more components
than 1t is necessary to describe the field, i.e., it is the con-
sequence of the gauge invariance. The equation (2) is called an

equation of the primary constraint/9/. The Hamiltonian density is
written up to three-dimensional divergence as

K= Floly + 58, 8 ~ £ 3, A,
+ef4/;, +s£/é’..iz:.—77+/4 P

From the equation (2) it follows that

. il - -
A7 =— =— (4,7 —-? =L (5)
CIL) fZﬂﬁ #1 for ﬂ//
This condition_which is evidently another form of the Maxwell

equation a,/wl—f =€)/, 1is called usually an equation of the secon-

dary constraint/9/. Taking it into account, the Hamiltonian densi-
ty is written in such a way

Hghio+ At FA A ve f iy ©

Take into account now the radiation gauge condition

5.




( e (7)
i.e., the space part of the vector-potential will be considered as

three—dimensionally transverse, The canonical momentum will be

split into parts transverse and longitudinal in the three-dimensi-

onal sense

4, :;/2#.1L‘m?g6 ééyé;,:::£7 (8)

The equation of secondary constraint is reduced now to the form

4y =3

coincides in fact with J?Z « Llimina-

(9

It is easily seen that
ting transform the Hamiltonian density up to three-dimensional

divergence to the next form
W= Lo LAA LA v i 4

Thus the interaction Hamiltonian density is equal to
A= eﬁf,/; —‘?{e;%‘a-f; =
I MR 2 5 | A7IACTS i

=e A, GY B8+ [

The canonical comnmutation relations are here

[ GE) AGL) =i d -] dop = =884 2

It iz necessary to stress here the next, extremely important
circumstance. iie succeeded in writing the Hamiltonian density in

guantum electrodynamics as a function of the independent dynamical
losed form only due to the fact that

variables 7{” and /4,..,- in a ¢
ff" ol - - < ﬁf, , 80 that the equation (9) is

, does not depend on

solvable explicitly. )
can easily ascertain that the independence /,, from j’é

evident in the case of charged spinor field takes place
1s eXpres-

One

which 1is
also in the electrodynamics of scalar particles if
ed through canonical coordinates and momenta of the charged field

5
=
o

duct lead ¢
B tj on}i to the elimination of the diagram 1 Lo I
ansiti whic -

lon of § -quantum t® vacuum, Tt is clear hdescrl

» however,

the usual ye
s alectrud;::::E:uizs turns to ZEero automatically. Thus, in spj
el o s erfle Tepresentation of the current deﬁ;it )
et R p uous, although harmless, Operation, 4 S

y Bocalar electrodynamics, here Writing of‘th: ;z;t

Fig,2,
Fig,2a,

it is easily seen that without the g;
o Lagram 2 the electro i
ol O;hih:aés of the charged meson depends on tgzgiz:l?
e H_Produci :zon Green function/ﬂo/. If to place uniiiq
R B s € meson GPerators only as it is Suggested
T Sy . o?ly Fhe diagran 2a, then the longit;ﬁinal
B i pPo arl?atlon operator will arise. And ‘t'.-
pbloton vertex in Scalar electrodynamics as N;pijzuiig'
is




on, and the corresponding matrix element turns to zero auto?atic—
ally. And the application of the N-prcduct to the four-particle
vertices will lead to the same ocontradictions as in scalar elect-
rodynamics.

Hence writing of the interaction Hamiltonian as N-product is
unnecessary in spinor electrodynamics andwrong in scalar electr?—
dynamics and the Yang-Mills theory. It is sufficient to symmetrize
ueed expressions over non-commuting Bose—operators and antisymmet-
rize over non-anticommuting Fermi-operators. As it is known, in
quantum electrodynamics such writing of the current density of
spinor and scalar particles makes particles and antiparticles
enter symmetrically and makes also the vacuum expectation va-
lue of . turn to zero. Just this recipe will be used below.

Return to /Z@‘ given by the formula (11) . Such interaction
Hamiltonian gives rise to two types of primary diagrams given atb
the figures 3 and 4. Here the wavy line corresponds to a sPa?e
photon whose free Green function in momentum representation 1s

g{ﬂ 67!## 45-/__ 4{” ;5/.:: J‘,,,,, /H,gﬁ (13)
borir / &) 2
The dotted line denotes the Fourier transform of the inverse Lap-

lace operator

e

Collecting (13) and (14) into a single non-covariant Green functi-

(77 /ﬁ -+ F”H/—éééy
%""Zbﬁ/ 74"' W = (15

£ x
Pemnles i, e =l§ Gl =T

We ccme to a diagram technique which differs from a covariant
Feynman one in the form of the ¢ —quantum propagator only; but
arising here diagrams are identical t‘?olOchally to usual Feyn-
man ones. As to the distinction of,ﬁ? /ﬁﬁb’ from the covariant

Green functions, it may be removed w1th a gauge transformation.
L.f.y, by means of the transformation

j// /« /35/ (16)

we may go from the radiation gauge to the usual diaéram technique
in the Landau gauge.

Vacuum expectation value of the product of two photon operat-
ors in the radiation gauge may be represented in the forn/11,3/

SACIA (=~ fdeple) [ 4s
— &7 (nd)1. 8, + 7, %.)-4. %]A ey 2% (17)

A term proportional to {;,/z, is absent , otherwise no gauge tran-
eformation of qu will reduce the expectation value to a co-
variant form, By the same reason the spectral function A%ffc ot
depend on //wﬁ/‘! /11/. HWote that using the canonical commutation
relations (12), one may get the following sum rule for the positi-

vely defined quantitifpﬁkﬁy /11 ,5/3

//z;a/z-y_—_-. / (1)

The complete Green function in the momentum representation of

the space components of the vector-potential may be represented by
means of (17) in the form

Dufp)=du IO, Ip)=/Gf5% o

As for the time part of the Green function, the next expression
follows for it from (17)

/’/z 2 7//2’/ ok




This quantity turns to zero when the interaction is switched off.
But it is convenient to define the Green function of the Coulomb
quantum in such a way that it reduces to (14) in the absence of
the interaction. Proceeding from this consideration, the quantity

— ¥»y Which may be interpreted as the bare Coulomb quantum propa-
gator containing directly in /eaf-, should be added to the expre-
ssion (20) which contains vacuum loops. Thus, the expression

g (/’)_____/_/}_/ izioxl]_ p° [deioiey B
il gl wleib’' d TR wtep?
will be taken as the complete Green function of the Coulomb guan-
tum. When going to the last form of g,, we use the sum rule (18),
The components 52;, of the Green function in the radiation

gauge are ?é;al to zero. Really, because of three-dimensional in-

variance e .?,, %Zaf 5<%/, and due to the condition (7)
/a,,ﬁ,,ﬁa/::/&" @-?;-fzﬂ at arbitrary 4~ and /E"‘? :

Schwinger/3/ has shown that at sufficiently large value of
the charge & +the photon can in principle acquire mass. If the
spectral function is represented in the form

/p/z’/::ZJ/-‘t"/-f- 6(z7 (22)

then at e = ( 5/3‘7..—-_ 0 and Z-_-'—/ . As the charge €&
increases, the contribution of the continuous spectrum may increa-
se to such extent that erdue to the condition (18) turns to zero,
so the massless photon disappears. If simultaneously a sufficient-
ly sharp maximum developes in 5/4"2/, it may be interpreted as a
nmassive photon. The question of change of the number of degrees of

freedom when the mass arises was not discussed by Schwinger.

Show in what manner the number of degrees of freedom of the
field described in radiation gauge increases from two to three
when the mass arises. Consider firstly for simplicity the model in

which 5/:9:5(3-‘74‘7, Z = e In it

2

DpY)= 4 @Q=;/’g : (23)
/b /a.e__ /b"’ » 00 /b' &u g /b 2)

It is easily seen that 9;0 has now a pole in & which was ab-

sent in af)(see (14)). Thus the time component of the vector-po-

tential becomes in essence a new dynamical variable. The complete

number of degrees of freedom of the field (taking inte account two

10,

space ones) equals now to three., On the other hand, in the static
limit 9;0 becomes equal to

€2Z; L (24)
And it is the Fourier transform of the Yukawa potential as it
should be expected.
In general case for arbitrary structure of the spectral func-

2
tion /:e/ s the Green function's components may be represcnied
in the form

- >
| //./&:: 112#4529} fz?; ﬂ;b o e

Mﬁ/ /7//b'y—/: p 00 ;‘E/ﬂ//”y_/ﬂlj (25)
The absence of the state with zero mass in the spectrum corres-
ponds to the condition /7/5’/?5&. It is easily seen that under
thie condition the potential arising in tho static linit is a
ghort-range one oven if d'/l"'/;lfy’!//y. And 1if at some /é‘fg.ﬂ
Qco‘/ has a sharp maximum, it may be interpreted as an un-
gtable particle with non-zero mass/3/ and with three polarization
states.

At lust, one more remark on the quantum electrodynamics in
the radiation gauge. The vacuum expectation value of the product
of Termi-operators,whose gauge transformation is homogenious, mul-
tiplicative one, depends also on the vector I/&, and moreover in
not such a trivial manner as the vacuum expectation value (17) of
the produot of photon operators, for which the gauge transformati-
on is an additive one, reduces tothe mere shift, does. For the
product of Fermi-operators y/I/ 3 K-‘// the vacuum expectation
value has the following form/12/, /13/:

‘<}945%y5?32L>:::(’ ﬁé?lyfzggézfqﬁuzjf/yha@§1€gf(2u2/ﬁﬁki1L
Eawyle /ﬁﬁ)‘?d’/f/ﬁj// A (2 -y 2%/

(26)

Presence of three spectral functions, instead of the usual two, in
this expectation value in the radiation gauge and these functions!

2
dependence on Ahéb’ is confirmed by the direct computation in the
second order of perturbation theory/13/.

g i )7




5 «QUANTIZATION OF THE YANG-MILLS FIEID IN THE RADIATION GAUGE

For simplicity we restrict to the consideration of the self-
interacting Yang-Mills field. Taking into account interaction with
other fields does not change qualitatively the results got below.
Write the Lagrangian density as

i ailod B % o o« o
;?/@{ —%4/;%4' ~7,47 o

The upper indices are the isotopic ones and attain values 1,2,3.
The canonical momenta of the field are

D NN
¢ o R AT T 0 Yok

LAY W o= (29)
9(3-# M} pe
A +,Z’¢£’9‘7"f’5//

— (44 —
0 it
The equation of the primary constraint X, = 0 takes place here

by the same reason as in quantum electrodynamics. The Hamiltonian
density is written (neglecting the three-dimensional divergence)

B2 d ol B LW AW o W o XA

’ z;g 4L Bk e - LA o
ﬂ/ﬁ /zm—z & 7 Ky f/

Due to the condltlon (28) we come to the secondary constraint equ-

Fﬂ(

aticn

aE‘Z far :-—/ﬁmf _Zf‘fa//ff M/_' (31)

which allows to omit the last term in the expression for /9/.
Impose now the condition fixing radiation gauge

9;,,, éf:: J (32)

—— “ - J
Split the canonical momentum //,, into the three-dimensionally

transverse and longitudinal parts
—( of 4 o __
Yo :/b’""'g‘"f’ 3"”/b"’_0 (33)

12.

Lhe secondary comstraint equation (31) is reduced now to the form
@ i 7
49" = Z/é’ Tﬂrﬁbf +4, /(p//é (34)

Comparing the equation (34) with the time component of the Lagran-
gian equiyions of motion, it can be easily seen that *coincides
with , + Taking into account the condition (32) ané?iaglecting
the three-dimensional dlvergence, the Hamiltonian density may be
expressed through /; y /5,, and % in the following way

A= Zpappl + 58, 63, £+ 2pe P8 4L
4 /z//*’/f//// /“///f /,. “ 4 /@ (35)

However, in distinction from the equation (9) in quantum electro-
dynamics, the equation (34) does not allow to express "*in clos-
ed form through the independent canonical variables /é?.{ and. / ,:.
Solving the equation (54) by iterations in and eliminating
then ;W from (35), we get the Hamiltonian of +the Yang-Mills field
expressed through‘/zﬂ and only as a series in the interacti-
on constant i . In dlstlnction from the Hamiltonian in quantunm
electrodynamics, the Yang-Mills field Hamiltonian cannot be expre-
ssed in closed form through independent dynamical variables in the
radiation gauge.

Iterations of the equation (34) in the coupling constant
E;ive /

ﬂ' %/é‘%fﬁ-/& /
%= 7’4"[ &3, d"/ﬁj f"/’f‘{///
B =Gy e, AN A jj/

These expressions should be still symmetrized over non-commuting
operators. It can be easily shown, however, that the symmetrizati-

(36)

on does not influence the above result. Therefore we shall use the
" of

expression (36) for « The Hamiltonian density of the Yang-

Mills field is written after some transformations as




— /0 i ””7 “H +
o UL A - AL LGy

xa~! /;,“'é/ Ak /a’ aﬁ”ﬂ— ?35“/’” //af g A“’[ai;cf, A_zbj 57

5 /’;J;"Z/-ﬁ A [ 4‘22, A"'&qf 4~ /bfé ‘Q/ /%J 49 £
—29/[/?./: 4, 4717 4”—/6,,“4/ YAV /@“4’7 t...

In this expression the terms of the fifth and higher orders in the

| coupling constant are omitted.
| To go to the interaction representation in this Hamiltonian

density it is sufficient in practice to identify‘/a:'with the ca-

nonical three-dimensionally transverse momentum of the free field,

-4
i.e., with the quantity —d, fue

The canonical commutation relations for the Yang-Mills field

are

[t 86T SET it

The characteristic feature of the obtained interaction Hamil-
tonian of the Yang-Mills field is that along with the usual dia-
grams 5 and 6, and the simple Coulomb diagram 7, it raises the in-

Fige5e Fig.6. Fige7 s

finite series of the primary diagrams.
are the diagrams 8 and 9 representing the terms of

The first representatives

| oTthls series

Fige9e.

| Fig.8.
the third and fourth orders in the coupling
| gly in the Hamiltonlan. Every ne

14,

constant correspondin-
xt diagram in this series is obta-

4 A
nned from the previous one by the addition of one more solid appe-
I:ix to the dotted cross-beam. On the presented diagrams a solid
1ne corresponds to a three-dimensionally transverse space quantum
whose Green function in the momentum representation is
:::Juyf ﬂﬁm,é?ij
A dotted line denotes the a

nalogue of th
e e Green function of a bare

5273¢ﬁﬁv___ cfﬁﬁl#{;
00 =~y /2;2 (40)
| T?e presence of the infinite series of primary diagrams i

radiation gauge distinguishes essentially the Yang-Mills the y
from the quantum electrodynamics. Evidently, the presence ofozi
graphs is closely connected with the necessity to introduce diaese
gi:mshWith fl?tiFious particles when using covariant gauges/4-7/.

characteristic feature of the diagram technique in the radia
tion gauge is, as one can ascertain easily by consideration of t;
primary diagrams, the absence of the graphs with closed 1 1
med by the dotted lines only., oy
diagri: t:a quantum Fheory of gravitation the number of primary
- 8 1s also infinite. The first, obvious, reason of it is
ctinnalready the Lagrangian ?f the gravitational field (in distin-

S e.g:, from the Yang-Mills Lagrangian) is represented as in-
finite series in the coupling constant, i.e., in the Einstein
vitational constant. And the second reason is quite analo gza-
that which leads to the infinite number of primary diagraizﬂzj )
the Yang-Mills theory in the radiation gauge., The self-intera z'
of the gravitational field makes the elimination of superflu ey
degrees of freedom of the field possible by means of iteratious
only. Therefore, even if the expansion of the Lagrangian is i
ricted to a finite number of terms, the Hamiltonian of theq ies?—
tational field is represented as infinite series in the Einilafl-
gravitational constant. Just this series of primary graphs iSEln
1ée?tky, closely connected with the presence of'diagrams with’fzz:
titious particles which should be introduced when using covariant
gauges 1n the quantum theory of gravitation/4-7/.

15,




4, GREEN FUNCTION OF THE YANG-MILLS FIELD

The vacuum expectation value of tThe product of two Yang-Mills
operators in the radiation gauge is written in the following way

LG La) B ()> = 8V P (A ][4

A

such a form of the vacuum expectation value guarantees evidently
validity of the condition (%32) that fixes the radiation gauge. New
features,in comparison with the corresponding quantity (17) in
quantun electrodynamics, are here arising of the new tensorial
structure containing 4 #, and the dependence of the spectral
functions not only on /:‘.;?‘? , but on //76?/2 also, or what is the
same on the Laplace operator 2\ . This distinction is connected
vrith the fact that the gauge transformation for the Yang-Mills
field does not reduce to a shift only as it is the case for elect—
romagnetic vector-potential, but contains also a multiplicative
part similarly to the transformation of a charged field in elect—
rodynamics. Therefore, the spectral representation (41) contains
characteristic features not only of the relation (17), but of the
spectral representation (26) for charged fields also, of course
talking into account the distinction in transformation properties

of O and zﬂ .
“Covariant equation of motion got by the variation of the Lag-
rangian (°7) may be written as

;/‘f/?u/?—é?w{;/: Y

. oo
Using the current conservation 5}’ /,. :0 following immediately

(42)

from (42) and ‘the condition 3‘_, Of: , these equations may be
transformed to
ol ¢ of
o = Jo (43)
(44)

5 Ejﬁ&i:E::ﬂﬁvyﬁzf

Vacuum expectation value of the product of current density

, < K
components taking into account the conservation law 3, /, — 6’ may

be written in the following way

16.

< /:‘/-'Ié/f (9 )p=—i3Y e/ LA (2% + 8. Fy)+
= 7 (’é{fﬁ/[/m?/?, g + z’ﬂﬂ?//(/z, & + ”V‘/;L/ +
+ f";;f,, /7,:// A (2=y )

Using the equations of motion (43),(44), the functions 2 and Z
/

can i ' '
be easily connected with the spectral functions of the vacuum

expectation value < g;%/af%r/) (see (41)) )
74 /zf/v_‘g/ = z;’a /z;;é?_f AV -/ (Z; 67 (46)

E rizi:izzzrodinamlc? the e?uations for the vector-potential in
e gauge may be‘wrltten in the form coinciding with

y (44) , but of course without isotopic indices. Theref
using (17) one can easily get in electrodynamics for the Zi:;tity

( /)., /.2'}/, @/) an expression fully covariant even in radiati
"ﬁ| asauga and gauge-invariant at all o

% ' .
- </;-/-ff/r/~5’/)=—Wz"zj&@’/@"’/,+§,5,/a+z—gr’/ (47)

;:d it m:st be so of course since in quantum electrodynamics the
urier transform of the vacuum expectation value is : i
rectly with cross-sections of i et
ntity cannot depend neither cnpzi:l;:igirOEZEszz/li{, So'this ot
vactor'éL o« B.ge, this quantity,comput : ' i Rronitig,
B Thtegn, ey o puted taking into account the
e tha e state ?nly, defines unambiguously the total
¢ meson palr production in the annihilation of

t - + g -
he pair € € in the lowest order in & ., This process is de
scr-

ib i
ei by the ?1agrams 10 and 10a. (Note that in the centre-of-mass
gystem the diagram 10a with the virtual Coulomb quantum turns to

(45)

Zero. )

- 7
|
|
|
I
|

A e’
Fig.10a,

| o8, fiy8n, bays, -
| GuBnuoreya

e . e
e
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The situation in the Yang-Mills theory is rather distinct.
E.g., the process of fermion annihilation into a pair of Yang-
Mills quanta is described here in the second order in ¢ by the di-
agrams 11,11a and 12 where double lines correspond to fermions.

e EREIER 4

/\

Fig.11ﬂ.t

Fig-’lﬁi Fig-12:

The .requirement of the gauge and Lorentz invariance must be satis—
fied generally speaking only by thesummary contribution to the
cross—section of allthe three graphs. Meanwhile, the vacuum eXpec—
tation value (45) in the two-particle approximation is determined
by the diagrams 11 and 11a only, so There are no physi-
cal grounds to demand the gauge and Lorentz invariance of this
quantity.

Using (41), it is easy to f£ind the Green function of the
Yang-Mills field's space components, It can be represented conve-
niently in the following form

D2 ()= 87ty (B) D7 Y |
: d0(@ f 7 ! [11 s ram2 [dE2P(Z )] (48)
D5 = /?:"7%"'/:- ol flelep? ok s

The last form of ﬁa' given in (48) appears convenient for the
computations in perturbation theory.
Passnow to the time part of the Green function. The contribu-
tion to it from (41) is equal to
27 o 2 re
I [ [de*[z0@f /—/9/,4 %]
Vi Woder <
This expression takes into account vacuum loops Wwith non-vanishing
imaginary part and turns to zero when the interaction is switched
off. As well as in electrodynamics, it is convenient to define the
time part of the Green function including into it the contribution

from primary diagrams which are contained directly in the Hamilto-
nian. It is an infinite series, and its first terms a:ce—J =2 from

(49)

18.

the diagram 7 and the quantity obtained from the graph 9 by cl
4ng The two internal appendices (other different from zero linos_
closings on this graph correspond to radiation corrections eitz
to the vertex of transition of two space quanta into a tim o
or to the process of the scattering of two space quanta) ;tone’
be easily seen that the diagrams entering this sum do no; os:an
an imaginary part. When taking into account the swmmary coitring

tion of primary diagrams, which we shall deno v A%
‘ te through )
the time component of the Gr ;

Ty =872, o/
? / _-:__/ ) /z'ﬁ-’ (@2 "-y_ —2//}-.? (50)
o L=~ S (R~ g 2/
Se !Tﬂ; iﬂi‘zﬂ@rmﬂ IN PEETUEBATIOH THEORY; PHYSICAL MASS OF

een function is equal to /bj

Compute the Green function of the Yang-Mills field in the se-

cond order of perturbation theo
ry. The quantity 3 3 5=
shall find considering the equality ﬁﬂ-" /0/2';; /’/ we

<[&:z)d & /J'ZZ 2_,: (374, ﬁ%’f?@’ﬂ/ 0(7-7) (s

following friﬁb(4ﬂ). To find the left-hand side of (51) express
firstly §, 4/ through canonical variables, Taking into account

the relations (29),(33),(36) and that &= & : 2
approximation f o iﬂ il j

44/ ()= - /b,{’ (7] — %/J 745-0% W%’@f ‘;“%‘?}?m (52)

Using then the canonical commutation relations (38), express the
vacuum expectation value in (51) through the matrix element

Ui Bl 10 oy s porf
A7 A3 Y (53)

Ultimately after some computations we come to the following sum
rule in

approximation
S ~2) 202/ A P
j”/"/zf/’ /“/’Lﬁé‘%/éﬁf"’}_j (54)
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Here /4{ is the meximal value of the modulus of the three-dimen-

sional integration momentum,
It should be stressed that in distinction from the quantum

electrodynamics, in the Yang-Mills theory the integral of the
spectral function is not equal to unity.,

! R e
As it can be seen from (45) and (46), the quantity ¢zz/ﬂﬁﬁiéb/

can be found by means of the unitarity ci?dition. It is conveni-

ent to compute it as a coefficient at X Ou in the imaginary

part of the vacuum polarization diagram of a space Yang~-Mills
tions lead to the following result

quantum. The compu}g 5

=3 4
2o (@l pY) =g (- F -3z = (x+1)" -

N
3224 2022+ 327 + /éﬂﬂ, (z+ //4"9} z ==
E (z+1)% z % #

Note that since by means of the unitarity condition ?e compute.
directly a,'-'-"' @jﬁﬂ the quantity sz@,‘ﬁmay in principle contain
still a term with JZfﬁ{ It will lead, however, to a ?ole ?f ?he
second order in the Green function (48) and that is 1na§mls?1ble.
Computing by means of the unitarity condition the 1?aglnary
part of the vacuum polarization diagram of a time Yang-Mills qua-

2 ;& ’f
rig 2 --’-...._f__ 5’.2."(5’.:4—2/ (Z'f'/} -/(56)
2o~ ey p =1+ 92+ LG 2 L
Asymptotical expressions for the spectral functions in the regi-
on sezgah/é?gare

— - NP 6 _.-2
“”-"’?’/ff/""/:?f%z// +Fr-gp +)  op

/25/4 /z;’/é"y:%z"//—é—ﬁ-z‘#...) (58)

Contribution to the quantity /‘? Cb‘y(see (50)) frorﬁn the.term
of the fourth order in the coupling constant in the Hamiltonian
(57) can pe obtained, as it was noted in the end of the fo?rth
sectien, from the diagram 9 by closing its internal ap?enalces.
Together with the contribution of the diagram 7 which 1s equal ¥o

tum, we get

unity, it gives

Rp)=1+ (655 +5) (59

The final expressions for the Green function's components,
obtained by the substitution of the quantities (54)-(56),(59) in-
tothe relatiens (48),(50), are

D :-;e[/+;,§;/4z,/g_£:.f;+g£//_

,, 2 AR
_Eé}- }é/f‘g’ 4_//;1 +£—f/j}é+‘2/6w/fﬂ:/éfr (60)

~£° 7 1Bl +{Zs p% 2 -
U O e Pl ) el
7L

%)==l f1/2bfi-f 4 L
o 5 2 ~2 % p f
_/?+;é/455£ +}%/W£T/234+20§+3‘§5%1/¢61)

)
/5 ﬁ}ya'__; S S e
=47 /5/ Vo<l # +Z/ / &
= VB2 o 2, D,
L s #55 o) #2

Hora-i/fz is the uppes_limit of integration in the dispersion in-
tegral, ¢7/;‘:/= - / aly & /1—5/ is the so-called Spence func-
tion, 3 i

The logarithmie character of divergencies in the Green func-
tion means that in the polarization operator the constant part
which diverges as /f}' is also absent. In /7.,, it automatically
does not arise if the Feynman integral is computed non-covariant-
1y (firstly the integration over ﬂ, y and then over ;7_ Yo Ut
in //,, this constant part is cancelled with the Schwinger term,
i.e., with the quantity —yfﬁze"f”é‘&.)( (34 (=), j10)] ) which
is contained in the polarization operator. The distinction of
this vacuum expectation value from zero is due not only to the
apparent dependence of /f on /:: y Which reflects the necessi-
ty of taking into account the contact diagrams like 2 and 2a; it
is due also to the additional definition of the Yang-Mills self-
interaction current. The concrete form of this definition will be
considered in a separate paper. The corresponding definition of
the fermion isovector current was pointed in the articles/15,16/.
The scheme of computations used in the present work takes into
account the presence of the Schwinger terms automatically.

For the constant part of the polarization operator to appear,
for the massless particle to disappear in the physical spectrum,
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it is necessary (see(25)) that the exPressii?s in the curly bra-
ckets in (48) and (50) turn to zero when L% —- d . If the spect-

ral function /:J

is represented in the form

o (225 = Z (P d(z%) + 6 (%), (62)

these conditions may be written evidently as

/a{r-?f (Z %)= ﬂzja (& 4) ey
262 5Y) = R 1 flet L p (BT (D

_re i
The first of them, (63), means simply that Z(b = 0. It;:
quite clear that in perturbation theory no one of these condl 1—_
ons can be satisfied. Thus, contrary to the d?ubt? which aredc?n
tained in/1/ and contrary to the certitude Whlt"sh is exp::j-ei?en in
/2/, the Yang-Mills field cannot acquire mass 1n pgrhxz a ]T.z.avi_
theory. The analoguous statement can be made also for the g
tati field in perturbation theoXly. _
“atlogii izz the ang—ruiills field acquire mass if it is not deic—
ribed by perturbation theory? For this purpose the charge 111::;10;
satisfy simultaneously two equations (63) ar_:ld (64). The tze ey
(63) is the condition that the mass 1is acquired by the two s
with chiralities ¥ { which are possessed by :?. IEJE.LSS].ESS vector
particle; and the relation (64) conditions arising of the new,
third state with chirality J which is necessary for a vector. g
~apticle with mass. But these conditions at any rate do ncrf: GD:LD.—
;ide jdentically. One can easily check the last statement in per

turbation theory, comparing the limit of the expression in curly

i % 1 residue of the expression
brackets in (64) at /D — ¢ with the

(63) at the point L<=0 ¥ 2 b i
Zp%) =1+ -é_—z/é&,%t—é?-a-—-_?— (65)

Here .5?‘2 is the infrared cut—off parameter. , -
Mo?reover, despite of the dependence of the equations (63

i ' solution of these equa-
and (64) on 4%, the charge which 1s the b 2
tions é.annot depend on this parameter. As for the quan ity &, ;
Ll ...:

w

i the mass arises indeed, all exact expressions should allow 1li-

22

z'— 0,

Therefore, here the conditions of The wass arising are at
any rate even more stringent than in quantum electrodynamics
where the only equation £ = should be satisfied,which in addi-
tion does not depend on such quantities as /b_‘"" and E;'," .

It is natural to expect that in the quantum theory of gravi-
tation beyond perturbation Theory,for the graviton's mass arising
the Einstein constant should satisfy already three equations si-
multaneously. They are the conditions of the mass arising for the
states with chiralities £ .2 and of the arising of the new states
With mass and with chiralities ¥/ and & , (Evidently to the
chiralities,which differ in the sign only, the same condition
corresponds.) As for the dependence on /5"‘? and 3‘;" sy The same re-
marks as in the Yang-Mills case can be made. Therefore, here the
conditions of the mass arising are apparently more stringent than
those for the Yang-Mills field.

And now the last remark concerning the possibility of the
mass arising for the Yang-Mills and gravitational fields, If rea-
#onable assumption is made that with the growth of the charge
the contribution of the continuous Spectrum 0/ to the spectral
density increases, then in quantum electrodynamics,where the
sum rule (18) takes place, the vanishing of Z at a sufficient-
1y large value of € is more natural than in the Yang-Mills or
gravitation theories, where the right-hand side of the sum rule
(see (54)) may by itselt appear an increasing function of the co-
upling constant beyond perturbation theory also,

In conclusion, I wish ‘to exXpress sincere gratitude to A.I.
Vainshtein, B,L.Ioffe, V.I.O0gievetsky, V.V.Sokolov and L.D.Fad-

deev for the interest to +the work, valuable discussions and cri-
tics.

miting <transition
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