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Abastract

The p-odd asymmetry in the angular distribution of fragments
from the polarized mucleus fission is considered. A mechaniem of
this effect is proposed. Asymmeiry arises due to mixing of the
rotational states of a cold, sirdngly deformed nuclesus., The ex-

periments which enable ome to verify this mechanism are discussed.




The spatial parity violation has been observed in the fis-
gion of 233U, 235U, 239Pu induced by the polarized thermal neu-
trons /1-4/. The effect im the correlation of the light fisaion
fragment momentum with the spin of the initial neutron. The
asymmetry is ﬂf10-4. :

When attempting to obtain the theoretical treatment of this
effect the following ﬁfﬂhlunu arise, .

1. How does the two-particle weak interaction affect the
collective, actually macroscopie motion of the system? Another
words, this question may be stated as follows. The fimsion frag-
mente are heavy, Meanwhile, the mass ueuwsglly is in the denomina-
tor of the effective Hamiltonian of weak interaction. How is this
suppression compensated? :

2. As known, the number of final states of fission fragments
is very large. Why doesn't this circumstance lead : to statiatical
averaging of the effect?

In this stuﬂy it is proposed a mechanism of the p-odd asym-
metry in fission, which gives, apparently, the anawer to these
qugstianu. The experiments sllowing the verification of thiﬁ me-
chanism are discussed. It may turn out that the experimental
results allow to relate the magnitudes of the effect in differ-
ent nuelei. As far as the estimation of the effect is concermed,
within the framework of the scheme proposed the latter réduced
to caleculationa of certsin matrix elements. These calculations
appear to be possible but we do not make them here, However,
already now an impreasion is being gained that the theoretical
treatment of the p-odd effect in fission is not more #nmpliaatad
than that in the 13 —queantum radiation processes.

To illustrate the ﬁeuhanism of appearing the p-odd correla-
tion in fission, in Appendix I we present a simple model, namely:




the polarized atom ionization. The angular correlation of the

decay products due to the mixing of quasi-stationary states is

found in Appendix 2.

As known, at not too high energies the nuclear fission process
consiaste of the following mtages (see Fig.1):

1. Capture of the particle (for example, the neutron) and forma-
tion of a hot compound nucleus.

2, The nucleus is stretched, gets cold and settle down to a cer-
tain quantum quasi-stationary state. In other words, the pro-
cess goes through the fixed fission chanmel.

3. Breakage of the neck and diverging of the fragments. All the
variety of final etates are formed Jjust at this stage.

Aa the experimenits show, the p-even angular distributions
of the fragments are formed at the stage 2 /5/. This means, first,
~ that the nucleus here lives long enough to"forget" its past and,
second, that the breakage occurs so rapidly that information
about the state 2 does not lost. Characteristic memory time of
the mixing of different states depends only on the distance be-
tween the energy levels rather than the intensaity of the inter-
action causing the mixing ( QT‘*i/Sa; ). Therefore, it is quite
reasonable to assume that the p-odd asymmetry also arises at the
cold stage. In this case, the second , formulated above problem
is solved immediately: asymmetry arises before the breakage and
is independent of the final state of fragments.

It is natural to suppose that the mass asymmetry of fragments
is formed at the cold stage, l.e. the nucleus in this state repres-
ente a pear-uhaﬁad top. In the adisbatic approximation the spec-
trum of such a system looks as follows /5/. At a given intermal
state Iﬁjk{>( f{ is the projection of the total angular momentum
' :j on the top axis) té}e is a band of rotational states (see

Pig.2). It K:FD, then at each J there exist two close lev-
els of oppoeite parity. This is the phenomenon similar to the

A_ -doubling in mnleculau”.
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Here Pl is the parity of the utate; It is easy to verify that

in the adiabatic approximation the weak interaction does not _
mix these levels., Actually, the matrix alemant:f{C{,i:/"Hw jq’) E>£f
( E'f '? )} reduces to the average value Hu..., in the body-fixed
J(_'rame ('ﬂjk)‘ Ha /-‘1, a0 Hw’is the pseudoscslar, therefore,
<‘G{JK/HWIQ‘IK>. ~ K . But since K changes its sign at the
time reflection, this relation contraqzcta to the T-invariance
of Hw..Hence, I?(Fri_,k/ Hh,fff, K>£_f - The mixing which is
not equal to zerayiz the p-odd mixing with the levels [ g} K>3
whose internal states differ from fﬁ;t>y:
JQTK5§H = | K);Lﬂ“ g(éjkmmq £

£, &,
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However, this mixing itself does not yet lead to the angular
asymme try since the wave functions |a Yand [€)d0 not interfere
due to orthogonality over internal variables. In order for the
interference to appear it is necessary to return the system from
the ;tate J g> to JCL’> . This transition can be caused by any
interaction HK violating adiabaticity. There is no difficul-
ty to see that for the effect under discussion only the part of
the operator HK which changes the sign K is significant, i.e.
ig;K> o /qu "‘f> . Thues, if one takes into account the p-odd
mixing, the wave function of the state /@) has the form:

%) Such a rotational structure has been observed in nuutraﬁ-

induced fission of 23"':"J'.'h /6/.
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U, is real. The coefficient .H(Z i’j depends on the transforma-

tic;n properties of Hg :
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o
Energy Eplitting of the states ? and ?_“ is also due to the

interaction HK
“8E = TV Hyy

We dc:- not know a concrete form of the operator /‘/;( . The part of

¢a-¢l Helegk>

4y can take the Coriolis interaction, the interaction of in-
ternal degrees of freedom with flexural oscillations of the

stretched nucleus (apparently, such oscillations occur in fission;

see, for example, Ref,/7/) and finally, the interaction correspond-

ing to the places exchange of the light and heavy fragments 5/
(in this case the transition can be above-barrier). Some informa-
tion on H;{, can be extracted from the measurements of energy
splitting E? 'EE .

For rough estimation of the mixing coefficient hﬁu&f-&’w/(.é‘ f”
the matrix elements of HK in both the numerator and denominsa-
tor can be cancelled, If one assumes that |4 Yand [£)are the
gingle-particle states and also that EQ‘E{'; ~ 1 MeV, then, as usual,
ﬁ ~ 1075, This {e considerably smaller than the observed value
of the p-odd asymmetry. Our hopes for amplifying the effect are
associated with that, first, the distance between the levels in

strongly deformed nuclei is much smaller than that in the non-

deformed ones. Second, amplification is possible due to collactive

character of the matrix element ("6?;” HWJ(C?}. The point is that
the state |@a> is not the gingle-particle one, Apparently, it
is & collective state with K = 1 which is analogous to a low-
lying branch of the octupole excitation in symmetrically deform-
ed muclei?’,
Beaides the mixing coefficient, aﬂmetry also depends on

e >? and

the dncay of the states |& fﬂ>f . Por example, if
]Cf>? and fﬁ}i are the bound states, then the mixing coeffici- |
ent is purely imaginary due to T-invariance of the operator Hw .
For this reuor-l the interference between these states doez not
appear. 1t is quite natural apd corregponds to the absence of
electrical dipole moment In the statliomnary state. Interference -
arises in fission due to that the decay phases of fﬂf)? and fﬁ(}'f
are different. The angular correlation of the decay products due
to the mixing of quasi-stationary states is found in Appendix 2.
The angular distribution of fragments in fission through the chan-
nel IQJ K> from the state with s given energy E y angular mo-
men tum j A ,'ja:.-*f , and parity iz has the form:
Wiy (8) ~ 12, 124 +¥) + 1B, 1*(1-7)

' (4)

= z?&ggzﬂli

In the experiments the fission of the unpolarized nuclei has heen

 induced by polarized neutrons /1-4/, In this case, the angular

distributlon is the following:

Thera is experimental evidence for that the fisgion of
23611!’3935 Tmm the state with K = 1 /8/. It is very important

that K#-:{Q since at K = O the discussed by us mechanism of
appearing the asymmetry does not "work"”,
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I is the angular momentum of the target nucleus, C:ﬁﬁjﬁjﬁ

is the Clebsch-Gordan coefficient. If the fission goes through
some chammels with different K , then =£ZWE &, , where V/K
is the corresponding fission probability.

In our diecussions the p-odd correlation is assumed to be
caused by the usual weak interaction. In principle, there is
another possibility. To the same effecf leads the interaction
P{TP violating both the T- and P-parities simultaneously (name-
ly this interaction is responsible,for example, for a hypothetic
electrical dipole moment of a meutron). In this case, formulae
(4) and (5) are also applicable in fact. The difference consists
in that the imaginary matrix element ;.2(h/ should be replaced
by the real ZX/.F

p
a= 24 Re Ure. K (3:{) U~I-21
2 E_Eé-*é&.z R ?z i

(6)
Z{TP (EHEE) X (-—f) -I-%

2? 2y Pl v
(E'-Ef) = T 2

Unlike the matrix element of the weak interaction (3), J{’,?.P is

not equal to zero even with no taken into account the interaction
F{K which breaks adiabaticity, i.e. already in the first order

of perturbation theory %TF’: '(ﬁ; XIHTF [ &, K > . This eircum-

stznce can partially compensate a degrease in the effect value
which is connected with the smallness of the interaction FJT?:
itself. Though, it is extremely hardly probable that the ob- .
served effect is caused by this interaction. In principle, the
question of what interaction causes the angular asymmetry may
be solved experimentally since the energy dependence of the ef-
fect in formulae (5) and (6) is different.

Return now to the questions which have been posed at the
beginning of this paper. As we see, the answer to the first one
is that the smallness of .F and the interval between the rota-
tional levels of opposite parity compensate the suppression of
the effect due to a large nucleus mass. The answer to the second
question hae already been formulated. It consisis in that the
asymmetry is formed at the cold stage of fiaaionja

The effect magnitude is not estimated in the present paper.
But the scheme proposed makes it possible to point out the ex-
periments which, on the one hand, allow one to verify it and,
on the other hand, to determine the parameters necessary for
qualitative predictions.
1. It is.nf significance to determine ik and K of the fission
channel where the effect is observed. As known, to this end the
usual p-even correlations in the angular distribution of frag-
ments should be measured. But for the corresponding experiment
a polarized target is required (as mentioned above, for 235Ueuufl%f
some experimental information is slready available). If it turns
out that in th@ nuclei where the effect was observed, tﬁe same
fission channel works ( This seems to be quite reasomable), the
poesibility ﬁill arise to relate the magnitudes of p-odd asym-

metry for these nuclei.

%) It is very important that both the ground and mixed levels in

(3) have the same internal state. Therefore, the ratio of fission
emplitudes from the levels of opposite parity doesn't depend on
& concrete internal state of fragments.
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2. It is of interest to measure the dependence both of p-odd

and usual p-even angular distributions on the energy of the
neutron. Such information may allow to datamineu%rand E#‘E_.
3. In the discussed model the p-odd ssymmetry is independent of
the nuclear excitation method. Therefore, in fission induced by
any other particles, for example, in phntnfiaéion of 234U, E35H,
240Pu, the effect arises too. Its value can be predicted if the

fission goes through the same channel as that induced by neutrons.

We are indebted to S.T.Belyaev, V.F.Dmitriev, V.G.Zelevinsky,
V.V.Mazepus, V,B,Telitsyn and especially to I.B.Khriplovich for
valuable discussions. We are thankful to V.N.Andreev and G,V.Da-
nilyan for their interest in the study and D.P.Grechukhin who

turns our attention to the paper /8%/.
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APPENDIX 1

POLARIZED ATOM IONIZATION

Tonization of a polarized atom is the simplest model of
arising the p-odd asymmetry in the angular distribution of fission
fragments., Let us consider a hydrogen atom in the ground state
(for the sake of simplicity the nucleus is assumed to be spin-
less). Due to the weak interaction, the p-waves are admixed to
the state {45 :

\/

. ] Rl ]S
|i -}Sifijjz > ¢ {?

E. -F,

/%:J.L,:%} A1

It is easy to see that the mixing coefficient is purely imaginary:
<ij;1‘rHWfS‘£;>/(‘Esﬁ£;) = y{ + Let at a ceratin moment the nucleus

disappear instantly, i.e. the electron becomes free:

L

e ﬁ'”ZfJ(n—) LY (B ooane

;{ is the spin function. The transition amplitude gd, ff has
the following form:

A= hl¥D~C Yoo X SupY,, () #4<), Y 218, DY. (E) aa.s

Turn out attention te the fact that the imaginary unit in the
mixing coefficlent in formula A1.1 is compensated by the imagina-
ry unit in the expansion of the exponent in formula A1.2, Since
the factor ié in formula A1,2 is connected with the free mo-
tion phases of spherical waves, we can say that the imagineryness
of the mixing coefficient 1s compensated due to difference in

the motion phases % S - and P-—states.
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The angular distribution of the outgoing electrons looks

ag follows:

w (6) ~ 4 - d 3, cos & 1.4
J}p and J45 are the overlapping of the corresponding radial
wave functiones of the free and bound elecirons.

In order to aveoid misunderstanding, it should emphasize
that the model under study highly differs from the real fission
process since icnization here occurs under the instant external
perturbation. For this reason, formula A1.4 differs from formula
A2.1.

12
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APPENDIX 2

INFLUENCE OF QUASI-STATIONARY STATES MIXING
ON THE ANGULAR DISTRIBUTION OF DECAY PRODUCTS

Nuclear fission starts from a certain quasi-stationary
state, Therefore, from the standpoint of quantum mechanics we
are interested in the following problem: a particle is produc-
ed inside the potential well, near the quasi-statienary level,
and left 1t some time after. A graph of this process is shown
in Fig.3a. The cross denotes the matrix element f7c describing
a capture of the neutron and also a transition of fthe system
through the compound-nucleus stage into the cold state. The admix-
ture amplitude is plotted in Fig.3b. The point denotes the matrix
element of the p-odd mixing g'fﬁw (3). The decay amplitude of .
the state ,-‘f") can be written in the form /4 = Wﬂgﬁf(/ﬂﬂfﬁ?,) .
Then the wave function of the final state is the following ( %

occure in the denominator after summation of diagrams describing

%
et

the virtual decays):

{;DE Gl E'f?'h:;?ﬁ \/f}_ré?fﬁé; - HE r’?aw*

GRAS (“E—E?- +,*!};2 )

Wlw yé%??ﬁﬁ'?q%?f:ggzégl_

e "'E?" f‘t’"f?::‘z ?

A2,.1

~f -
6

Here 9}? and [’9?—- are the angular wave functions corresponding

L
to the final states of opposite parity. For the fission model
under discussion the states ,%} and }%} correspond to the same
internal state of the nucleus. Therefors F:/’—:z =
interna ate o » [y =15 ,/2 }% V%
a0 that

ol e s
sz 9? 4 E_Er”"q’_{é Q{ A2.2
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The function Q? will be given below (see A2.15).

In order to clarify a picture of the process and physical
approximations, it seems to be rﬂasnnahie to derive the formula
A2.2 another, though much more cumbersome way, namely: we
shall find a wave function describing the decay of the quasi-
stationary state,

In our problem the boundsry condition at ? —».ois a di-
vergent spherical wave. However, it is convenient to construct
a8 perturbation theory, basing upon the standing spherical waves
(diverging waves are singular in gero). Remind that in this basis

& diverging wave occurs in consideration of the wave packet,
.;-
7 4

=
A W sinteres,) ¢ e 12.3
o
At ?,f'—%niﬂ the integral is calculated according to the stationa-
ry phase method, There is no difficulty to see that in this case
in the s¢nus only the diverging wave is significant. Thus, the
recipe conesists in the following. All calculations can be made
for stﬁndiﬂg waves., In order to come to the real problem in the
wave functions obteined, at 7 —>e© the replacement should be
performed: SA o )
CCKE Td,
Sin(kb+ .3‘)—:«2—5 -

Let us now consider the perturbation theory for quasi-sta-
tionary states. To this end, we shall consider a particle motion
with some angular momentum. Let there exist a number of quasi-
stationary lesvels with energieu..fi and widths 4: in this

wave. The radial wave function of the state of ‘continuous spect-

rum with energy £~ may be ﬁrittan'in the following form:
(2)= Sf}?(,&?-f-fgj at D —> 0o A2.4
R R e
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'?ﬂ is the well size. The wave function )TE(P} ie real and
normalized
" 4
{ oo =7
252,
1.8, 8t 2= E;, /:—;-,59 Xbaenmes a wave function of discrete
A

gpectrum. Near the resonance

A :i ﬂ/'? A2,6
Ay
i

;- 2IE -5 ) A2.7
E:——’f‘——ﬂ/ﬂ&égq ?4 g

}f/] is the non-resonant part of the phase. The coefficient @a

ig defined from the normalization condition
e
5’45 %ﬂ/ﬁ =7 A2.8
and is @ = VGW/{H + The element of the phase volume in Eg.
H :

A2,8 is determined by normalization of the function A2.4, Let us
now include the perturbating potential 5/{?}. It is convenient

to write Schredinger's equation for the perturbed function
in the integral form:

0O s
o 2 Eﬁ/’é{' Z
. = Woor f“ﬂ /e 2 %,%cﬁ/ A2.9

e =

Since we want to deal with the basis of standing waves, by the
integral in this formula the principal walue is maantﬂ_

3) An integral is usually taken with the denominator
B La( that corresponds to appearing a diverging wave at
infinity. We prefer not to leave the basis of standing waves.
Of course, when passing to the wave packets, both methode give

the same answer,
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Let the energy £ be close to that of one of the resonances,
for axnmplfiithe first. It is neceassary for us to know the wave
function l}‘/E at 2 2,8nd at ?-—sco . In both cases, the
integral in Eq.A2.9 is calculated explicitly. Actually, the main
contribution to the matrix element <f¥é4fﬁf/9%;;> is made by
the region wherein the wave functions are amplified by a resonance.
Therefore, the dependence of {%;M{'X%} on Ej is deter-
mined by the resonant factor AE; . KGR ’Pg , When the wave
function tzl{:’ has the form of Eq.A2.5, the integral is divided
into the sums of resonant contributions. At 7-—> o< the function
99;; oscillates quickly and the integral is determined by the
pole contribution at Eéf . Hence, the integral equation 22,9
reduces to algebraic equations, At f:, = -Ef/ U & F-F

‘ HET
the solution is the following:

W= VZsner+§,.) st P> o0
@; = \&’_’/4_._: Ae at 2 < < 2
f & 1oy +£ <F'¥uf3-ffl-_f>

4
E € <nidlidmevis £ 7En x 42,10

e :a—E_ !&(F_E
5 * WE? 1 : fﬁ‘;_

£
A = of ETs
£ %y ((E-£.0% + r*

S ERA X, >

The factor [Z 1s not given because it should be eliminated
by renormalization of the wave function ‘?"é 4). Formulae A2,10

4) The integral equation A2.9, as well as perturbation

theories in the continuous spectrum yields a non-normalized

wave function.
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may also be obtained by a direct summation of a serieg of per-
turha‘tif.fn theories. Just as one should Eicp-ac't, after normaliza-
tion '&VE takes the form A2,4-A27 and XE- d,LL E=£’ 18 ex»
pressed in terms of perturbation theory for discrete spectrunm.
Emphasize that the non-resonant part of the phase in H":é and%
ie the same.

Return now to nuclear fission. In the adiabatic approxima-
tion the opposite-parity states in the nucleus are degenerated
and the wave functione have the form (1). The interaction HK
breaking asdiabaticity causes the energy splitting and results in
mixing with other internal states. As shown above (ﬁu A2,10),

at TS 7, the wave function of continuous spectrum looks as

follows:
gl 2
lf/E ‘ﬁE Iy
o >.{. A2.11
?:.!’QK?? + _?E.—JK fa;t" M v 4
A g 2 % Ey ~ Eg “ >3H

‘The weak interaction leads to mixing of the states S‘t’? and F’E :

<?“52/HV/?*;>:,{‘? %y AL A1 Bt i A2.12

The matrix element < A E;HH//I?) = ‘? H. 18 given in Eq.(3).
The integral in

P &

/ P
BV?,—. ?’;4 <?’£.3/Hw/5p5> %g é‘ﬂ"f!’f
£

42,13
E -E' gt N g

is calculated in the same way as that in Eq.A2.9. Taklng intc
account the p-odd mixing, we get the following wave functions:

] 1. zflﬁw :ﬂ
H ZZ d_ +!”/4', ‘;[ j Krf 2-5?6 A2.14

L]

%m—l




P |
LFE :9?' Siﬂ(f’f+ Sg)-
-ty U, T2 A
- T -'_; !':95 f?f- 3 . '?
(8} +73, /4; v (EEER )08 o

S U= & gpety 24 .
E < ?'—FT{'_‘L.‘JP} .ﬁ?-g‘E’?

At ¥ - o in the wave functions we eingle out the factors respon-

gible for & relative motion of fragmenta:

|2, k> =Bl simere st .
at 2 > oo

" .,..'- 5 i Neri By T
61 = v ?—ﬁ_r'i jgfft la, Ky + f'("{) E)J:'E ff?;ﬁ>j

A2.15

f&: K> is the intermal wave function for fragments.

In addition to the wave functions ¥/ describing both
the cold stage of fission and diverg&neg it is necessary to lmow
the transition amplitudes of the system to these states. Let
a certain operator Ffs describe a capture of the neutron and
transition of the system via compound-nucleus state into the
cold state. As has been said above, the weak interaction in the
- compound nucleus is assumed to be negligible, i.e. }ig conserves
parity. If one takes into sccount the fact that parity of the

initial state ?? is fixed, one gets the wave function of mo-
tion of the fragments:

B(F)= Z<FIHI2) v, SN DF e

] ] g ; -'..._ ? .
e s) [ or, iyt (ayt) 5750 G1 L
g 9 2_ if zrg 9

i“p *HZ?HCQE”*Hé?

We here remain only the terms corresponding to a diverging wave,

Substituting the phase difference from A2.14, we obtain the wave
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angular function AZ2.Z2.
Turn our attention to an interesting circumstance: the
p-odd correlation in A2.,2 is proportional to
Re ﬁEf%j . o jﬂ
gt Epriily
There is no difficulty to clarify this fact, basing on T-invari-
ence of the weak interaction. The matter is that the state of

A2,2 and A2,16 with the asymmetric diverging wave has a non—szo
dipole moment directed along the total moment of the system :j
This dipole moment is, of course, proportional to a width. Thus,
we see a conorete example which shows that the widely discussed
dipole moment of the unstable state /9/ (see also Refs./10-12/)
is none other than a usual p-odd correlation in the angular dis-

tribution of dacaﬁ products.
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