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Abetract

y A summary of the results of numerical experiments (par-
ticle simulation) is given. The numerical experiment on study-

ing one~dimensional Langmuir waves in collisionless plasma
E:R
B-ﬂn:-"

102; "%_ ~ 2.5¢160. The 1limits of validity of theoretical

R T R

were performed in a wide range of parameters:
.models describing a one-dimensional Langmuir wave were found

for the theory of damping of the finite-amplitude Langmuir wave
{ﬁ%’mﬂ’ﬁ iﬁcﬂ rd}z ), for the linear (for VP"'/M.T. =10 ,
£58TnT < fo‘%garﬁ}zj and nonlinear (for VP“/{&?iﬂ, [ﬁﬁﬂrfkamj
theory of wave instability. The development of the instability

and damping wae investigate and the main processes were analysed.




Langmuir waves - one of the simplest rhenomena in a plas-
ma - have been carefully analysed in the theory. The theory of
damping of the waves of small and finite amplitude, the linear
and nonlinear theory of Langmuir wave instabilities have been
constructed. However, the regions of validity of most of these

4 theoretical models have not been clearly defined. Laboratory
experiments have, for few exceptions, &8 gualitative character
and do not permit to make conclusions about validity of the
theory. The numerical experiment (particle simulation) gives
a possibility to have some progress since it is equivalent to
the complete solution of the kinetic equation. Such mmerical
experiment describes a plasma model whose region of validity
is broader than that of mathematical models involving a small
parameter, or using the hydrodynamic description (e.g., the
models based on Zakharov equations /1/). Performing numerical
experiments in a wide range of parameters, it is possible +to
find the limits of validity for theoretical models and to clear
up what type of phenomena is essential in either range of para-
meters.,

Numerical experiments /2-8/ devoted to a study of the

damping and inetability of Langmuir waves were performed in

¢ the range of initial parameters:gm L T Wl 102’
Vbﬁﬂ?'v 2.54160,in a one-dimensional system with periodic
T
v boundary conditions. At the initial moment the Maxwellian ve-

locity distribution was given for the ions and electromns. The
ions were uniformly distributed over the length of the system.
The Langmuir wave was glven by the density and velocity per-

turbation of the electrons, which corresponds to a linear wave.

The development of the wave was studied without extermal pump-




ing. Relisbility of the method and program was checked by com=-
parison of the numerical experiment with the theory conaistent
with the laboratory experiment (damping of small but finite
amplitude waves, interaction of the low denaity electron beam
with plasma). The limits of validity of the numerical experi-
ment are determined by noises and cut off of the distribution
Punction due to the limited number of particles (in the numeric-
al experiment under consideration, as a rule, N:i=Mw= 11]4,3:1-:1

the distribution function is cut off at V ~2Vy).

Demping of Langmuir waves.
"Boundary of electron nonlinearity" /4,7,8/

The regilon of small but finite amplitudes of the -DLangmuir
waves has been studied thoroughly. For this region the ;heorz,r
was constructed /9/ under the condition W/~ >> (VP%D , that

€ VT

is equivalent to the cn}ditions __'ﬁ &< (1{/11)2 3 %«UTIWL:

E2 << 1 re wr, = is the trapped particle
and Eog o << F (K Fd) Wy klﬂ%‘ |
oscillation frequency). The theory takes into account the mo-
tion of resonant electroms which are trapped at the initial
time moment., The nonresonant part of the d;atribution' func-
tion is assumed to be unperturbed. According to the theory /975
at the initisl ﬂtage,{-d% ,_f;w_-..z;u; the;ave ie dam-pfad 1.4.-11 \
the landau damping rate Y, . At {> Ta tne wave' ampllfu B
oscillates with the perlod ~ Tp;. (Fig.1). Theoretical results

are in a good agreement with the results of the laboratory /10/
: ) : e oz ev,

and pumerical 711/ experiments performed in the region (.?_.4:-: 1,

V%“"' 2< Vr ) somewhat brosder than the regiom of validity

of the theory /9/.

Our numerical experiment /4,8/ wae performed in a wider
range of initiel wave parameters including the region from
2
f_r_‘f: <<1 uptof¥orti el o 301074 4 103 Vb o 2.5 4

dxhT Ve
2 3 =4 e -2
20; (Kold) ™~ 23077432107 ; V/PE, ~ 0.2420; @ . 4.1072 ,
fﬂﬂf T ~

T

4'102; ‘@’/‘féd 0.1 + 0.8. The ions were taken immobile, % =
. 101"'}, to exclude the wave instability (decay, modulatiomal
instability and sc onr).

In the region of low amplitude waves, where the perturbed
velocity is less than the thermal one, -ﬁfﬁ < V., and E_sz- w4
(in this region the range f“'fl”'I*/VT*'\"' 2.5¢4.2 was only stiudied),
the numerical experiment resulits agree with theoretical results

/9/, end the damping ie described by the Landau dsmping rate
(Fig.1) /4,8/. When the perturbed velocity becomes higher than

é
‘a thermal one: VFFQE“?W and ~—$ﬁ 7 1 , the demping rate be=

comes highgr cmpare& taH;,.The retio !‘&L increases exponential-
ly with increassing the initisl empliiude and phase velocity of
the wave, sc¢ that the damping rate can exceed HL by many or-
ders of magnitude (Fig.2). In this region the damping rate de-
pends précticallr linearly on the number nfqelectmns trapped
by the wave. This number alsc increases exponentially with an
increase of the amplitude and phase velocity of the Iwave. The
mechanism of the phenomenon resulting in the increase of the
damping rate is the trﬁpping and scceleration of the electrons
from the main, nonresonant part of the velocity distribution
fanction {within the studied renge of parameters these are
elactrons with unperturbed velocities V< 2V:) due te  ite
strong perturbation by the wave field /8/.
In construction of theoretical models it is usually as-

sumed that the demping of Langmuir waves is described by the




Landau damping rate, so that in the region VF""/W 574, Kold <<
the damping is assumed to be negligibly small. The results of
our mmerical experiment show that the Langmuir wave damping
can be described by the Landau damping rate only in the re-
gion ﬂﬁ/‘rﬁf y S 5-%“‘”7_5 %(h h”l. In the region

e c;“’./?,. g Eg‘a/g{nT}%{g,rdJEthe'deing rate can essen-

- 2
tially exceed JI- « Hote, that the condition ﬂ/ég#T?%ffnwz

coincides with the condition for exciting the supersonic mo-
dulational instability.

In Pigs.3 and 4 are shown the curves of constant damping
rate which correspond to the initial parameters of the waves
damping with the same damping rate. In the region % T<1
they are vertical 1111325 H = a’l.. : in the region VFJ";‘UT =10 -
the straight lines z%ﬁ' I 3.8107242.3-1071),
or V3& A, ~J”% _
stant damping rate may be used to characterize the validity

("~ 0.54-0.82). The curves of con-

limits of theoretical models which do not take into account
the damping.

The region of validity of theoretical models is often
determined by the condition that the effects due to electiron
nonlinearity are négligihly sna_nll. The numerical experiment
allows the formulation of these conditions, The numerical ex-
periment dealing with the study of electron nonlinearity /4,

7/ was carried out in the range of initial wave parameters:

£S L 10784103 ‘%i'- ~ 2.5¢160; (Ko¥d)*~ 40107943.1071,
e In a mnnﬂchromalic wave the electron nonlinearity occurs
when the perturbed electrom velaci‘tyl becomes close to the

phase velocity. In this case, the electron is in the acceler-

ating field phase for a longer time, so it gains a higher ve-

ek

locity in comparison with the linear case, This leads to an
increase of the energy of oscillations of the electrons as com-
pared to the field energy ﬁw%{/*_?iand also to an increase of
electron denaity in the accelerating field phases EVE ;‘f.‘f, 80
that the density perturbation is sharpened, while the ;;va
tield £ (X) is steepened. This is equivalent to the appearance
of higher modes of the electric field and electron density
with the same phase v:alucitj' as the basic ones. The case of
strong electron nonlinearity is the trapping of electrons by
the wave. In this case, the trapped electrons are accelerated
up to V ~Vph +2@ . Just this effect determines the high
damping rate considered above.

The "boundary of electron nonlinearity” - the initial pa-
rameters of the waves at which electron nonlinearity becomes
essential - was determined basing on the difference of the ra-
tios ‘”’"‘/wg and ‘:‘:*/;}:_ from unity (the difference of about
5-10% was assumed to be essential) /4,7/., The curve found is
chown in Figs.3 and 4. In the region of high phase velocities
UF"/VT?? {0 it is a straight line ﬁ%nﬁ""” {0.2' af"n’J? or
%. ~ 0,2 VF""/V-,- . The "boundary of electron trapping"
with unperturbed velocities ~ ' 2V; was determined basing on
a form of the phase plane. It appears to be close to the line
of constant damping rate with %fﬂﬁ- 3;1{}'2. In the region of
high UP"‘/V—,- it is a straight line Eol/ﬁ-k?- ~ 6102 . OF

I‘Exard}z
]/E.%ﬂ/v-,-“ 0.6 E{;/E__ .

Instability of travelling Langmmir iavea -
initial stage /6,7/

r

The instabilities of a one-dimensional Langmuir wave
were intensively studied in the theory. It was found that




the Langmuir wave is unstable, and the type of instability de-
pends on the initisl paremeters of the wave. Most detailed
theoretical analysis of the instabilities of a Langmuir wave,
the review and analysis of the results available are given in
Ref./12/. The scheme showing the regions of the instabilities
of different types from Ref./12/ with some additions (A.M.HRu-

benchik, private communication) is presented in Fig.4.

T. Modulational (static) instability: <ZK,, A, 7)o, X, A, -

the wave vector and wavelength of a mode with maximum growth

rate, Ko, Ao - the same for a given wave.

II. Presonic modulational instability: Efl‘**"(o, A < Ao,

I, Supersonic (hydrodynamic) modulational instability: x 2K,
ghqd )\c .

IV. Modified decay instability: 2@~2K, , }x,h'* % ’

V. Decay instability: & ~2K. , Mn, n-.}f :

In Fig.4 are also shown the "boundary of electron non-
linearity" and the lines of constant damping rate. The "boun-
dary of nonlinearity" shows the limit of validity of the li-
near theory. Note, that the boundaries of instability regioms
depend on the ratio % , whereas the "boundary of nonlineari-
ty" and the lines of constant demping rate are independent of
if, g0 the region of validity of the linear theory is varied
with M . In Pig.4 the regioms of instability for hydrogen
ions, T\ = 1836, are shown,

The numerical experiment on studying the initial astage of
| instability /6,7/ was performed in the range of initial wave
parameters: EdfahT . 3410784102, Vb (, ~ 34160,{@*“1}'1 4.1077«

2.10°1, M 3

y = 102, in some cases ,:?1"1- = 100, 80 that all of

the instability regions are included. The region of instabili-

2 g E‘nﬂ 2
ties I-III from 35:1‘ << (Kord) < % t0 TrnT >7 % > (Keld )
-8 .2

(variation in the amplitude 5}1{”'?_“'10 +10 at_

VF;’/V'T = 16,( Kord )2 = 3-9'10-‘3} is analysed in a consider-
able detail.

In the range of sll parameters lying below the "boundary
of trapping” and including the region of validity of the li-
near theory, and also a.ll of the reglons I-V, the instability
of one type is observed. This instability is due to the perturb-
ation of ion velocities and ion demsity by the electric field
of the Langmuir wave, that stimiilates the nonresonant decay
lke=Cor~ Sewith 2 ~2K, and Am~ A%y . The instability
ehows itself in the formation of the density cavity with A=)e
and in the modulation of the wave with An, < Ao (in spectral
description - in the growth of ion mode with K =Ko and the
Langmuir mode with K= 2Kc), This instability may be called
the "stimulated decay®". It differs from all of the insetabili-
ties fﬁu.nd in the;'thenrr. This difference is especially clear
in the region of modulational ﬂ.nntahilitilan I-I1I where the
wavelength of the mode with maximem growth rate (modulation
1angtl_1). act;'.ordling to the theory, must depend on the v&ve.an-
pl.ituda and must decra_aaa with its increase, Note, that in the
region I Ap. >As, in the regions II amd III -Am <o, The mo-
duiatiun length observed in the mumerical experiment does not .
depend on the wave amplitude and is always less than the initi-
8l wavelength. The reason of thies Jdifference from the theory
coneisis, apparently, in fthat the theory dces not take inte
account the ion perturbation by the imitial wave field hcnma
gf the averaging over time intervals ~ %Jp e 1 B0 the solu~-
tion equivalent to the "stimulated decay® is lost. Of course,




there is a question about the problem formulation. In the nu-
merical experiment, at the initiel moment the uniform distribu-
tion of the ions #7.(X) =‘fonst and the electron density and ve-
locity perturbations to set a Langmuir wave are given. Such a
formulation of the problem seems reasonable because it corres-
ponde to a real case when the Langmuir wave is excited during
a short time in the homogeneous plasma in some way (e.g., by

an electron beam).

Ingtability of travelling Langmuir waves =
nonlinear stage /2,3,4,6,8/

The difference of the instability observed in the numer-
ical experiment from the theoretical one should show itself
at the nonlinear stage of instability. Especially significant
this difference can be in the region I E’Zyﬁr < (Kot )?
where theoretical instability must result in the wave modula-
tion with Am > Ae and at the nonlinear stage - in formation
of an envelope soliton with AX > Ao /12/, whereas "stimulated
decay” leads to the modulation with A,, <J,. In the numerical
experiment, in this region the nonlinear stgge of instability
was not studied because of high ievel of noises.

The ﬂifference can prove to be not so significant in the
regions II and III, E‘ZHHT }(x'ﬂ rd}z , Where theoretical in-
stability must lead to the wave modulation with Am <o , and
the ponderomotive force must play a main role. According to
the theory, the development of instabiiity in this region must
result in formation of a quasi-stationary Langmuir soliton with
parameters depending on the initiﬁl wave energy and AX < A,

10

" initial Ia"re parameters: 3——? - 4'10"2 102

/12/. Pollowing to /13,14/, the soliton field in the case when

~ the group velocity is equal to zero is described by the formula

Elxt) = fmx 4ih (Kx-wt)

[ -]
where t.rh.., is the maximum electric field. The soliton width at
the level ,’:@ Em 18

\ %
( 2 r x - .-g--
& /SHH.T ° T AX
The maximum density perturbatien is
i) _ 1 En
el I £k

The numerical experiment on studying the nonlinegtr stage

of instability /2-4,6/ was earriad out within the range of the

2 . e,

fk'afd) = 3.9°1077, and also in the range Vpﬁ/v ~3-r16ﬂ.
(Ko¥d)~3.9.107941.7+10"1 at §_r_:!._ «1.6; M = 10°, and

—

7
was studied, : 3'1'!'?7'

At the initial stage oi" instability the "stimulated decay"™

v M nn
in some cases — i_103. Thus, the region £ 2 > Mm ?(kol"a'_]‘

leads to the formation of a density cavity and wave modulation
with ) m -i}.ﬁ. In the following ﬁevelupuent of Mtahilit'y,. the
Miller force (ponderomotive force) plays a main rols, what re-
sults in carrying away .thu rlasma from the region of maximum
electric field lntensity, in deepening the demsity cavity,and
in further increasing the electric field intensity (FPige.5 and
6) /2,3,6/. So, at the nonlinear stage the development of in-
stability is the seme as that of modulational mfabilit;r found
theoretically (region III).

11




If the wave amplitude is low enough (caee 6 /6,8/ -
= & .
Ep/gﬁhT = 4+10 2; VP"/VT 16; ‘E‘;/Ré;kr = 0,5 Kotd ),
the development of instability leads to the formation of a

quasi-stationary soliton with .quilibrium parameters (Fig.6,
curve 6). This agrees with the theoretical result and confirms
that, despite the &ifferﬁnce at the initial stage, a% the non-

linear atage the instability is a modulational instability.
e
dnnT
= 1.6 Kol'd ), the development of

In the case of a higher amplitude (case 7 /6,8/: -
2

- 1077, Veh 46, E,
V1 BanT .
instability also leads to the formation of a soliton with equi-

librium parameters (Fig.5; Fig.6. curve T). But the soliton is
not quasi-stationary in this case and is damped due to the trap-
ping and acceleration of the electrons from the tail of the dis-
tribution function by short Wavelength modes. Thus, this case
shows the limit of wvalidity of the nonlinear theory not taking
account of damping,

In the case of a further increase of the amplitude (case
8 /2,3,6,8(: Eshat | 3¢1077; R Eo’ = 4,8Kold},

ST e i ‘LT
the equilibrium soliton is not formed but a fast growth of field

intensity and a decresse of the field localization region are
observed. The non-equilibrium soliton is here formed whose field
Efx;+) varies 1like a soliton field but the width AX is more,
and the depth of the density cavity is less than the equilib-
rium ones for the soliton with the same energy density. The non-

equilibrium soliton continues to be compressed and begins to

" demp before it achieves the equlibrium soliton parameters.

2
inh

Therefore, in the range of parameters >1.6 Ko Fd the

collapse is observed.

If the initisl parameters of the wave are higher than the

12

"boundary of electron nonlinearity™, Z%T - 1(}_%&,?3)1 -
n
the development of modulational instsbility is limited by the

damping (Fig.7, curves 9-11), and the collapse has no time to
develop /4/.

If the initial parameters are in the region of strong
damping, Egﬁéﬁﬂr > 4»10_%;&.!“5{}2, {K/ME}1D'2), the wave ie
strongly damped from the very beginning, and the modulational
instability does not develop (Pig.7, curves 12 and 13) /4/.

Thus, the numerical experiment shows that the nonlinear
theory of modulational instability of a one-dimenaional Lang-
muir wave, which results in the conclusion on soliton formation
ia valid only for a limiied range of initial parameters of the

gf;_f_ & 16Nl
To find the region of wvalidity of the nonlinear theory is

wave :

also poseible with the help of eimple argumente and the scheme
from Pig.8 /8/. In this scheme in the caordinatesi—r%:; — (krd,)a
the following curves are plotted: the curves of conetant damp-
ing rate forJ/%e.}10“2; the curve of equilibrium soliton pa-
rameters: Ef%m?, = 4.86 (K Fd }2, K= 3‘}1 : and the cuwga of
constant total wave energy: fﬁ%_f = @ (Ko Loy) (from %}ﬁ.dp =
= const ); the latter corresponds to different combinations
of initial parameters EQ5V@L at which the total energy of the
waves 1ls the same. On the other hand, at given initial parame-
ters, such a curve roughly characterizes the variation in the
paerameters of the nqn-equilihrium gcliton during its compression
as practically the full wave energy is localized in this soli-
ton, Intersection of the constant energy curve with the equi-

librivm soliton curve corresponds to scliton formation for the

waves with any initisl parameters but the same total energy.

13




If the constant energy curve intersects first the line of con-
stant damping rate with fairly high r}/ , then for all the
parameters with the same total energy, the collapse will be

observed. In Pig.8 it is seen that the boundary curve is a line

E . ir
BBt o ©

numerical experiment. Thus, the theory predicting the formation

, that is consistent with the results of tihe

of a quasi-stationary soliton is only valid in the region of
initial parameters of the wave G;ffz_:_- < Ko Fd , and the
xnown condition for its walidity E%ﬁfHﬁT << 1 is insufficient

The numerical experiment allows to analyse in detail the
development of instability of a Langmuir wave and to investigat
the phenomena playing a main role. de have already discussed
the initial stage of instability - "stimulated decsy" and the
following stage = modulational instability - related to ihe ac-
tion of the ponderomotive force.

In the development of instability an essential role also
plays the process of wave conversion on the density perturba-
tions. This process occurs when the density pertﬂfbations be-
come large enough (in our range of parametfers: f%?h.EL 1G_E}.
The conversion ‘rocess fﬁn + 5. > gﬁ‘,iﬁr;' B o= 12300,
leads to the excitation of the backward waves and wave ﬁudes
with shorter wavelengths, i.e. to the trapping of eleciric
field in the density cavity and the formation of sianding wavet
/2-4/.

The development of modulational instability leads to Lhe
formation of a non-equilibrium soliton which continues to be
compressed. This soliton can be a Langmuir soliton (a bunch of
travelling wave modes with definite relative phases), or a

standing soliton (a bunch of standing wave modes) if the con-

14
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version becomes significant. The non-equilibrium soliton com-
pregsion leads to the formation of a quasi-stationary soliton
(Langmuir, or standing one), or to the damping /6/.

The damping results from the trapping of electrons by
gshori wavelength modes execited during compression of the non-
equilibrium scliton and the conversion. Due to intersection of
the " rapping regions of the modes, the trapped electrons are
accelerated to high velocities, up to \f“‘h@h +}ﬂ§gT of the
initial wave, If the initial wave parameters are far from the
"boundary of trapping”, the main part of the distribution func-
tion is perturbed slightly, so that the tail of accelerated
electrons is only formed. The joint action of the conversion
and trepping leads to a practically full absorption of field
energy by plasma electrons /2-4/.

After damping of the electric field, the density cavities
are Tfilled with plasma, as a result of shock waves formation on
the edgea of the cavities. Their interaction lsads to the deve-
lopment of ion turbulence and also to the appearance of accel-
erated ions /3/.

Thua, one can list the main processes playing 2 role in
development of the instability and damping of a Langmuir wave
in a one-dimensional system:

"Stimulated decay™: fg’a‘r éﬁg‘ S_.-‘;related to the perturba-
tion of ions by the initial field of a Langmuir wave:

Modulational instability associated with the carrying away
of a plasma from the density cavity under the action of pondero-
motive force:

Conversion of Langmuir waves on the density inhomogeneities:

b 18 = 'y i i i i
ﬁip i S'*,E - érﬁ.f*}ﬂfg’ ﬁ 1:2,3, resulting in excitation




of baclkward waves and short wavelength modes;
‘Quasi-stationary soliton formation related to the equali-
ty of the pendercmotive force to plasma pressure; '
Landeu damping playing & role in the region f__r"'f_. < 1, or
_éif. < :%~f#:rﬁ)
Ih-rl-lampj.ng related te the trapping of nonresonsnt electrons
by the wave due to & strong perturbation of the diatr:.buticn

Punction snd playing & role in the region .l{-?j,nr 7%(-‘”&]

We have used the term "collapse" for the case when the in-
stabllity ﬁﬁe to the setion of pondercmotive force leads to the
damping of the field as, according to physical sense, this is
just the same process which was found theoretically in the two-
dimenaional case /1/. However, if the term "modulational insta-
bility" is used not for a concrete insgtability acting within
the faginna I-TIT but in 2 broader sense, for any instability
connected to the action of ponderomotive force (what is often
dcné; the moduletional instability seems to be the same physic-
al process. Though, even in this case, it is reasonable to use

the term "collapse" to denote the summary Process = instability

and damping.
Instability of standing Langmuir waves /3,5,6/

The n'lmefic:al aiperimént on studying the instability of
standing Lengmuir waves /5,6/ was carried out in the range of

?+1GE at

the following wave par&metarn E"/é’fn”l‘ ~ 4«10
VF"‘/V = +16, {Ko l“d) = 3.9410"> and in the range: VPﬂ/’Vf =

2 2
£(16-48), (Ko F4}3.9°10 4441074 at Eo_ = 1,65 e 102,

SAnT _ -
Thus, the region Eo iy M s (k. F‘J)i was gtudied.
Lwhl M

16

In the case of a standing wave, the electric field energy
density is inhomogenecus from the very beginning, so that ti:}.e
position of density cavities is determined by the regions whera
the electric field is maximum. ‘i‘h.i.a is the main difference
from the case of a traveliing wave. In this case, the develop-
ment of instability élways leads to the formation of ai:anding,
equilibrium or non-equilibrium solitons. In other features, the

development of standing wave instability doces not gqualitatively

L4 differ from the case of a travelling wave: in both casesz, in
the regions of the same parameters the same processes play a
role. So, in the region -%—;_ < Kekd the gquasi-atation-
ary standing scliton is formed /6/, in the region !E" = & 2o Vet ~

the Equilihrium but damping standing soliton, in the region
E/fffh‘r > Kold = ine collapse occurs /6/, in the regionm

E‘/g ThT > 4_fa'%x, rdr)‘ the wave damps from the very beginning /5/.
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PIGURE CAPTIONS

Fig.1 The dependence of wave amplitude on time g**" 7{(!’-{')

/4/. Solid curves - the theory /9/; a point - the numer-

ical experiment /4/; ¥ ""Jz/% S Wy =Koy :E?
Vik/ie Eo T q 7;%54;

* 2,46 3.1074; 2.6 0.2
X 2.95; 4.1072; 0.5 0.8
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Fig.2a The dependence of damping rate on amplitude:

H/!L e Jc(‘/%?}:/{/r) at U'PL =tonst sa/:

x ] o
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Fig,2b The dependence of damping rate on phase velocity:
¥ = $(Vohia) at T2t = Const ygy,

- . o + ¢

b
;/Ezc
rn/i/, I 1.6 z._a 4.2 5o d 6.3

Pig,3 The lines of constant damping rate (f/w.f tonst  gna
the “hmdnry of nonlinearity® in the coordinates
,/‘r;{, vr /8/. The line }/;r@?s Vi VT
the boundary of validity of the theory /9/.

Fig.,4 A scheme: ths regioms of instability of a Qna-dinunsinnal
Lengmuir wave according te the theory /12/, the lines :
of constant damping rate, rﬁJf = tonit, and the "bounda-
ry of nonlinearity” im the cooar dinates ‘E. . l"d)

for % - 1836. (M
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Fig.5 The distribution of field £(x) and density perturb-
ation ,h"_ [ x) at different time moments /6/. :

Tor = Q;r/“rﬂe is the period of plasma oscilla-

tions. Case T: fL = 10_1; E&h.v = 16.
=

Fig.6 The time dependence of maximum energy density WM/W, H')
at different amplitudes and VL:Mhif /67,
Wi, = ma%ﬂﬂmur ; We = Eﬂ//«:!'ﬁ"ﬂ-
£ nax -1 the field amplitude in the density cavity;
T ig the maximum density in the cavity.

Py

Numeration according to /7/. VP‘/VT = 1b.

Cage 6 T a8

2
e e 4.107% 1071 3,107
S8inT !

Fig,7 The time dependence of maximum energy density
mefwa HZ) at different amplitudes and\a‘i'.i.-dofhif”;_
Numeration according to /T/. fofjfvf = 16

Case 8 9 10 11 12 13
El

?»ﬂ:T 3410”7 1.6 11 18 36 115
[}

Fig.8 The lines of constant damping rate a’/wﬂﬂtﬂm; the
linee of constant wave energy -Fﬁfr-‘—‘akl"d ; the line
of equilibrium soliton parameiers and the initial wave
parameters from /6/ in the coordinates EAEEF —(Krd )1

Numeration according to /7/.
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