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Abstract

It is proposed a manifestly relatiﬁiﬂtid—invariant formu-
lation of the method af inverse scattering transform for
relativistic-invaeriant equations. The sine-Gordon model and
the Magsive Thirring model are considered.

1. Introduction

The inverse scattering transform method enabled one to
analyse in detail a wide class of nonlinear equations from
various domains of physics (see reviews /1-3/). Particularly,
the relativistic-invariant equations being of interest in the
field theory have been recently studied. Among them are the
two-dimensional space-time models, namely: the sine-Gordon
equafinn /4-6/, the massive Thirring model /7/, the theory of
chiral fields./8/ and the others. The inverse scattering
transform method is also applicable to the relativietic-in -
variant equations in the four-dimensional space-time /9/.

An initial point of all these papers is: an equation pos-
gesses the Lorentz invariance; the solutions of this equa -
tions are covariant under the Lorentz group too. However, all
intermediate steps and formulae possess no Lorentz invariancy,
or their Lorents-invariancy ie far from to be clear. There is
no doubt thaet such a version of the solution method at which
the Lorentz-invariancy is conserved at each step (and moreover
thie invariancy is manifest) is urgent.

In this paper it is proposed a relativistic-invarient for-
mulation of the inverse scattering transform (IST) method. As




examples, the sine-Gordon model and the massive Thirring model
in the two-dimensional space-time are considered. The basic
steps and the formulae of the IST method - the linear problem,

the direct and inverse problems, the triangular representation,

the Gelfand-Levitan-Marchenko formulae, etc. are written in
the Manifestly Lorentzinvarient form, that provides the
Lorentz~invariancy of the resultes obtained. Particularly, all
integrals of motion cen be obtained as tensors of different

rangeas.
The posgibility to formulae the IST method in a relati -
vigstic-invariant fashion is due to the following. First, the

initial nonlinear relativistic-invariant equation can be rela-
ted to the relativistic-invariant linear problems:

T"‘ <P=O {11)

where the differential (matrix) operator 7;; (H=01) 18 a vec~-,
tor under the Lorentz group in the two-dimensional space-time.
The relativistic-invariant condition of commutativity

[E"’J "}':j____ O (1.2)

ia equivalent to the initial equation. Second, the gpectral
parameter in the linear problem (1.1) possesses the definite
transformation properties under the Lorentz group. For the
pine~-Gordon equation the spectral parameter is a vector, and
for the massive Thirring model - a two-component spinor under
the Lorentz grc-upq Third, the surface x,;:f:c.chsf ‘may be
replaced by an arbltrary space-like one thorouhout.

In the next sections we shall use the notation and the
conditions adopted in Refs. /5-T/. For this reason, all  the
intermediate formulae and constructions are omitted.

1) The fact that the spectral parameter and operators To , "I
in the massive Thirring model is transformed uﬁder the Lgr-.:mté

transformations was pointed out in Ref. /7/. For the general
cage gee /10/.

For sine-gordon equationsg linear problem in the form
TC.D = D,X@:f O is also used in review paper of L.D.Fad-
deev and V.E.Korepin "Quantum theory of solitons in Phys.
Reps, 42C 1, (1978)
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II. The Sine-Gordon Model

For the sine-Gordon equation
U‘P@ + mASin Pi)=0 (&)

the operator T,u hag the fnmm:

'-L::.- 20 +-$§W—?—'£ 61+ 0 % QuS2 ffj‘sm&%ﬁav 03 (2.2)

) e oxY

where '2'5,-;)5.}) 63 are the Pauli matrices, &,y is the anti -
gymmetric tensor ( &gz=4 ). Here and be{gw the indexes
AV, Gen, are Lorentz ones ( /c{,b:,jj = 0,1) . and the summa -
tion ig performed over the repeated indexed. The vector Cl/u
being independent of co-ordinates satisfies the condition

_ i
Q/u o},, n (2.3)

The vector Q« plays a role of spectral parameter. By Eq.
(2.3) the latter may be represented as follows:

B3], amglfod), wo

where )\ is an arbitrary number. The number ). is a spect-
ral parameter in the noninvariant formulations of the IST
method for Eq. (2.1) /5,67,

Let us consider the direct problem for Eqs. (1.4). The
involution relation follows from the form of the operator ;‘{
and is the following:

Plxa)= 6z @?&a). (2.5)

The agymptote of "P is determined by the behaviour of 7}; at
x/“ ‘5‘-__-_- ¥<.» - ©0 . One assumes that Lp(;g}-ao at )('z-a-»op s AB
a result, we have the equation for asymptote €

({5%'“ + —,%C?/a 55)62 = ) (2.6)

This equation has two linearly-independent solutions:

2] Note that Eqe. (1.1), (1.2){3:‘# inveriant under EB& "SL(2)
group of transformations P> @=5®, w=>T =SS N
Thuag, the whole class of operators Tu correpponds to Eq.(2.1).
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exp(-iaﬂgu . [exptax _
. L= .z. ) 6'!: P't_/“'ﬂ =g (Z2.T)

cexp(~5£8u%)/, ~L €XP £ Qu X
Let us form the matrix

E(JE,CR)::[@)-—E;*)‘ . (2.8)

Hext, one definéa the matrix solutions P and G— of Eq.(1.2),
by their asymptotics on space-like infinities (at real Q/u )

Frra)->  E(xa) at X%y- o0, Ke 3G o

G(xa)—~ E(x2) at X%>— o8, Xz <O

At a real Q/u the ma‘t;rices—snlutinnﬂ F and G— are funda -
mental and, therefore, there exisis such a matrix T (the
trangition matrix) that

Fra)= G(xa T

There is no difficulty to see that ofef F= a[ef@ m.’efE- -

Whence : m!{?{ 7—,=

Then, using a number of relations for F &, E)T , it ie pos-
gible to show that the transition matrix is representable in

the form: ¥
A(xfa) P 3 L_/x;a)
o (2.10)

- +
B (%, Q) ) A (xf @)
The following relations take place as well:

A*t’){,~a)= Alxe) B*[g-a).-.,-ﬂﬁfa)(z.n}
2 A= ff et ( & k i (2.12)

54 Bas

The dependence of A and 5 on co-ordinates can be
also found from the form of 'T

Abe)= Alga), Blx a)-_ exp(- i@ﬂ;,)gfaa){z.m

Thus, A depends only on the spectral parameter and, as
known, just this determines the existence of an infinite get
of the integrals of motion in the problem,

Using the relations (2.9), (2.11), and (2.12), it is easy
to identify the analytical properties of F - and A(@u), as
well as the zero positions of A « A(@a)_o ¢= 4 M) Just
es in Refas. /6,7/, the scattering data are intrnduceﬂ. i.e.
the set:

s<{ Rya), Bi, Mild; =% ¥
where
Btxya) me ra< L € /M
Rixa)= A(ﬂ) [x) . W«"fz'

The quantities A[{}.J and B{}{ 61) are restored completely
from scattering data /5,6/.

For solutions F' and G" one can write the following
integral representations ('triangular’ onas):

Fix,a)= E(x,a) +fdﬁ‘ O(4:-x1) K Su(x, ) E{%ﬂg

+ (Qu = Euy Qu)[ds: Oy~ x2) K (%, 3) EL3,2),

E(x,a)= E(%0)+ [olguO(x-go) [;u(x,.y) E(42) (2.15)
-+ (A= G au)jd@ O3 L(xy) E(9,9),

where integration is carried out over the space-like hyper -
surface 6 t (Xo-Yo)*(Xs-%:)°4 0 . The relativistic inveri-
ance of the representations (2.14) and (2,15) is guaranted
by the fact that the karnlln éy o Ly are the vectors, and
the kernels k.' and L are the scalars under the Lorentz
group, end also by the Lorentz invariance of a function 9(21)
( B(z1) = 1 a%fiﬂra, ©(21) = 0 at 2;40) for space-
~-like intervals Z:‘ Eftﬂ@ « Choosing the hypersurfase
I.y.;s{ =¢onst as O , one arrives at triangular repre -
sentations of Refs, 1'51 6/

Matrix kernels Z,,u and K ~ mey be represented through
scalar kernels as follows:

(2.14)




o Y, o 5 [0 K
@”E(fkj)j K'(k_* o_),

Among the consistency conditions of equations (1.2) with
representations (2.14), (2.15) there is a relation expressing
P(x) through the kernel K explicitl:r:

{fdtzﬁy
Y=mithlrarpis

The equations of the inverse scattering problem enable
one to restore the kernels gq and K , and also the solu-
tion P(x) of 3q.(2.1) from scattering data, using linear
integral equations. In the relativistic-invariant form these
equations (Gelfand-Levitan-Marchenko ones) look as follows:

K/a(x}g).;. ﬁ(x+3f) +Io’5_§: O(z:-%2) Ko (%, 2) ﬁ,((zfg)-ﬁ
_;,J’d% 6@:-x;) K(x2) P(Z+4)= 0
Kes )~ Plevg)— [de O Kuln®) Plz +g)+
+ Jdgi 66.~x) Kty2) [ul2+9) = O,

where integratlun is performed over a space-like hypersurface
(Zo-Xo) -{E,;v}r.';_] .c.'.{,:- , snd the scalar kernel P[E) and  the
vector kernel Eu[is) are- constructed through scattering data

by the formmlae:
Pz)= [d’ Slang,~m?)RE®) +E’ 0 (D G~ ) B

fZ)"—[%N /uv)-—-— P{‘E)-fdﬂ 514,05 - M'ﬂ (2.18)
X (Guy - Euv) By (zaej+ mf(z)[gu,, /,,1)(‘%,,, Ev) O 6?;_

Analogous expressions ma:r be alsu written for the kernels L’-/u
and Ld &

Using the factorization of the kernels Iéﬂ end -, ¥ .

N o~ A NGRS 4 st biades
Kulsg)= 2 Kul) eXp£ @34y ; K[ﬁ#)ﬁ?#(ﬁ)f}fﬁj ai g,
J=! g = R e

(2.16)

(2.17)

N - goliton solutions may be derived in a standard fashion.
The single-soliton solution hasa the form::

()= 4 a*zcrég {é’xp[~ €(pe) Euv Pu Xy +r:,c—-;f_r1f)j

where E}‘pcj*
(Pu Pu= Mi) .
The angle-—action—-t;rpa variables and the traces identities

leading +o integrals of motion,/5,6/ can be also written in
the relativietic-invariant form. In the relativisgtic-invari -

é)}, is the momentum of soliton with a mass M

ant approach the recurrent formulae for conserving quantities
make it possible {0 derive them as tensors of different
ranges directly. Both this question and a number of other
questions dealing with the relativistic-invariant formula -
tion of the IST method will be studied elsewhere. Here
we give only the expressions of integrals of motion ',I-/"’ - Ly
via the action varisble Q(@):

L : ﬁfd'ﬁa 5’(&1;6?.; ‘9 /auj?[a)-ﬂz.w)
. E /U.n. Z /-(n (H'-;'{;%ng

The lntegral in expression (2.19) corresponds to the cont-
ribution from the continuous spectrum (of the particle with
a mass /7 );  the first sum - to the contribution of soli -~
tong ( B‘I‘ is the momentum of soliton), the second sum - %o .
the double . solitons ( Jﬁj ie the momentum of double goliton)s.
The expression (2.19) makes the particle spectrum interpreta-
tion ~roposed in Ref., /6/ more obvious. .

And finally, let us present the invariant form of Back -
lund transformation lJD-fr '19; s which plays, as known, an impor-
tant role in the theory of eq. (2. 1}

29! Qv @ 9 —
08 §u 5—)—{—;—_—;& Pu 03 ¥y SJE?A _
—i i /uquJ“”w/ﬁ g,o_g/g

It- is aeen from the above wri'ting that the parameter :.rwalved
in Backlund +trensformation is trensformed as a vector under




the Lorentz transformations.

III. The Massive Thirring Model

For the clasgical massive Thirring model described by the
equation

(Gl ~ My = QY Thpup=o

the operatar T has the fnrm:a)

To= i .{,(*Pa;u}*fdﬁ*%‘*‘gf?’ﬁf%@ 2 (5.1
(25§~ 9Ppy) 63

where a’/,, are the twn—ﬂimenﬂional Dirac matrices ( J’a-— i
¥ _,fﬂ = 3’3&’1 (}’ ) 4 d’ﬂ )« The spectral parameter 5 is

a twn—cnmpnnent spinor under the Lorentz group and satisfies
the relation

§%§'§%§=mz o E§=M.  (3.2)

In virtue of (3.2) the spinor f may be pregsented in the fom

§=2 (5

In Refs. /7/ the paremeter A is used as a spectral parame -
ter. :

Let us consider the direct and inverse problems for Eqs.
(1.1) with operator (3.1).. ¥(x) is assumed to go to zero
quite fastly at X%s-—o0.

As in the foregoing section, one defines the fundamen =
tal solutions F  ana & with agymptotics:

c
6,5)> EB0)= epp-£ Epus /-«J) at x>0, ¥1>0
G j?)—':- E(x §) (E’f’p T?E’HE /") “at x%>- o0 xij-c:jcg.

3 Similarly to the Eina—-{}nrdon equation, the cparatar 7/21 is
not single with an accﬁrac;r_to trangformatione /“_,ﬁ., qgw S

where S € SL(2).
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Foilawing Ref. /7/ and taking into account the congide -
rations involved in relativization, it is possible to introduce
the trensition matrix in a Lorentz-invarient fashion and to
show that its ,diagonal elements are independent of the co-
ordinates ;u » One can also identify the analytical proper-
ties of solutions F and & , end the transition matrix,
introduce the scattering data and find their dependence on

+« These questions will be studied in another paper in
more detall. Here we give the basic equations only.

The triangular representation for solution P hag the
following form in the relativistic~invariant approach:

Fix§)= expl-£Q(s)) Ex5) + [dgi 6(s:~x2) x

(3.4)

[Fin K39)+ Mulsg) + (B - §M’r§)M(w))E(g;§)
where @ff)=jd5;u 9(31-3.{)"}'{3}3’/4'-}"{ < f is the space-like

hypersurface, the matrix kernels K, W, M are the two-component
spinor, the vector, and the scalar under the Lorentz group,

regpectively.
A

The matrix kernels K f")f,qFM can be expressed through
scaler kernels K Hf" g and

£=(i.§*) py (?ﬁ:) (H 0) (3.5)

Particularly, auhﬂtituting (3. #} and" (3 5) into eq. {1 1)5
one zeta:

W(x)=2 exp{:ysde 6lge- WEl43) 7 m:.w} e K(xX) .
The Gelfand-Levitan-Marchenko equations hav‘a the following
O M(x4) = JdS Oze-xe) K(%,2) Yo P(2+3),

/u{x 5) jdﬁ;’ B(z:- XI){.K(KZ)JI}F*NP (Zfé{)'f'&ﬂ" K@E){(;*f:}) H&fﬁf)}

K(x9)+ wp(w—f-mﬂ‘)) Plx+g) + J-d Ofze-x)4 M (xs.z)P(zfg),L
+ £ Mo Bitewg)+ 5 My P{z+y)} =0

L




where the spinor kermel f?%) and the apin—vactor kernelg
P (2) are expressed via scattering data (R §)= A{}) ,,§¢ M) as
fcallnws (d'g_ 45, cf}-_i )3

HONALE é?s@f-m)fﬁf 5)- “'*Z' ”"*/E)/
P"(E) i —{@uvi Sy @Zy P[E)

Lquations (3.6) offer, as known, the possibility to find N T
- goliton solutions of eq. (3.1). One can also find an infini-
te g=et of conserving tensor quantities, +to introduce the

angle action variableg in an invariant fashion. The conser -

ving tensors expressed through the action-type variables

jﬁjﬂ ﬁ’ have the form:
= [ 5T5 Fpes ) Epue s S

(3.7)
(n=4%3.)

1V. Conclugion

The manifestly relativistic-invariant formulation of the
IST method can be given also for other relativistic-invariant
equations in the two-dimensional space-time. As seen from for-
milae of the foregoing sections, the specificity of two-dimen-
gionality is essentially used.

However, the IST method may be formulated for the rela -
tivigtic-invariant equations in the four-dimensional space -
—time (for example, for the equations of. self-duality /9/) in
a relativiatic inverient fashion as well, In the relativistio-
-inverisnt formilation of the IST method the spectral para-
meter, as seen from four-dimensional analogues of formulae
(2.19) and (3.7), is trensformed on the basie of & non-scalar
representation of the Lorentz group.

In conclusion note that in the general case of an equa-
tion invariant under some group &G » the IST method. may be
formulated in the form manifestly invariant under the group

G, the spectral parameter possessing definite transforma -
tion properties under the group G /107,
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