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The interaction of ah electron beam moving inside the mag<
netic lattice with the electromagnetic wave is considered. It

is shown that under certain cdnditinma the generation (ampli-

fication) of the coherent electromagnetic radiation appears. o
The gain is calculated. :




The relativistic electron beams passing through a static,
transverse, periodic magnetic field (magnetic lattice) are one
of the possible sources of coherent radiation. In recent years
free electron lasers of such a kind have been discussed quita'
widely (see /1,2/ and the cited references)., Specific features
of such lasers are: 1) a broad frequency range due to the fact
that the radiation wavelength fk is connected with the period
of the magnetic lattice /\o by a relation )l et }/A’ where
K' E‘E(Ph) is theelectron energy (mass)); 2) a possibility
to pass into rather short wavelengths (at large values X ).

Early in 1976 the gain in radiation of a CO, laser /3/ was
achieved in the electron beam with energy &£ = 24 MeV and very
r&cently the same group has also obtained the genaratlon of in-
frared radiation ( A=3 41T pA ) /4/.

The presented by authors model of a free electron laser
“/1-4/(see /5/ as well) is based on the quantum induced magnetic
bremsstrahlung although in a realistic situation Plank's cons-
tant is not included in the gain expressions. In our opinion,
this model is unedequate and does not contain a number of im-

portant matters. Below it will be shown that the action mecha-

nism of a free electron laser may be described within the frame-

work of the classical theory, the phase regime playing a domin-

ant role. Both the generation and amplification of electiromag-
netic waves are possible at certain paramet;ra.

Experiment /3,4/ was made in the magnetic lattice with a
helical magnetic field. In such a lattice the electron moves




3
along a helix with a constant speed which is parallel to the i{'_::_ =Sk (u E!H\P —- uzﬂ:&@)
axis of the lattice, what is equivalent to the motion in a lon- | O{f.{‘"
gitudinal magnetic field. Since the transverse momenta are small C{'t“ ¥ i 7 .SJH‘F(U -—“?’) + Séo U S'"(v
(/O,; >> 2, ~/ ), the incoherent radiation spectrum represents
a Tew separated harmonics which are Doppler-shifted with res- 9"[‘{2 _leos.\P (q _“3) S2oU C'C'SC/ 2"}
pect to >‘0 . Broadening of these harmonics is due to the fi- dT A
nite number of the lattice wavelengths. If side by side with the _ CTC-{'-?’_ o i~ (‘H{Jﬁ'({ﬁg ___u?m \_}izy)
magnetic lattice there is a wave propagating along the lattice _ E’f_{" F d.:‘ g ' <
L :

axis, then an additional coherent (induced) radiation appears 2 :
that provides a more efficient tranafer of the particle energy g“,_f‘ = R “Z__ff_. (af.smcp _uac‘.‘as ‘{3/ (3)
into the radiation within a h::ﬂaﬁ pa?ameter rangﬂj This ei:‘fe-::.t i Qi e#w- e__H Lo 4&:‘92/1/6
occurs in any types of magnetic lattices, in particular, in _5-2_ _— n:? i 2, = ;h._c. P ﬂt..?,p == 7 |
a plane lattice. Symmetry of the lattice determines the wave <. is the proper time, Vig the volume of the electromag-
polarization. netic radiation bunch,ﬂé is the number of electrons in this

We now consider the motion of a relativistic particle in volume. The line in the last equation (3) denotes the averaging
the superposition of the transverse magnetic field and the field over all the electrons in the interaction region. This equation
of the plane electromagnetic wave propagating along the direc- describes the change of the wave field because of the interac-
tion of a particle motion. The axis 7Z 1is chosen along the lat- tion with all the electrons and followe from the energy conser-
tice axis and the magnetic lattice is taken to be helical | vation law. _

F3=H sin (%gj 5 FES= f—f Cos (%3) () | oA picZ - U° = < Hw il (4)

‘ | Ao d'f‘ &7

And the wave is agsumed to be circularly polarized. The wave »
field strength is represented as follows Assuming that —SZ is the smooth function of time, we in-

}f*‘-’: H _,, ('aﬂ f"c}' J/qg/ ~ 3@’1(,}-‘ "H(tp/) 2 . tegrate the second %nd_j;_iﬁ emtiiii of th;s:t (3) ¥

w | u£=_[—;¢¢sup*-—6as(—)*a

where 9{“":({,@,0,?&}3 Y = V{"‘)-PH"', | i sl 1y i /-:"C?E
a*= dﬂA/de , At=cosw ,a%= sy | = "“‘[T, S p Va j

The equations of motion in this field have the following ;

As will be seen below, near the resonance the wave frequen=-

form: : o
2 . o~ <{’<’ i

cYy V-~ 23’_% and of interest is the situation when v SR e

In order to a itransverse displacement of the par;icle in the lat-
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t:u:e does not excaed the oscillation amplitude it is necessa-

ry that & ”"‘-:f-zf A SN (here /V ia the number of the lat-

tice wavelengths), 'than w o) = u?(0) =
Substituting the solutions (5) intcr equatinna (3) we get

the set of equations

(ﬁ' _— 2:\252‘} SI& ¢

F) e i
= sle 0. Sl (6)
2 Vo .
where
£, N E
?5 = i = 5

The terms ~ %,z are discarded in (6). We carry out the substi-

tution in (6)

Note that y(o)j=4 . Then these equations take the form
9§’V é%;f Sin gﬁ
JH’ :ﬁ <Th ¢ . (6')
where /3 s a’.qu J/_____!—E__;
2v% Ru I SLw

The initial condition for ¢ (see (7)) is

x = @) mﬂ({’ z) S

here \ 1
— .-,G

In the-centre of the resonance line g = 1, 1.8,

): (z—ﬂ- ‘7 | .(93

When passing thruugh the lattice the "time" increment is equal

¥ 25/ Vo, Qu

S X
it RNl , = &4 , what is valid when the wave field
is weak, the solution of the set (6') may be found in the an-
alytical form by using the perturbation series expansion in in-

verse powers of o¢ ., In this case ;
a{.s) = .{,/553;?(1-?—;_5) o (1)

where

/| Sin2 ) Sta 2 :
’?(3)‘: 2 =2 [—-E— --f:ns.;_-') (12)

In deriving Eq.(11) the electrons are assumed to be uniformly
distributed over the initial phases at S =0 . The function

(see Fig.1) describes the dependence of & gain on & distance of

the resonance (cf. Fig;ﬂ: in /3/), the maximum value K n bex

ing 0.135 at & = 1.3. Taking account of Eqsi (8) and (10) we

have that in the maximum A the function Z-& s '54-,\/ At
a single passing (amplification mode) the resonance line width
is determined by the function ﬁ (Fig.1). In this case, at I/e
half-width ;-fjﬁ , that gives %V = 0,4% in agreement with
experiment /3/. In the generation mode an additional narrowing
of the line takes place due to multiple passings. Estimates
show that for experiment /4/ the line width should be twice as
narrow, what is in agreement with the observation as well.

The wave is naturally amplified with the same polarization.
as the initiai one. Moreover, this polarization should corres-

pond to the lattice symmetry. From (11) we have for the gain

Q-_‘-J'z*i = 2y (’ﬁ“';) (13)

" where

P( 2) WL SREN 3.7

20 r-’iﬂq

22.— 3 EIJ/V(Q—A?/




Formulae presented above may be applied directly to the
'descriptian of the wave amplification /3/. In the case of a
small amplification when a—i 4’4;{_ , in (13) it is possible to
confine ourselves to the term linear over D - In this par-
ticular case, the dependence Q on &in /Y,ai‘ﬁ) ‘j’ia in ag-
reement with that found in /3,5/. However, even in this event
there are essential diffarences,.firat of all, in the fact
that Egs., (11) and (13) determine a form of the resonance func-
tion,

In the case of generation a bunch of the electromagnetic
radiation moving in optical cavity successively interact with
the electron bunches. In the beginning of the generation the
wave field is quite small, i.e. 2257 (see (8)), then Egs.(11)-
-(13) are applicable. The generation is posaible if the gain
@ > Xef where Xf 1is the total loss coefficient ({rans-
mission of mirrors, diffractional losses, etc.). For a confoc-
al cavity when a transverse cross-peciion of the radiation
bunch is fa— ( 13 is the diatance between mirrors) this

Z

inequality may be rewritten as follows

< 5) e GE W

where Ea- E ~, 1is the classical electron radius, g is the
electron current. This expression determines, particularly,

& threshold magnitude of the current.

As the wafé field strength is increasing, inequalitfies
 determining the applicability of Egs.(11) cease to be fulfilled.
In thiq;ﬁaaa the set (6') has been solved numerically for the

parameter region close to those cited in /4/. This solution

7

shows that the gain é: which for a weak field (13) was inde-
pendent on ﬁﬁfq begins to fall down with increase Har « In
Fig.2 the dependence of the gain on #“ZL/ is shown. For strong
fields the spectrum function is also distorted (see Fig.1). The
dacregse of the pgain gives rise finally to ceasing the wave
field increase. After that the generation becomes statlionary.
All the presented results concern the electron bunches
with the uniform initial distribution over phase. In the course

of the electron interaction with the electromagnetic wave and

magnetic lattice the phase distribution transforms so that at

the electron energy higher than the resonance one (see (9))

the radiation of an electron bunch exceeds the absorption, and
at the eledtron energy lower than the resonance one the absorp=-
tion dominates. The most efficient transfer of the electron
energy in the wave field would take place in the case when at
the beginning all the electirons were pﬁased in an appropriate
manner, and the increment of the phase when passing the elect-

¥
ron through the lattice were d'¢*-'f<~’£ . In such a situation

the gain 1is
= il

so that at C?tf\+‘<ﬁF the resonant loss of the energy by elect-
rons occurs, and at =% < W <O we have the opposite situa-
tion. This result may be considered as an upper limit for the_
resonant energy transfer from the particles in the wave and
inversely.

After the present paper was completed we were aware of
the works /6/ (we are indebted to V.N.Korchuganov who payed

our attention to these works). In these papara'the_clﬁsaiual




theory of a free electron laser is discussed. The field of the
lattice is replaced hy the field of the incident eleciromag-
netiﬁ wave, what does not provide a correct description of the
- phase since a compensation occurs in it. This leads in furn to
& significant deformation of all the results, particularly, the
resonance condition (9) in /6/ does not involve a factor

: ( L+ %j:. ) which under the experiment condition /3,4/ is 1.5.
. We wish to thank A.N.Skrinsky for many invaluable conver-
'Eations, we are indebted to M.M.Karliner, G.N.Kulipanov and
E.L.Saldin for for discussions. Authors wish to expresa their

gratitude to M.S.Obrekht for the help in numerical calculations.
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FIGURE CAPTIONS

I ﬂj f
Pif.1. Puction K(Z),z=- 5 ; (1)-theoretical curve

5

at weak fields of the wave (formula (12)), {.-?}-—Ifmmtinn
for a sirong field (/5 = O.1’1,H%_, = 7'1{}"2, S =
= 2,25)

Fig.2. Dependence of the gain on the wave field strength

(/@53 = 1,78)
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