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This paper discusses the héhavinr of a plane quentum ro=- |
tator under the time-periodic perturbation given as delta-like |'
"kicks" nunlinaariy dépen&ant on phase. The case of so-called |
quantum resonance is considered both analytically and numeri-
cally. It is shown that for large times the rotator energy ie
proportional to L‘: . The structure of quapi-energy spectrum

is analysed and its continuity is proved.



1. INTRODJCTION

In recent years a great number of papers have appeared
wherein the attempts have been made to understand quantum pro=-
perties in the behavior of nonlinear systems. Attention has
been focused on the systems being under the periodic perturba=-

T8

tion » This is due, first of all, to new posgibilities to

4 study experimentally the behavior of atoms and molecules in
a field of laser radiatinn9*11.

The present paper is an extension of Ref.12. Our model is
a plane quantum rotator with the external nonlineﬁr, periodic-
ally time-dependent perturbation (delta-like "kicks"), Up to
| now the behavior of the corresponding classical system has becr
. studied sufficiently well, In particular, it was Bhnwn13 that
under certain condition Fha motion becomes stochastic even
though it is govermed by stricktly dynamical equations,., On the

' other hand, if perturbation is small, motion is quasi-periodiec.

~ Therefore, there exists a criterion of erising statistical pro-
perties in & dynamical system. Numerical investigation carried

out in Ref,12 has shown that the behavior of quantum system

differs from the claseical one even in the gtrong quasiclassice-

al region, In particular, the diffusion rate of the average ro- '

tator energy only for comparatively small times equals thé clag=-
- sical one and then decreases sharply. In addition, it has been

discovered the specific type of motion (quantum resonance),

which have no analogue in the classical system. In this case,
the rotator energy grows unlimitedly, independent of the extern- !

al force value,




The purpose of our work is a careful investigation of

2 14 is revealed that

the guentum reacn&nce discovered in
in the system there is infinite, dense set of such resonances.
The genera¢ condition of their appearance ia also found. The
main characteristics of the resonance motion for this system
are determined, It is shown analytically that for large times
the rotator energy grows as c‘ff , what is valiflated by numeric-
&1 experiments. The form of asymptotics is independent of per-

turbation parasmeter and is universal, The structure of quasi-

energy spectrum being continued in the resonance is analysed.

2. Quantum Resonance

The model we choose to study is described by the Hamilto-

nian:
A

: g o i b '
H=-35 & KCQSQ‘S'?‘(f)._ (2.1)

where Ef is the perturbation parameter, 5«-({) ;ﬂfffﬁnﬂ is
the periodic delts function of period T ("kick;"), J  is
the moment of inertia of the rotator, & is the angular va-
riable. In the following J= 1 .

One can integrate Schrodinger's equation with Hamiltonian
(2.1) to obtain the mapping for a wave function. This mapping
involves free rotation during 7  and a "kick" (see Ref.12):

?gg):exp(-;'xcaiﬂ) iﬁhexp(—igﬂ*w‘ﬁé’) | .(2-2)
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where K = E’/}{,?’:é’ﬁ and %/ﬁ) :Z Rk

He —aso

.l -inB
An=7, Sy@)e  d@
ne can note from eq.(2.2) that the motion does not change

éné&

in what follows, ﬁ=i *

if 77 ies replaced by T+ 47 m , where #»7 is integer.
It therefore suffices to consider the values of 4 within
the interval L 90, 477,

Prom eq,{(2.2) one can find the connection between the
Tourier components in one step:

A: = 5": )C;rm Am . {(2.3)

= —po

where F, = (-c)" exp(-i Fm?) I, (K) ; 3, (K) .
Bessel function.
As was noted in Ref.12, in the case of main quantum reso-

nance ( 7= 47 nr , w1 is integer)

W(B) = expl-<kecos8)¥l6) (2.4)

and
27
the rotator energy (L EMHF)> = —%j?’“/ﬁ)% IO y for large

4
times increases as 7 « So, if the ground state (7 = 0)
wasg excited at the initial moment t = 0, then
Px
<E)> = KL - (2.5)
. &
Here and below, £ is the dimensionless time measured by
the number of "kicks".
We investigate now the general case of quantum resonance:

T= u P and ¢ ere the integer, mutually simple
umberﬂ. From eq.(2.2) we have W/tgj €XP('¢£’CCJ!9JF(6’)

where

Fl8)=2_ A, expl=: Gn’ +in6) =

B ==0n

= f: EXP(-¢ ‘?—é’m’); A,,,*?, expliimegl)8) = (2.6
= Fenp(-< ¢ Glm?) B,

Wi=g

B, = £ Aurgt ex,ﬂ/r (149£/8)

= -y




To determine .{;’;m , let us calculate the sum:

-4

S exple ff—*ﬂ)g ;_’A,_. exp(i(é +*—’£’-v€) wie+ m’/ (2.7)
m=g

Whence, Z‘-’-XP(’ iﬂ.m”) e+ JT/’

As a result we abtain the main relation for #(6)

57(5})"—‘ QX/D('L'K{'.E?SQ)Z ¥, ?’(9*'@%&) : (2.8)

where Xn“‘ q,mzdé')ff"(— 'f_.fm .c,__eﬁi'.ﬂ)
Rewrite eq.(2.8) in the fcrm suitable for & further analys-
is:
it 3 e o
V(0+28m)=5 €, V(6+4%n) (2.9)

s3]

Here S.,..,,, ia the matrix of the form:

£o Cifilly il 5 ﬂ'.,
S o -*, 0 ; *-1 ro Xq.j (2.10)
0 : ); xg s Xp

By= EXPI-iKcOS(6+4Ll)) , S\ = P Yuom .
Iue to unitarity of the matrix f , 1ts eigenvalues
Aj(8)=eXP(ia;(8)), | A;l=1. Note, that A; depend, in
s general case, on £ , as it will be shown below.

It is convendient to represant the matrix § as
Ed Loy
e 0t a, (2.11)

£=0

4 +
where @ is some unitary matrix (a-r-' @ } of dimensionality
QXQ with the & -dependent elements s
Let us introduce the vector-column P(B%) with the ele-

]

ments ? (f? ¢)= y(ﬁ""'gﬂ' :fi) From eq.(2.9) and eq.(2.11) one

can find the time deppndence of ?‘0
]
P (6,¢)= % = QXP(*ﬁfhfﬁ'}f)@e" ) - (o)

4ith a Inown ‘P,,,, {'5‘; 'ﬂ'J one obtains the dependence of the rota-

tor momentum and rotator energy on time:

¢ S 5T
< PlE)> :-%f f?’(af) @, (9 ¢)db
izh {2-13}
78 o =R * '9':
KEwbE -5 S [PI(6,t)55: P, (6,€)d8 (2.1
mzp ©
Directly from (2.12) and (2.13) .-:}ne .gets
2-1 .
<PH)> = <Pl0)>+a, £+@ﬂ+_§&fw{f) 5 g3
where

bo =52, §401006.0)8 6,04, . 47 §

a, = %;L— f#f {P(M) M,m?,ma, {dé (2.16)

¢

= !-_
B ft1=-£ E 49{ ACCACYY R M AN
Here and below the dash denotes the derivative over & .
Since &, Jdepends in general case on 6 , for asymp-
totically large times PMMI('E) (for m#m, ) is expressed
by the -integral of fastly oscillating function and, hence, for

large ‘é me‘fﬂ: &n&(ﬁ)&“mji' ol {/f)

totic time dependence of the rotator momentum may be readily

. Finelly, the asymp-




found:

<pt)>=a,¢t +6 +<plos> e

F-1
ehere ;= 4+ > P, (0)

=zl

For arbitrary times the dependence 45(’0} is determined
in a similar fashion:
CE()>=<EI0)> + ff£+ 4,1t +5’ﬂ +

(2.18a)
i & Kz +iZﬁ..,..,
and for asm':p:c:tically large ‘:c:fmea
KEW)>=nt +a,¢ +4,+ <EW0)> (2.18b)

where ?,_ Jdﬂfé {“,I)JJ ?ﬂﬂ}P{#ﬂ)ﬂ. ml?(#f>
&m)j.o ‘?dg[ “om E.t Qfmt?? + 2, Q) Qggm@f :%K‘Fg’f.

ﬁfm(‘)?mf ) -e‘a A —2 j{;ﬂ"" 4} @L “? f@md}:ff
o=-4 %{ {J&[afﬁ(p(x ) )L qnﬁ,,ﬁ* s s
*g Cp{‘ * ‘? E‘( %@j#ﬁﬁqm Qfm :U

Rmm‘(‘é)ﬁ-g_g_ ‘ﬂg!‘f p*p@eimiﬂﬂh H”Qg eXP{f‘fX - }f}f
'ﬂ! _ﬂiﬂ [oper’ K“‘m 5 ég‘f'«i_ v g

The expressions derived for the rﬁatc—r energy and rnta-
tor momentum are universal end yield the asymtrotic form for
large times. Examination of expression (2.19) for the coeffi-
cient ﬂ , which gives the asymptotic, shows that this co-
efficient equals zero when all AJ.‘ , and hen-2 &« also,
are independent of & (AJ- = eonst) . Moreover, K= 0 in the
case when at least one value of f\ = CE?H.:f' and the initial

distribution Eatiaflaa the specific condition /1 ":V (F)"

= expl-ikcosd) ?_'_ Yo 1, (0 +%52)

o —

e —— e ——— ey et et

Hext, we seek to find the quasi—en'erg:,r Bpectmm14'15.

From eaq.(2.8) it follows that the wave functions with a defi-

nite quasi-energy at moment <=0 are representable in the

form: ) .
i,f/%mﬂj w)-;c (6,)§(8+8, +_g_»z) S )
where €(§}=‘ ;?”.:?: £

The quasi-energy £ fQJ and the coefficlents fn({;}

are defined from the fcllﬂwa.ng get of linear equations:

n J’ i-j P h
expl-:€18,)7)¢, (&)zga s 1 A5 (2.21)
: o~
where j:.,..: Pa(6,) 3’”_,,, . The matrix 9 ig unitary and its
eigenvalues 3:1- 1"9;;}:&1‘}’4";#{?(9,}) determine the quasi-energy

spectrum:

g KGR
£J (ﬂﬂt} o] ""'{",??"_ (2.22)

Here 9,;. is a continuous parameter: ¥ £ &y <27

From eq.(2.22) it follows that the quasi-energy spectrum

has the eiran-
o -
:

values )ij =¢0mnif. Using the explicit form of

has the discrete levels only if the matrix §
D i8
easy 1o show that for any P/Q (except the case %-—--&‘?whicn
will be analysed below), SP e g :‘.'f depends on the conti-
nuous parsmeter &, , i.e. there exist jv # conet . Thus, the
quasi-energy spectrum (2.22) is continuous in resonance. Besides
this continuous component the specirum may have the discrete le-
vele whose full number is the same as that of eigenvalues

j} — 20ust . It becomes clear that there are no than g-!

w0




discrete levels in the resonance

Letting Y7 (q,(6,0)
%fﬂ)l{ﬁ f} =

to be known, it is easy fto find

%mm £)= EXP(-i£1(8)¢) ¥ Eﬂ@(@ﬁ;’  (2.29)

whe re %{#J is the quasi-energy eigenfunction, which is
time-periodic of period 77

Y60, t) = eXP (58It~ tkcoso dE-T))

Z A ﬂkP(-t—-’r‘Hné) o< €<T

e - oo
Ah are the Fourier components %f(’%J{Q’ 0)

& single step function.

It is worthwhile to note that in resonance <|Wi>is pro-

portional to the time (< /uf>~%/), Therefore, if the unperturbed

- m = .
system possessed the spectrum E,~h (m>1 is the integer),

then its energy would increse with time by the law < E@)>~ .

The explicit form of Ajfﬂ) has been found for three cases,
1) P/g = 14 is the main resonance., The time-energy depen-
dence (when at T = 0 the ground state M=0 1ig excited)
is determined by formulas (2.5). The quasi-energy spectrum has

the form:

K
E(‘%)-‘—" ;;C'aggﬂ (2+25)

As ngjg’ﬂj o) = S(a.m) s the quasi-energy eigenfunction
A :
is determined, according to (2.24), by the expression:

%@}(&, t)= exp(ie(G,)t-ikcose bt -T)) -

. (2.26)

e > g_xp(-:. n*t + L n(8+8,))

Mz-pa

ThE -~

and PE-T) is

e—

where 15'5-‘!{"5'77' T= a7
2) f)/g Y4 » From eq.(2.8) it follows

vrg) = EXP(-{Keosh) H(e Wg),ae ﬁ%‘um} (2.27)

Lif g:éf S £ is the integer, the coefficients B:?mf"
and the dimensionality of £ is %*’f %’2 J. The eigenvaluea
Ar = A = EXP(+ t's{:‘w"-';% where | -

-

eos{kK cosﬁ)

COL(X(B)) = P,., (2.28)

At K<< { we have ,‘Ba-—g :—&gnm) SLH-Z& , and if at the
i
initial moment Q"{é’)-— . (ground stata} then # = f—g ‘

£
Under the same initial conditions, &t K4 we have Zg‘fz

L ]

From eq.(2.22) we find the quasi-energy spectrum:

E+(8,)= -f,— F ﬂ{—*ﬁ (2.29)

<
For K<< 1 tne spectrum £ £ (6, ‘1‘-%;(%"";{% cpf@}is two nar-

> 4 '
row zones of ~ K in size, For K27 we have two wide bands:

; "i“': £(6,)<4 fcf £08,)<1 . The time dependence %ifﬂa.} is giv=

en by formula (2, 24), where Ah are Fourier componenfs of

the function ¥g, .. (6,0)= ¢,(6)8(0+4,)+ C2(§)8( 046+ 7) s

_here (Ci 3 C_‘,) is the eigenvector of the matrix S .

3312 P/Q':— /2 s from eq.(2.8) one obtains:
HB) = EXp(-ckecosb)Y(B+7) (2.30)
It is seen that the system returns to the initial state
in two "kicks". The eigenvalues are equal to /\1,1 =1§J1 =24 .

The quasi-energy spectrum consiste of two discrete levels with

the quasi-energies £, =0, &= 1/2 . The eigenfunctions of the

11




level £/ , to be more precise, their values at moment ¢ = @7
are the functions 'fgi@)ﬁf_t(ﬁ)(ffffﬂ***ﬂ’f@where F+(6) is an
arbitrary function satisfying Z+(6+7)= tj’(ﬁ') . The eigen-

are ﬁ‘ngé}': D4 ()17 @XP(-LK ¢250)).

fmach level is degenerate infinitely-fold and the functions th/éi

functions of the level E_E

and ;3,: form the total set.
Apparently, the degenerastion of eigenvalues (when }\J' =
= CONGSE ) is accidental and there is nocase for other resonan-
ces. Indeed, at the arbitrary initial distribution b)) ir
some AJ'=C. Onst were available, then s fraction of the ener-
gy would possess to the discrete component of the guasi-energy
discrete spectrum. In accordance with this, the time-energy de-
pendence would include periodic time-undamping oscillations
{(just ss in the case of F/e = ‘I/Z ). In our numerical experiments
such an effect has not been observed. At K>?4 the dependence
<E()> was a smooth function of time, at K < £ the slope
gize grew as the time increaaed (see Figs 1 and 2 respectively).
This, in quantum resonance (P/g ;"i,f‘,a’) the energy of the
system grows infinitely by the asymptotic law < EH)> ~ 1{;.,
the quasi-energy spectrum being continuous. |
For the quantities (ﬂ(’/';:" Eu?;?fé‘f_i] #‘V{the line indie-
ates the averaging over & ) one has succeeded in obtaining
the following estimates (they are valid for p?:l: of the mat-

rix £ as well) from the expliecit form of £ :
a) If K <<¢g , then

s |2 2 e
g~ Emax 5 g 1 G0 " (5] ; o

ark, that this estimate is that of the lowest possible value

12

— *.__..-...__....._.-..-._. e

»

()2
of max « Une might expect that the exact value in the
order of magnitude coincides with this lowest estimate (sez
gsection 3). :
@ e
b If K'}?q, and since ¥~ 2 ex, we have

-
2

? = % - (2.32)

H

where '% is some quantity dependent on the initial condi-
independent ' :

tions and, in practice, of X and g . Under the amooth

initial conditions 9‘/(/!9, ) the estimate for ? yields
Eﬁ- 5# -
Hipe
From the estimates obteined for (af .fmu it followe that

at K<&«g (P4

) are any mutually simple numbers) the quasi-

energy spectrum consists of @ .expcnentiall:,r narrow zones of

A& “’(%i}?/ in gize, In case K";;}q, s to find the zone gtruc-
ture, it-is required a comprehensive knowledge of the eigenvalue:
of the matrix fsv . Unfortunately, the explicit form of j:_; (8)
hasg failed.

From the said above (see eqs.(2.31) and (2.32)) it follows
that ’2—5.5' at P —> oo 5 g—vmjx:emﬁ This means that for
irrational values of T/ﬁ(ﬂ the quantity @ is equal to zero.
In this case the motion of the system has quite another charac-

ter (see Ref.12).
Let 7= ‘_’;;’;E’J where /8 /<4, Then during T, ~ L8

0<€ete
the system characteristics vary in time just as the case of

exact resonance 7 = é%?ﬁ . wh_at was observed clearly in the
£ 7 :
numerical experiment (Fig.3). From ‘ffz ZK L(z let us find

13




such a detuning cg\; at which the resonance /7% influences
greatly (it is suggested that G/“‘a{ifz Jo 4t £>¢ (other-

wise, the detuning is exponentially small) we have
cg‘ A
> i Kl?z (2-33)

For the nain resonsnce ( @¢=1, =0 ) V=4 and
* :
from the condition (2.33) it follows that 7 < J{/f\' « A8 18
it 7" ?
seen, within the quasiclassic region ( K —=>eo, 7= 0, K7=const)
inequality (2.33) is not satisfied, i.e. an influence of the main ‘
resonance is uneseential., One may find the sﬁnunamr of all the de-

tunings:

b,
,.3':-::-

K 9-
- K
> F=ZI ,e% 5. P9 et (2.34)

Since 5; <<{, then in the case of irrational %}" the reso-

nances influence weakly the system motion.
3. Numerical Experiments

In addition to theoretical analysis of our model, the nu-
merical studies hnve-been carries out also. In computation the
Pourier components of the wave function have been found by formuls
(2.3). Although the summation in (2.3) has been made from — oo
to * o= | the sum containa ~.Z2£& terms since IJ;,, (k)|
falls exponentially down with increase of # at #> & .{the
"kick" covers ©./K& levels). In view of this, the finite number
( €4k ) of Béssel functions has been used in our calculations. \
The control for computation accuracy is to test the cormaliza-
tion condition of the wave function: W= J'!Wﬁz‘.”;"’(ng . In all *,
cagses the errors do not exceed 5\.!‘-‘/.:5’ 3.10_3. The major limita-

tion on a run is imposed by the firiiteness of the chosen number

of levels, Under & quite large perturbation the faet exsib%a¥ion
of the system, high levels occur and computation errors become

essential. The program has been improved (as compared to that

in Ref,12), what made it possible to inerease the computation

rate approximetely by a factor of 2 and the number of levels

of model system - up to 2001. In the main experiments the resl
computation time was % 10 min at BESM~6 (Tables 1,2). The 1‘_:1:;."1--
sideration of symmetric initial distributiems { ¥/6/)= ¥/-8lensbl-
ed us to incresse additionally the number ef levels up to 4001
(-2000, +2000). Nevertheless, the computatien wae carried out
with the 20018t level, due to symmetry of imitial conditions and
Hamiltonian (2.1).

The initial conditions were varied from excitation of one
level (ground state) to excitation of about 20 levels (Gaussian
packet). In all cases the asymptotic form of motion depended
slightly on & choice of th_?} initial state. During each run the
rotator energy LE > -—j—sf?ﬁg?%,: ‘if/d"é’ was calculated, At the
same time, the time-energy dependence was plotted and the least-
-square Tit < EHA)D for a squared polinomial was performed.

For K< ¢ the squared time-energy dependence (see, e.g.,
Fig.l}l{)w:aa observed well. The fit was there carried out by
the formula < E#>=y¢° 4 <EM), tavie 1 containe the data
for 2 at different £ and 4 + At K& g  the values of )
are too Erma'll and the squared energy growth for finite times

o < 200 is not always'nﬂtimc, it is difficult to talk
about quantitative agreement with eatimate (2.31) but one can
agsert that ¥  decreases much more quickly than K/Qj g

For K:};tg the dependence ¥ (X, §) is approximated by

15




analytical estimate (2.32). Experimetal data (Table 2) show

a quite good agreement with this formula. The velue of ? va-
ries slightly and is independent explicitly of K and ¢ .
The average value of ? isé?) = 2.4.

It ullre'is varified separately in what extent ¥ depends on
the values of £ at the same value of § . As was expected,
the dependence on P , @according to (2.31) and (2.32), is neg-
ligibly small.

In the quasiclassical region ( K=eoe, /= %""3"53 at k7= conct 1 )
experimental data show for K’},@ that for small times the de-
pendence < Eﬁ‘)} in dimensionless variables is described well

by the semiemphirical formula:

B z

- KT K- £ 8)

<E(f?£/> ?,q' +£{f {E( > (3.1)
152

At the coefficient is in agreement with the theoretical

estimate (2.32) for ¥ . The second term in eq.(3.1), linear in

time, corresponds exactly to classical diffuaion12

. Nevertheleas,
the coefficient K?‘,” differs from the asymptotic value of &,

in (2.18). Therefore, the temrm Klf/? is not, strictly speaking,
diffusional. It folllm_m from the experimental dependence (3.1)
that for the times f‘f‘f* ’ where f*;ﬁ} e (in dimen-
sicnal variables 7 < ?’-*:f*f;ﬁ Ve ), the energy grows mainly
due to the "diffusion" term Kz%f ey BT squared

term being a purely quantum becomes dominating,
4. Conclusive remarks

Our study shows that in the case of quaﬁtum resonances

:E{Eﬁ?ﬂhﬂﬁ

whose system is“'dense, the aﬁymptdtic dependence of the rotator

16

energy on time is universal and is described by the squared

law (2.18). This implies that there is nc quantum stability
border (¥ * £ ), which was prediétadj and observed in the non-
-T'eS0NAnce casem. Tt is important to note that the classical
criterion of stability ( K_?T* £ ) is absent too, although the
system can be in the strong quasiclassical region. At the same
time, for the non-linear system,which is governed by the classic-
al Hemiltonian corresponding to (2.1), the KM theory (Kolmogo-

rov-Arnold-loser is applicable. This theory polnts out

: s : - 1
(just as numerical experiments 3} the motion stability under

a small perturbation. In our case this means that there is the
distinetion in behavior of the quantum system in comparison tﬁ
the classical one, at least, for large times.

For relatively small - , when the asymptotic proﬁertiea
do not yet arise, the character of the system behavior can be
complicated enough and stirongly depends on the parameters K
and 7 . For example, the squared growth of the system energy
is not clearly observed if K2~ ¢%{ and 7%24 . In this case,
the energy is proportional to = . If k<4 . then, in prac-
tice, the energy oscillates and the squared growth of # ¢ is
emall because of # <1 ,

It is interesting to observe the motion at p—=> &% ¢ ~ea,

P/g:coﬂsf . what corresponds t¢ the non-resonant value of £ .
As numericai experiments have ahnwnm, the m'otiqn of the pystem
is quite different as compared to that :'m'resonance; The amlyt—r
ical study faces excessive difficulties due to necessity to

know the exaet solution in resonance for any time rather than

A1




aaymptotically only. On the other hand, one can also investi-
gate the quasi-energy spectrum structure under transition to
high resonances QP‘?.{' . It has been showed that at 9_:‘*#’5

the width of each quasi-energy zone is exponentially small

(48 ~ lTx(?ﬁ/’q ). Moreover, the total width of all §

- zones ls small as well. This apparently indicates that the
quasi-energy spectrum becomes discrete in the non-resonsnt cage,
If K7>@ , the question on the overlapping and the quasi-ener-
£y spectrum - zones rema&ains open.

In closing, we would like to make a remark concerning the
feasibility of quantum resonances in the systems under delta-
~like in time perturbation (for the one-dimensional case, the
Jatter is representable as follows: fﬂiﬂégi%y , where A%/ is
arbitrary function of X -coordinate), There is no difficulty
to show that for the existence of a resonance it is necessary
that the spectrum of unﬁerturbed Hamiltonian AQ be discrete
and have the form of a polynomial of the quantum number with
rational numbers, In addition, it is also required that the
condition of the form gi . = B be satisfied for eigen-
functions of the Hamiltonianﬂ,.#e then have: EJ,U(L' 'F??'gﬁ?}jﬁ{]%
X%+ME(EXP(‘.2—;€@)%)({)&9(/’"3?;“)%). Fc:llowiﬁg from this equality,

one succeeds in reducing the mapping in one period to multipli-

cation by the matrix. Probably, the last condition may be relax-
ed, :

The authors are much indebted to B.V.Chirikov for his at-
tention to the work and valuable comments, to G.M.Zaslavaky,
l.A.Malkin, V.V.S5okolov, and S.A.Kheifets for gtimulating dis-

cussions, and to L.A.Khailo for the help in calculations.
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Tabhle 1

g

K 7 K g
0.025 6.107° 0.1 1/4
0,058 1074 1 1/17
0.058 104 1 4/17
0.099 107 10 1/101
0.100 2.107° 0.5 2/5
0.150 1072 1.2 1/8
0.176 1073 3 1/17
0.200 6.10"% 1 1/5
0.235 0.08 4 1/17
0.235 0.144 4 4/17
0.353 0.36 5 1/17

Table I.i

i , 7 K &
0.706 3.0 2.8 12 1/17
1,76 23.4 9.3 30 1/17
3.33 52,4 3.2 50 1/15
5.00 181 2.4 85 1717
5.44 284 157 87 1/16
6.21 239 1.3 87 1/14
7.69 404 1.9 100 1/13
7.73 246 2.7 85 1/11
8.57 206 2.5 60 1/7
10,7 245 3.3 TH 1/7
12.4 452 2,3 87 1/7
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