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TO THE QUESTION OF THE NONCAUSAL MOTION OF THE
PARTICLES OF HIGH SPIN IN AN EXTHERNAL FIELD

The quasiclassical description of the influ-
ence of anomalous magnetic and quadrupole moments
on the motion of a particle in an external electro-
magnetic field is constructed, For the wvector
particle both anomalous interactions may lead to
velocities exceeding the speed of light if the
classical radiation is not taken into account. The
existence of self-consistent description of inter-—
actlion with an external electromagnetic field for
charged particle with spin 2 is pointed.
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- Inﬁrﬁductimn

Nannrenormaliﬁability of quantum electrody-
nemics of the particles with spin > 1 is well
known, The anomalies arising for tThe interaction
of such particles with external electromagnetic
field are less known, In 1961 Johnson and Sudar =
shan/l/ turned attention to the contradictions
that occur in this case under the guantization of
relativistic wave equation for spin 3/2., Then
Velo and Zwanziger 7219/ noted that relativistic
wave equations for spin 1 with anomalouds gquadruy-
pole moment and for spin 3/2 may lead to the
motion with velocities exceeding the speed of
light in an external field., Of course, the ques-
tion whether such noncausality is retained when
one takes into account the radiative corrections
remains open, Moreover, the c¢lassical radiation
of a particle that turns to infinity when its
velocity approaches the speed of light does not
allow the particle to reach superluminal veloci-
ties even under the classical consideration of
motion/4/. Nevertheless, it seems that the
problem of the motion of the particle with high
spin in the exbternal field is of some methodical
interest, at least, as an example of relativisti-
cally invariant equations leading to nomcausality.

In this paper I consider in gquasiclassical



_“appfoximation the motion in external field of a
iy particle of spin 1/2 with anom&lous magnetic moment

and a vector particle with anomalous magnetic and
quadrupole moments. Sueh a problem was considered
previously in a number of works /5_10/. The equa-

tions of motion obtained in this paper differ from

those considered in works /5=9/. The essence of
these contradictions and their origin are discussed
in detail below, As to work /10/ our results over-
lap partly and in the region of overlapping are in
complete agreement,

| For calculation I consider anomalous moments
of particlés to bé numerically large, that allows
to take them into account even in zeroth quasi-
classical approximation, This condition is neces-
sary not only to simplify computation. It is of
principal importance because it allows to account
for the interaction of multipole moments of a
particle with an external field neglecting for all .
that the wave properties of a particle, that is,
retaining the notion of the trajectory of motion.

It appears that the interaction of both mag-

netic and quadrupole anomalous moments of a vector

particle with an external field changes the rela-

tion between its energy and momentum in such a way
that superluminal velocities become possible. The
curious effect found recently in the works/ll’la/
which consists in that the solution of a stationary
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problem for a vector particle with anomalous mag-"
netic moment in a homogeneous magnetic field may
lead to an imaginary energy is discussed, The con-
- erete example of motion with superluminal velocity
for a particle with anomalous quadrupole mnmaut is
constructed, ' |
Then the paper deals with the classical ra-

diation of a particle with anomalous moments moving
in an external field. The turning to infinity of
radiation intensity when the particle velocity
approaches the speed of light makes it impossible
to obtain superluminal velocities, at least, in the
frame of classical comsideration, this result being
in general agreement with the conclusions of the
workf4f

 The interaction with an external field of
particles with spin larger then unity is considered
briefly; the question about their magnetic moments
is discussed, The relation between quasiclassical
approximation and the perturbation theory where
the noncausality is absent is considered.

2. The particle with anomalous magnetic moment in
an external field

Let us consider the case of a particle with
spin 1/2, Dirae equation with anomalous magnetic
moment may be written as '

[r (c%d —--/,/—z ,a‘;jg-mg/;p;# g ay
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(Feynman metric ig used, fi’(f — (/ﬁ" § I &’;f,{r}'
the other notations are ob1r3.aua} Thﬁ quaaw.la.ssmal
gsolution is being looked for as ;ﬁ W ‘S
Assumption ¢4 =>> _/ ( ¢ - factor is, introduced, as

usually, by the relation /4/ ,;,:; .,:ﬂ where S is

the spin of a particle) allows, as it was noted 1in
the introduction, to take into account magnevic
moment in the zeroth approximation. Im this approxi-
- mation we obtain the following set of equations fox
the spinor & |

(s =5 G e =07 = ¢

_in which dimensionless variables are introduced

/u“";;}-/; /u/ /“ﬂmc*?";{

To obtain the characteristic equation of this set
it is convenient to use We::.l rePresentatmn for /-

h=(25) T=(%5)
matrices: /S — T 0 50/ Some tGedious
calculations lead to the following equation:

(12— 2 — 1) = 2 J i 4 TY & 2 (08 - CH,
b afehff-2(F -+ (5% 4eh/= 0

(2)

or in covariant form



(e~ // /a+¢7////w+¢aa,/,, ud +

///4%”/-# /%%/ Y, (2a)
Here —;5;3, 4 = /” ;//,..u =3 /er 24 -

Eqs.(2) and (2a) are the Hamilton-Jacobi equations
for a particle with spin 1/2 and large magnetic

moment, By the way, it follows from them that {Q/fu
does not coincide with 4-dimensional wvelocity the

square of which is equal to unity by definibtion;
i.e., not only the canonical momentum Q\f but
also the kinetic omne —9 S — j/ are not paral-
lel to 4-=velocity.

In the approximation _/ﬁ‘" / << .2/ it is
easy to express &, through &« , é from
eq,.(2). Small addition to the usual expression

U, =\ir?+4{  corresponds to the interaction of
the magnetic moment with an external field. It
gives the Lagrangian of this interaction if being
taken with opposite sign and written in usual
units

4= ;///‘? /C”A//‘:L A /—-—-E/—- 7/ 77 (3)

Here, ¢ is the three-dimensional velocity of the
particle, | |

The obtained approximate Lagrangian (3) has
a simple interpretation., In the particle's rest




‘ppame the Lagrangian of interaction of its magnetic
- moment with sm extermal field ie well knowns

__m_/&//é”}’ il )

Here and further the values that refer to the rest |
frame are denoted by primes. The signs L corres-
pond to the states with the spin projection +4
on the direction of the magnetic field A7, The
large value of the magnetie momeni; ( ,.a-‘-‘-,/ )
allows to neglect at writing 4.2 the non-inertia-
1ity of the rest frame which is due to the inter-
action of ‘a particle charge with an external field,
that is, ta the effect of Thomas precession /13,14/..
Lagrangian AZ is obtained from eq.(4) if A7 is
expressed through fields £ and, /é’ in the laboraw
tory frame and if the factor = [7— %z //
taking into account the transition to own time from
the laheratary.ﬁne, is introduced.

| Note, that if proper time is retained, that
is, factor 4 is not inserted and expression for
' /ﬁf’ ’/ -t;hrough E and /f’ is written in 4-dimen-

sional notations, then covariant Lagrangian of inter-
action

AZ:_/ /fa“;j:uﬁy — Yt d i (3a)

is obtained ih which J}’u may be considered with the
taken accuracy as 4-~dimensional wvelocity.



Thus, the bunch of particles with spin 1/2
and with the large magnetic moment in an external
field -is divided into two bunches with opposite po-
larizations which are moving along different tra-
jectories and the transitions between these Two
states in the considered approximation are absent,
In the case of non-relativistic particles and in-
homogeneous magnetic field it is usual Stern-
Gerlach effect which becomes observable for the
charged particles due to the condition .:r..:-f

The description of the effect of the magnetic
moment of & particle with spin 1/2 on its trajecto-
ry which is given by approximate Lagrangiam (3)
coincides with the description of this effect ob— _
tained in the work /10/ in another way if Thomas
precession is naglected But these results con-
tradict the equations of motion suggested in /5-9/.
E.g., in our description the trajectory of relati-
vistic particle is effected by the interaction of
its magnetie moment even with a constant homogene-

ous field; it is evident from the Lagrangian (3)
non-linear dependence on a particle velocity.

However, in the equations of motion given in works .
/5 ./ the force corresponding to magnetic moment
depends only on the field derivatives and for the
constant fields turns to zero. The relativistic
equations of motiom are obtained in works /5 ./ by
means of covariant generalization of certainly



correct non-relativistiec equations, Bubt it is clear
that the equations of motion resulting from (3) or
(3a) may be obtained in the same way, Thus, it is
cbvious that such generalization is not unique. The

defect of classical relativistic equations of motion
obtained in /5-9/ is that they do not correspond to

quasiclassical limit of any relativistic wave equa-

tion.

In some special cases Hamilton~Jacobi equa-
tion (2) may be exactly solved with respect to 7A
and closed expression for the Hamiltonian of a
particle mey be obtained, E,G,, for the motion in
magnetic field the Hamiltonian is equal teo

VAT e p W iz, 75T

Here indices L and / mark the components of
vectors perpendicular and parallel to magnetic
f::.eld /f , respectively, It is curious that at
.;é O and /z////_-.c/fz +#7°%c?"  the velocity
nf the particle with one of polarizations is equal
to the speed of light., In the special case of
motion in the plane orthogonal to the homoganeous
magnetic field the Hamiltonian (5) is reduced to

s I +/(/,¢// (52)

10



Let us consider now the effect of a large
magnetic moment on a trajectory of a vector particle.
The quasiclassical solubtion of Proca equation with
anomalous magnetic moment

;},;7;/-;—/( /f,/ e tr’c? ) - Liver /ugf :
/- SR

is being looked for as % ==l @éﬁ%/ In

the zeroth approximation we obtain the following

set of linear equations for vector &

/M
//—-.4(“’7&1,4—4/,(//,_,5}?/’“ %—Z('%%::ﬂ (7)

6)

The characteristic equation of this se{:, that is,
Hamilton  -Jacobi equation,is as follows

.(%3—2?‘1- I ey it v e ////af-—//é'?%—- 4'7-,-7-//4_‘3'}-
(78 () =20 T (B A+ 16 @4/ = O,

or in covariant form

(1) 42 > 1) 2 é/w//{,i)f{d //u/**% /)(Ba)

In the approximation /u one may, as
well as in the case of spin 1/2, obtam explicitly
the Lagrangian of the interaction of magnetic moment
with an external field. For the particles with spin
projections + / on the direction of a magnetic

1l



field in its rest frame it coincides with (3) or
(3a), For the particles with zero projection of
spin it is equal to zero. The interpretation of
these resulis is the same, of course, as in the
case of spin 1/2.

Again in some special cases the exact expres-
gion for the Hamiltonian of a particle may be ob-
tained from Hamilton-Jacobi equation (8). In parti-
cular, the motion in the plane orthogonal to a homo-
geneous magnetic field is described now by Hamilto-
nian
74

= [ (Fre ) e 2 M T m T~ ()

where spin quantum number Jf= -1,0,1, depending on
a particle polarization. This Hamiltonian at £ = 41
coincides with the corresponding Hamiltonian (5a)
for spin 1/2 but only in the first order in fA? .

The velocity of a particle described by
Hamiltonian (9) is

[ —

M_Ie___cZ _1_/ Pl m’e? suMé
op Ir J72+ pre T /}5—3+ m%,.?_f_jy’/g/m’(l
Its module

i St
oo /// -:‘-M‘PC' /// i -/-ﬁ/:(d‘ +//(%/fr

7 =

12

0)

%
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for s =% 1 in the case of sufficiently strong
fields may exceed the speed of light. Note, that
superluminal velocity becomes possible in spite of
the relativistic invariance of both initial wave
‘equation (6) and quasiclassical approximatlon to
it, that is, the Hamilton -Jacobi equation (8a),
 Besides, at g= -1 and JuH > Vit mT
the Hamiltonian (9) becomes imaginary at all,
This corresponds to the effect found in works
/11,12/. But,as it is seen from (10),with the _
increase of the magnetic'field-tha-velocity will
exceed the speed of light even before it, passing
the infinite value, becomes imaginary together
with energy if 7 does not vanish, If we neglect
noncausality then the appearance of imaginary
energy i& not something without precedent in
quantum mechanics, Comsider, for example, the
inverted oscillator, that is a non-relativistic
particle in the potential — j—' merzrt | 12, in
spite of the infiniteness of the Stationary motion,
we shall look for the solution of Sﬁhrnedlnger
equation W infinity then we obtain
evidently the imaginary proper value of energy
--zfap/xy .,r-:z-/ o The meaning of this result is.
clear; .. - The localized wave packet |
exponentially decreases in time due to the infinite-
ness of the stationary motion, In the pfoblem under

discussion at éa/é/)f l/, s _ the

13
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wmotion becomes also infinite; one can easlly ascer-

tain it by consideration, e.g., the guasiclassical

.equations of motion (under this condition the

Larmor freguency becomes imaginary). Therefore,

~_here the solution at infinity is a wave

packet decreasing exponentially in time,

I present also the exact Hamiltonian for the
motion of a wvector particle along the magnetic
field (e.g., along the axis of solenoid of fimite
length)

/Z’ ==l 1//52-*— M%gqc_jﬁy(#&/mj(‘?&)

P

for S = - 1 the velocity

At .Z/g.«,# > pec

e -?ﬁ?z'— 3 apparentl;.y, exce edff?- <,

ote in conclusion of this section that as
the noncausality arises for the interaction of
the magnetic moment only in the second order in
an external field then it may disappear after
inclusion of the terms of higher order in the ex=
ternal field into the initial wave equation. Just
in such a way the real energy/lz/, that is, the
finiteness of motion,may be retained for a vector
particle,

5. Vector particle with anomalous guadrupole
moment in an external field

Proca equation for a particle with anomalous
quadrupole moment

14



o T T +u},/,,?l{'+m%" , — (11)

_.___jo; %?Z- .+-A’ /%ffg _#/2{ﬂ
after substitution t{ = &, @ﬁﬁ "% /

leads in quasiclassical approximation to the follow-—
ing set of equatioms

where }‘7/! Zm’/ﬁg‘) _,f-gf;r_,gj% "+ The

characteristic equation of this set

(A P e ///aaf,,/d/w,, zﬂ“}//f"
(G v Pid e Y = F v 0 Yoips )+
4;2£Z£égLv;4&JfZiz:9§pu ‘“C%ﬁnfﬁ%igz5§zz J

is the Hamilton-Jacobi equation for a vector particle
with anomalous quadrupole moment. While deducing this
equation it is supposed for simplicity that in the
considered region the sources of the external field
are absent, so that#zgr = O,

If limiting oneself to the terms leading in
ﬁm’ , that is, in Q,and taking also /J( /_:- / we
reduce eq.(13) to

(13)

15



(= r‘*{f,ﬁ;“?‘“’ (% {”?{j% & %JJ dﬁyj = J (13a)

Solving in this approximation eg.(l3a) in respect to
i, one may construct the approximate Hamiltonian of
‘a particle

=c/%’+w%’[/+4‘;fg ‘Z/f_ .V(L#/J-V fin)

_ L L _ 7 +C V7

N /f_f/ o TG vz
The obtained quadrupole addition to Hamiltonian

permits clear interpretation. In the proper system

of a particle the Hamiltonian of interaction of its
quadrupole moment with an external field is

T~ ﬂ..., ——4@£+£,, £4.. 5J4 £ as)

For a vector particle using 'bhe expllcr!: form of the
angular momentum operator J,,, :'—C’él.we' (indices
X 5 = 1,2,3 refer to the space of spin wave func-—
tions )and supposing that, as well as in eq.(13),

; E 0, the expectation value of interaction
energy may be written as:

“alliety = E S (WE+ZE]) s)

- Here

X

16



’4—4515;’ retaining
in it only those components which being expressed
through the quantities in laboratory frame Will
contain the largest degree of / , Such a degree

is J“? occuring in derivatives along the velocity of
the field components orthogonal to velocity. In this
approximation the diagonalization is carried out in
the closed form and gives

WAE ';—’*7 (V.7) (£ — ;7/;74-"7// (16a)

Passing in (16a) to the laboratory fields, coordi-
nates and time (the latter leads, in particular, to
common factor ir“fj we obtain the following expres-
sion for the energy of quadrupole moment interaction

sd v
il =5=7 # V/V +an,{ (17)

Here we remain in the space of spin functions de-

termined in the proper system, It is easy to see
that eq.(17) coincides with the accepted accuracy

with quadrupole correction in the Hamiltonian (14).
Note, that the transformation of interaction
(16) to the laboratory system is not unique opera-
tion, For instance, the presence of anomalous mag-
netic moment of a vector particle'leads-to the

F
Diagonalize the matrix 4 L2

l?.



/15/%

dppearance of quadrupole momen in non-relati-
vistic approximation. Meanwhile, the addition bo
the relativistic Hamiltonian of a particle from the
interaction of a magnetic moment obtained in the
previous section does not atb all resemble the eq.(17).
This ambiguity is connected with the question of
transformation of 4Adimansional divergence of a
vector field which differs from zero in the presence
of interaction amnd time component of the field
arising due +o the interaction even in the rest

frame. Just thase qgantitlaa belng expressed through
the prasance of anamalouﬂ magnetlc mament lead t@
the appearance of quadrupole intaractign in.nanu
relativistic approximatian.

The vela@i*y of a vector particle descrzbed
by the Hamiltonian (14) z;'* = Tg'—'{— nay exceed the
ispe@d of light for J‘-_$ 1 at sﬁgficiently large
rnomenta apd fiald derivatives, Here it tekes place

* The method by which the nom-relativistic approxima-
tion is obtained in the work /15/ seems rather compli-
cated, It is more simple to eliminate & and 7, &,

; bl

~ from Proca equation and then to make en expansion in
:f/’ taking into account the change of normaliza-

tion of wave functions as it is done in the book /16/

in order to obtain the non-relativistie approximation

%o Dlrac equation.

18



in the first order in the interaction of anomalous
moment with an external field. For illustration
consider a particle motion in the electric extermal

rield £ = (£ lzs) E,(xy) J) #lin the first

order in ﬁ . It is convenient to proceed directly
from the Hamilton-Jacobi equation (13a). For sim-
plicity suppose also that the particle is not
charged., The solution is looked for in the form

,f

/R’HZA/““JZL%—/@?I-&/@.?-%&Mf/ %18) .
where &° = Cz()ﬁf - ;V—&—M KA4 » Taking -into
account Maxwell equation for the external field

G+ =y =y

and retaining the terms of the first order in cf,
we find from (13a) after substituting (18) +the
following equation for / ({g';“.ﬁv‘/ 3

O W

Its solution is

Flas/=p Ll los/— o £ ls) @)

The trajectory of a particle is determined, as
usually, by egs. = = = 5’ The explicit form of

these equat::.ons with the accepted accuracy in (? is

19



digi m_(’ B )= vyt Lt %2
78 »”7.
y=u,2- 2 Et)ent- 22 Lletnt)
e Yprc? T %oy Gpsrc? -
(22)
Here 2~ — j‘f = -7£ . The square of velocity is
o %. Cg : |
equal tq -

F=2wy= f ’ﬂ/.;,_,. 2, O — (% — ¥, j[érs/(za)

ch r= f
L

in the first order in ¢ . It is evident from (23)
that for the given state with s =1o0r sy = -1

one may choose the vector of unperturbed velocity [/
sufficiently close by modulus to the speed of light,
so that the total veloeity of the particle exceeds C,
Again the velocity of the particle may exceed the
speed of light in spite of the clear relativistic
invariance of the corresponding Hamllton—Jacobi
equation,

Does the e¢onsidered effect take place for a
composite partlcle with quadrupole moment? If the
'quadrupole moment is due to a finite size of +the
particle then there are no grounds to expect for

this effect to arise, Indeed, in such a case the

20



interaction Hamiltonian of guadrupcle moment with
an external field, before averaging over the inter-
nal motion, is equal in the rest frame to

o) 7 i (24)
AH =r 7 enlald
The sum is taken over the internal particles, & is
7

a charge of such a particle, 2, is its coordinate;
¥ it is supposed that o, Z.  =0. The interaction
energy in the laboratory frame obtained by transfor-
3 mation of the formula (24) does not increase with

increasing J . The point is that now due to Lorentz

contraction Df'g;:thﬁ factor J“"/ arises which is

extra one in comparison with the transition from (15)

to (17). It is clear that the averaging over +he

internal motion can not change the situation, Thus,

the Hamiltonian of the quadrupoie interaction in

this case differs qualitatively from the Hamiltonian

that follows from the Proca eq.(ll). Since now the

ratio of the guadrupole Hamiltonian to the main one
tends to zero at 2+—»¢ then there are no grounds
to expect superluminal velocities in this case.

4., The influence of radiation on the motion of the

particles with anomalous moments in an external
field

\ As it is known, the intensity of charge radia-
| tion at 2*— & increases, generally speaking, as /%,

2L
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Here £ 1is the photon momentum, Using the condition
that the radiation is the c¢lassical one K << O, we
write ggﬁ-f/ﬁ dr/;@‘"/_-fﬁ so that eq,(35) gives
the relation

zceosl = ¢ (26)

where ég is the angle between the particle velocity
and the photon momentum, It is clear that at 2te ¢
there is no radiation, and at 2>, +the radiation
of Cherenkov type arises? The intensity of usual
Cherenkov radiation is finite due to the fact that
the dispersion of a medium limits from above the
radiative frequencies, In our case the intensity

of Cherenkov radiation is infinite, since the spec-
tral density increases as @’ , @’ and wfrespectiw
vely for the charge, magnetic and quadrupole radia-
tion, and the cut-off in frequencies under classical
consideration is absent. In a wvariable field +he
radiation intensity remains infinite since with in-
creasing frequency the radiation becomes more and
more local and feels weakly and weakly the deviation
of the field from the constant one, Thus, the clas-
sical radiation of Cherenkov type makes supérluminql

* Phe idea of this consideration is contained in
essence in the Nobel lecture of I.¥W _ Tamm /17/.

e>3



velocities impossible.
Let us return to the velocities lower then C,
_We are interested just in the variable fields in
whieh a particle velocity inereases and for which
" the radiation is not forbidden due to (26). What is
. the behaviour of radiation when 2* — £ ? |
According to the approximation being used in
the work for the description of the particles' mo-
tion, first of all let us consider the radiation
without changing J , that is the polarization of
a particle, By the way, for 4 corresponding to the
lowest energy such radiation dominates,
The magnetic moment of a particle with the
given JS' _in our approximation is a usual vector
_; /% / . The intensity of a magnetic
radlatlon ealculatéd in the rest frame by usual for-
| mulae /18/ I =353 / in the laboratory frame

is

: 7.7
£l 32- aft“-’/i// ’ (27)

jgfzzjézﬁtig_ﬁi 7 (242, an4m49’ #/Z;navﬁﬂh/

- Whe;i f—C it tends to infinity as / ®
| Let us turn to the quadrupole radiation.
Taking the variation of the Hamiltonian (16a) in

vector-potential 5/ we find the current density in
the rest frame

24



s (3. PIE—-FVEY $Y2 ey
/7 e ﬂz“’/ & (v PI(E — v ¢ 28)

Hence we find in the usual way /& the radiation
intensity

(3. FIELT(VEY |2
fﬂc sz""/[y PI(E - v(VEDY e

In the laboratory frame it is as follows

-Z- 6 /.? g_,p’(p’f_ﬁ_}?xg /..:?.
c’"fc: o’ /"’g—— (/Vf/ahfx% (30)

and tends to infinity when 2z+r—»>c as ¢ .

For completeness describe the radiation with
the change of polarization. It is convenient to find
its intensity in the rest frame by the standard quan-
tun-mechanical calculation and then +o pass to the
laboratory frame, For spin~flip radiation of a vector
particle we find

s 4£5‘ k/ 7/ :
[ = /75./ (31)

The increase of magnetic radiation ~ 7t at 2 is
a well known fact (see,e.g., /19/). The intensity of

22



quadrupole radiation with the polarization change of
a vector particle is

B -MERR AR Nl
I=F0 [ v ) g ) oo

Here, alongside with tramnsitions (g =0) — (s ==1)
and (5 =1) — (s =0) there is transition (g =1) —
(9 ==1) with 4y =2 and the intensity of 64 times as
large,

Therefore, in all the cases under consideration
the radiation intensity tending to infinity at ¢+ —¢
does not allow to reach the speed of light.

In principle, the cases are possible when the
velocity of a partiele increases and the radiation
is absent while 2¢r< ¢ . The example is the motion
along the axis of a solenoid of the particle with a
magnetic moment directed along a magnetic field
(see (9a)). The spin-flip radiation here is forbidden
due to the energy conservation and the magnetic moment

.:3/Q S does not at all depend on time,
He?erthefg;s, in the real problem taking into account
the velocity spread and non-ideality of an external
field leads to the infinite radiation and impossibili-

ty to reach the light velocity.

26



5. The particle with spin 2 in am external field,
General remarks.,

Why for a vector particle-dﬁea_the interaction
of a magnetic moment with an external field le=ad to
superlumiﬁal velocities, while for a spinor particle
- 8uch effect is absent? What is a spinor particle
distinguished by in comparison with a vector one? The
point is that for the particles wibth spin larger thanp
1/2 the number of components of relativistic wave
function is larger than the number of independent
degreas of freedom 254+ 1. The elimination of extra
components leads to the interaction for independent
polarizations which allows for the superluminal velo-
cities, It is the cause of difficulties in the desc~
ription of particles with spin 5/2 in works /1,2/.

- But the existence of interaction leading to
superluminal veloecities may be also unconnected with
extra components of a field., For quadrupole interac—
tions 1t is evident from the considerations by means
of which the interaction (17) is obtained out of the
non-relativistic Hamiltonian (15),

One should expect, therefore, that the inter-
action with an external field of particles with spin
larger than 3/2 will lead %o superluminal velocities
also,

But we can not agree with the statement /3/
according tec which there does not exlst & consistent
description of interaction with electromagnetic field

er.



for charged massive field with spin 2. First of all;
due to the fact that such a description was construct-
ed in the classical work of Fierz and Pauli /2%, The
._Lagranglan proposed in it

/ﬂ' f/ =5 )’44?//&}/"«# %fr B /‘f«r’?f Gy~
m’c"/k,,/()/w %ff?/*' L e /7%--
[,q f/(fw 7, -f-/?’j%f/z %y/ | (33)

?here ﬂg“, is symmetric tensor with zero trace, y&
is subsidiary scalar, leads just to 10 necessary con-
strain#_équationﬁ even if the terms corresponding to
the change of magnetic moment are included, The ques=~
tion of comstraints in this theory has been considered
in /20/ exhaustively, Now on the formalism used in /3/,
- The proof given in this paper that such a formalism
contains eighﬁ constraints only, cannot be correct
because it refers as well to the case of a free flEId
 where there are_unduﬂbtsdly ten constraints, Moreover,
I succeeded to find the ninth constraint equation for
this formalism.'lf, nevertheless, the formalism used
in /3/ appeared to be ineonsistent this would mean .
only that the Fierz-Pauli description should be pre-
ferred. |

Note, that the magnetic moment of a particle
being described by the Lagrangian (33) is eﬁgkéigﬂ: s
It can be easily seen if ome omits in (33) after in-
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tegrating by parts the terms with charge € in a
degree higher tham the firat'sm&ﬂ Then all the terms
containing /e!/ and .?; /(;é;a.: drop ocub; for a free
field these terms are equal to zero, and they enter
always quadratically. After that the Lagrangian (33)
is reduced to

| e P 2 4 7 .';{_ 7
= /gf%w /Q//ﬁm{ — sr'e /“"%‘“" e %ﬁjﬁd{ﬁa)

The Hamiltonian of interaction with an external mag-
netic field A = (g é;éf/ for non-relativistiec
particle with 5, = 2 which can be easily obtain-
ed by means of simple transformations oub of the last
term in_é;Ba) taken with an opposite sign, is equal
£ s ,.z%;/{ - It is clear from it that & = S%.
The natural generalization of Proeca Lagrangiam for
spin 1 and Fierz-Pauli ome for spin 2 to the case of

arbitrary integer spin is |

Z =1 0 Y ow. — B i, Naorn ~ o fom. ) —
| (34)

G /-5'*"" //’/F.uf/u?:r E%vz.. _Mé%{;%vx/{‘

Here, the terms are omitted which depend upon the
subsidiary fields; these terms are not interesting
to us since they do not contribute to the magnetic
moment, Such a choice of a Lagrangian is preferable
because it allows one to obtain the constraint equa -
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tions in the simplez_st way /20/ . The "magnetic™ term
in (34) is (“/ﬁ'—g—- “%‘Sﬁ“%’m“ , that leads
' 2 ez

to magnetic moment M — — at any spin S .
The particles wi‘bh'arfitrar}f half-integer spin |
described by the Rarita-Schwinger Lagrangian /21/

A — (_//-"“é}é:m /?f_mf/c/f_,, '!E“ﬂ'/%//:-v‘-f:,i -+

+(Za+ar 3’-' /}; }51;;, + [Tty Fa+ //Mff., /’;,//(/y : (35)

( & 1is a.rbitrary real number not equal to =1/2,
A : %O ,
= ) have also the magnetic moment £45,,..

S _
Indeed,/k since ;@ ;/4, and 5; G are equal to zero
for a free field then the terms with these quantities
in (35) are o~ 63‘2 « Theref.re, the interaétian Lag-
rangian to the first order in the charge &£ is

br = .
/*//'f+é%,__ &5/}}% . The spin part of the inter-
action Hamiltonian in a non-relativistic approxima-

: . €4 _ ., £l
tion .i.s. ~ e Do.. f/?ym . For the magne-
tic field A = (Jd A/ =ud the parbicle with

- . : e _ ;
3y == this Hamiltonian is — 5== A/ . Thus, it

is clear that the magnetic moment /d( = ﬁ%ﬂ 2

The hypothesis that the magnetic moment of a
particle with an arbitrary spin is equal to €Z e .
was made by Belinfante /22/ and was proved at first -
for half-integer spin /21123/ tnen for spin 2 124/
and, at last, quite recently for arbitrary spin

30



{25f$ﬁ All these proofs seem to me to be too compli-
cated, Besides, it is necessary Lo stress all the
convention of the obtained result: it is clear that
one can'alwaya add to the Lagrangian the terms de=-
pending upon.Jéz;, which may lead to amy value

of the magnetic moment.

In conclusion note one more curious circumst-
ance, Solving any wave equation leading to super-
luminal velocities by iterations we shall mot obtain
the noncausality in any order of the perturbation
theory; causality is conserved due to the very struc-~
ture of retarded Green function /2/, It does mnot
mean, however, that in the perturbation theory every-
Thing is all right. For the non-renormaligzable inter-
actions the increasing divergences arise here and
the scattering amplitudes increasing with energy
lead to the violation of the unitarity condition.
Repeatedly the hopes were expressed that the summa-
tion of perturbation theory series would allow to
get rid of these difficulties, The used approxima-
tions (quasiclassicﬁ, the expansion action in the
coupling constant) are equivalent to the partial
summation of the perturbation theory séries. But
having got rid of the divergences and unitarity

* The paper /25/ became known to me only after this
work had been over,
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. .yiolation we come across not less serious difficulty,
- 'that is the noncausality. Here it is necessary to
note th&t, strietly sPaakiﬁg,_the.applicability of
the external field approximation in the case of non-
renormalizable interactions is not proved, '

I am sincerely grateful to A,I.,Vainshtein,
Ya.S.,Derbenyov, B,L.Ioffe and A,M.Kondratenko for
numerous valusble discussions and important remarks,
and also to I.V.,Tyutin who turned my attention to
the paper /4/. | |
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