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It is shown that the inverse scattering trensform method
3 (the IST Method) and the equaﬁicné integrable by this method
' can be formulated as a theory of pencils of principal and
asaociated vector G-bundles of zero curvature. It is given a

CH ks

differential-geometric treatment of some properties of inte -

grable equations.




I. Introduction

At present considerable atiention is focused on the IST
Method and the equa-i:inns intagrahlé by this method (see
reviews /1-3/). As known, the starting point of the IST Method
igs to put correspondence a basic :nun-linéar'pe.r'hial differen -
tigl equation to the linear matrix problem (the case of two
independent variables X, Xz )s '

%gg Ao (0, 1U3) Y ,
’a & AQ,[A {ﬁj)(j/ . (1a1)

where the elements af the ma.tricas ?41 and Ai are parametriz-
ed by the functions?{ {I; n),,..)'u (’VI X2)end A\ is e pareme -
ter. The consistency con&ition of the gystem (1.1) is. aquiva -
lent to the basical nnn—lincar partial differential aqnatiun
for the functions %~ ‘Ri.., U=,

Specific propertiea of integrable equations (solitons,
infinite sets of conservation laws) are due to the existence
of the representation (1.1) and reflect apacial geometric
propertiea of these equations.

_ Ag it was noted by many authors, the consistency condi -
4$ion of the system (1.1) may be interpreted as an equality to
zero of the curvature of some space. A differentiaml-geometric
formulation of this observation was given in the papers /4-6/.
!he authors of the papers mentioned pointed out on the rela -
tionghip between the linear problem (1.1) and the structure
equations of fibre bundles. But the only concrete case with
the matrices A,r_ and Az of 2 x 2 dimentionality and, corres -
pondingly, with the structure group S L2 JZ) was analysed. The
role of a structure group was not revealed. Moreover, the
quast:.nna on symmetry groups, Backlund transfermations, goli =
ton ‘solutions and the uthara were left epen.

In the present paper it ia suggested a gtlernl approach
based on the treatment of the IS8T Method as a theory of. the
pencile of principal and assoclated vector G-bundles. The case
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of an arbitrary structure Lie group is cbnsidered. These
results are an extension eand generalization of those obtai -
ned in the papers /4-6/. It is shown that the given non-line -
ar completely integrable differential equation is connected’
with some pencil of principal G-bundles and with the infinite
set of the pencils of associated vector G-bundles of zero
curvaeture. Therefore, the infinite number of linear spectral
problems of the form (1.1) with metrices 241 and &42_9f
various dimensionality corresponds to the basic partial diffe-
rential equation, It is demonstrated that & fundamental
chargcteristic of the linear speciral problem is the structure
group G rather than the dimensionality of the matrices A, and

Az. It is shown that soliton solutions correspond to degene-
ration of the basis in a fibre bundle. The structure of gymme -~
ry groups and Backlund transformations are discussed.

Our paper is onganized as follows: Sectionm 2 gives an
interpretation of the IST Method as a theory of the pencils of
vector G-bundles; in Section 3 gome properties of integrable
equationsg: specific features of soliton solutions, symmetry
groups and Backlund tranaformations, are considered.

2e The IST Method as a theory of the pencils of vector bundles

"Embedding” of the IST Method to the theory of the pencils
of vector bundles is due to interpretation of the linear
spectral problem (1.1) as equations governing the motion of =a
basis in & certain pencil of G-bundles. ;

Partial differential equations integrable by the IST
Method turm out to be connected with two types of bundles:
principal G-bundles and associated vector G-bundles, to be more
precize, the pencils of these bundlas,

1« A pencil of prineipal G-bundles is the infinite family
‘{{e Q’, N_JJT)_; }.J' of principal G-bundles. The multicomponent
parameter }‘T'{A"E: J\;ﬂ.,,) enumerates the terms of this family ,

* Until now, the spectral problems with one parameter )\ have
been only considered what corresponds to a one-paremetric
family of bundles.

; (EG} Hjjf)lis the standard notation /7,8/ of the principsal
G-bundle with the structure group G, ¥ is the base of a ; |
bundle, F 1is the bundle space, J| is the projections PsM .
The gtructure group -.LG' is the arbitrary linear Iie group. Asg
shown, each fibre 7] of the bundle is homeomorphic to  the
group G /7,8/. In our case, the base space M is built in a
special manner: it is a family of all N-dimensional menifolds
embedded in the infinite-dimensional manifold M . Namely,
let z".‘:{fj_l E_!J..._'} be local coordinates of the manifold Mm .
Enumerate them in a way convenient for further purposes:
Xi=2, (=445 K) ; U= Zysp (P=%%n) o) . The remai-
ning coordinates are denoted by 7., te U€=1,2,000500).
Enbedding of the menifold M  to the infinite-dimensional
manifold Mm is given by the infinite set of equations (here
end below, ¢/ denotes an exterior. differentiation):

Ap Z{fa/xt'::o} _
g : : i
dﬂf—m 15 ﬁfx_u dx;,,_ﬁ 0, - (2.1)

e S e T e e :
4 &En-&é = %sf te iees ‘{Xr},u: O,

where (e= 4., N, B=4,., ¢, f::{r%..?m‘. Rcughj;,r
sp_eaking, }(=-[yi).,? Xﬁ} are independent vari_ahlea, ‘E(J fffJ
e U™ are dependent varisbles, and ﬂ.{fﬁ- (¢ 8re partial
derivatives of the dependent veriables over independent ones
of various orders., A very importani for a further anelysis ig
the fact that the base spece M is an embedded manifold. The
gset of all independent and dependent variables (together with

derivatives) will be denoted, for short, by 2 ( & ( Xe,

us, ‘Z‘ffﬁeté} s

- Por each elements of the principal G-bundles pencil |
{(e GJNJ]J"); }\} (i.e. at a given parmhuter,\ ) the connec-
tion form Z{)‘[}\) may be introduced in a standard way /7,8/. As
a result, we have a pencil of connections {&f{,’hl} for a pencil
of principal G-bundles. Fixation of a pencil of principal
G-h'unl:lles consists in fixing a't:rpe of the dependence of the

pencil of connections {M{A}_} on a parameter A : different

pencile correspond to a concrete type of the dependence . of




?ﬂ{}} on this parameter. Purther, a pencil of curvature forms
ig introduced in an obvious way:

D ()= AW0) +LWHD AW0) . o2

Proceed now to a pencil of principal G-bundles with a zero
curvature. It can be easily seen that the cnndifoion

-d-—' J} s

f/ZJf}J + = ’LJ[)) AWK)=1¢C (2.3)
is equivelent to a certain partial differential equation. Let
W (a=1
of the m-parametmc group G, Expanding the forms ’Z'AE-(A J with

regpect to %HJ»\) , we obtain:
| 2 ‘ (2.4)

where :j:a& are the structure constants of the group G. Then,

1]

m) be a cnmplete get of left-invariant one-forms

consider a spece F of g1l cross sections of the pencil of

principal G~bundles. If we in‘troduce the local coordinates

{Z_} and take into account (2.1), we get:
A= wizpdx. @9
Finally, from eq. (2.4) we finds
a 912 abe . € G s

wh&re (} g g
S
b@ o !B.;(( + u Z{!:E-"L : +Z{£:-r£ggzz ﬂgﬁx

is the totel derivative with respect %o va.ri_ables e e

Equations (2.6) should be satisfiéd for the whole pencil:

i.e, for any value of the parameter }\ » This means that

eq. (2.6) is satisfied in virtue of some gystem of equations

:?{Z)= (P (2.7)

The eystem (2.7) is a system of partiel differential equations
in partial derivatives with independent variables {x;j’ g gy G
principle, eqs. (2.7) can include 2ll the z-coordinates, i.e.

the derivatives of ﬁ(ﬂ{'x) of any order. Local egquations usual-
ly investigated by the IST Method correspond to the case of a
finite number of derivatives.

Thus, we see that the differential equations (2.6) and
(2.7) can be put correspondence to some pencil of principal
G=bundles of zero curvature. Since a prj.ﬁcipal G-bundle of
zero curvature is a loecal group C';x’ y. Oone may say that a par-
tial differential equations corresponds +to a pencil of loecal
group Qw with structure equations (2.4). Whether a concrete
partial differential equation can correspond to a pencil of
local groups, i.e. whether there exist one-forms wafaj}.) gatis-
fying eqe. (2.4) - this requires a special study in each
particular case. Unfortunately, a general criterion is not yet
known.,

2« The linear spectral problem of the IST Method is,
however, associated with a pencil of associated vector G-bund-

les of zero curvature rather than with a pencil of principal
G-bundless

Let Q be a space of the arbitrary linear representation
of the group (> . Consider the vector G-bundle (Q(F’) f-; M Tj
/1,8/ associated with tha principal G-bundle described. ahave.
Remind that the fibre I-" [E) of the vector G-bundle is a space

Q of the representation of the group 6- . Introduce a pencil
{(&{@%HF_)_} ,\} of vector G-bundles associated with the pencil
fPEM, y;r)J}:} of principal zero-curvature G-bundles and denote

the basls in a bundle space via P{ﬁ) . With a given }. we
have, as known /7,8/,

d Fi)= ‘E':J:‘[A)Pﬁ) - (2.8)

RS
where ?/U{)N) is the Q-valued connection form of the vector
G-bundle., The zaro—curvatura condition has the form /7,8/:

AT0) +L 6y AT)= 0 (2.9)
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Consider a cross section space F o If eq. (2.1) is

‘ taken into account, then in local coordinates eqs. (2.8) and
(2.9) teke the form -

QL, F{z = w/z ) Flz, ) (2.10)

and
D, W5eN) -0, W, + [, M(M)}O‘E 0
where the Q-valued functions are determined by the relation
Wz = Welz ) dx. (2.12)

1z () 1is the-n-dimensionsl space, then Z{J}[E Meana F(zA)
are the n x n matricaﬂ. -

‘Equation (2.10) is the linear speciral problem of the IST
Method for the. partial differential equation (2.7) written in
 the form (2.£f). In a general case the linear equations (2.10)
are matr:l.x aquatinna of arhitrary dimensglionality.

There is & gimple relationship between connections w[ z )k)
and connections 'EJ[E )J of the pencil of principel G—-bundles.
It is nb'vious that the nrbii:ra:r:;y Q-values function i,d,_[z/\)can
be raprasented in the form '

W, (g ,x)—-— ’Tt1 /z ) (2.13)

where W, { z .3.) ere the 1eft-—1n1rnria:lt numericsl functions on
the group: Q end the matrices T? 18 a matrix rapresentatian |
of the generators of the G-group algebra ( ['Ta E_] -_Fa T b
Just the formula (2.13) determines a cnrreaponﬂance between
the commection W{A} of the pencil of vector G-bundles and the
connection ZW[A) of the pencil of principal G-bundles. Recall
that & ie a space of the arbitrary representation of the
group (3 . Formula (2.13) reflects the obvious fact: the con -
nection in a principal G-bundle induces a definite commection
in an arbitrary asaociaté& G-bundle.

 If one takes into account the relation {2.13}, then
eq. (2.11) reduces to eqe. (2.6) and egqs. (2.10) are written as

o

follows: : ' , :
g &, Q JFlra oy 8
D Fey)= T2wiEN F(=X) (2.18)
Hence, if the f.-artial differential equation }?zkacan
be represented as (2.6) (or (2.11)), then it can be connected
with some pencil of vector G-bundles and, as & congequence,
with the linear spectral problem (2.14). Moreover, from (2.6)
and (2.14) it follows that in this case the partial differen-
tial equation corresponds to the infinite set of the pencils
of vector G-bundles, which corresponds, in turn, to the infi-

. nite set of the group's & representations. Hence, & diffe -

rential equation corresponds to the infinite set of linear
gpectral problems (2.14) with the mutriaeaA;} Alof various
dimenaiunality*

A1l these commections . ?{}- Tﬂwa in the pencils of
vector C-bundles are induced, as we see, by the single comnnec-
tion W= { f{,ra a= .f M_}‘ of the pencil of prinecipal
G-bundles. Therefore, tha fundsmental characteristic of the

paﬂ:tral problem of the type (1.1} is the structure group G
rather than the dimensionality of matrices A:f. and Agg o

Thug, & decislve importance for applicability of the IST
Method to a concrete partial differential equation is of the
exigtence of the one-forms W satisfying eqs. (2.4) 6m the
manifold@ of solutions. :

Ag an example, let us coneider a sine-Gordon equation

; raiu 922( g
ey M .S's*ﬂ =10
?X:. ?X i

Thig equation corresponds to the pencil of principal G-bundles
with the strueture group SU (2) and to the infinite set of the
type (2.10) spectral problem with the comnection components
equal to ; )

W= az’-eﬁgi’—;i;ri LCosp N, T o+ £5e0%5 € e\ T (2:15)

where .i K = 1,2;&is the antisymmetric tensor, i ()u )»..:.r_) is
the twu—cnmpanent psrametar satisfying the condition X, A =/ m?




Z 3
The matrices?l Tf T form the representations of the genera-

tors of the groups SU (2) of arbifrary dimensionality.
Confining ourselves to the two-dimensional representations

T%—:—i‘ﬁ}r} ’]""L;—é_—-‘j‘i) T;%@ of the group SU (2) (where €z 6%

P
63 ere Pauli matrices), we obtain the usual linear spect -

ral problem for the sine-Gordon equation, which is written in
the relativistic-invariant form /9,10/.

 The infinite set of linear problemg can be written in an
analogous way for any equation which the IS8T Method in applic-
able to. Much more clearly the fundamentalness of a structure
group appears for the equations whose structure group is of
the range higher or equesl to 2 (the three-waves model /11/,
the & -model /12/, the chiral fields /13/). The notion of
a atructure group turns out to be very effective for a study
of the reduction problem (for this problem see /13/) and also
for establishing of a gauge equivalence of various equations,
namely: at least, some part of the general chiral fields re -
duetion problem has a strickly group character and it consists
in redueing the structure grnup_é; with respect to all its
possible subgroups: In the establishing of a gauge equivalen=-
ce it -is essentigl that transformations of coordinates of the
cross sections of the pencil of principal G-bundles must con -
serve a structure group. These questions will be studied in
more detail in a separate paper.

1IT. Differential-geometric treatment of some properties of
integrable equations

Discuss now some generai nroperties of integrable equa-
tions for which there exists a linear spectral problem of the
tFPE (2.14)1

1. We shall consider the equation (2.14) as an equation
of the moving basis in a space of then x n matrices. Matrices
F(z)) form a besis in each fibre }'Tbi(z or, what is equivalent,
they are fundamental matrices-solutions of the linear system
({2.14): each column of the matrix F{EJ}‘) is one of n linear
independent solutiong of the set of equations (2.14). Assume

10

‘Determine the matrices-solutions

el

that within the limit JX|=> @ W (BAN)-> T, (%) . Then, theve

i o ' o i
are non-trivial asymptotice [z M- Fx A= E.Xp(wf (x) ',
at JX|» o0 . Of course, one can take various complete sets of
solutions and all they are counected with each other. Restrict
oneself to the cage of two independent sraria}:nles )(iJ Ko o
ana F~ as follows:

Flay= Bl o s Wy
Fiizx=> Fixy) SR i

Thege two bases are ct}mlrected by the linear relation
F*= F7s . The matrix S is called the tremsition matrix

f1"3|’fl

It is easy to see that the diagonal elements S;’P ('p:::{,.y h)
of this matrix are independent of the coordinates Xi Xz axid, .
therefore, they are invariant charecteristics of the problem.
Since S'FF(},) are the funetionals of dependent variables,
SPP {).) are the generating functionals of the integrals of mo-
tion of the basic partial differential equation. As known, to
find en explicit formof the infinite gets of the integrals of
motion, it is necessery to expand ‘STPP (}) in a power series
of A\ . As & rule, the integrels of motion appearing after '
expansion in the neighbourhood of an arbitrary point }\g will
be nonlocal, The series of local integrals appear in the expen-
gion in the neighbourl}gnds of the singular points of the pen -
cils of connections M(gj,\).

Besides the bases L+ and [, there are many other basess
VMost interesting of them are a bases F;"Hconstructed in a
following way: the matrix F;’H ig obtained from the mairix i
by replacing its p =th column by the P -th one of the
matrix FH' . For the bases ;_—r::_,- the following relations are

valid: i :
det Fo (2
A o "—'"g /E) @"’ "5“)_”){3;1}
) T
Tt is clear that some solution of a baeic'partial diffe -
rential equation corresponds to each concrete cross section of
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a pencil of G-bundles (1o each concrete matriz-basism F[E;})}«
The equatione integrable by the IST Method usually have  two
different types of solutions: the solutions of continuous
gpectrum and the sclutiona of soliton type. Most clearly the
distinction between these types of solutions appear in the
bases F "('z ,1) For the continuous spectirum solutions,
SP[});EO and, hence, the matrices FH' are nondegenerate.
Meanwhile, the soliton solutions correspond to the zeros of
the diagonal elementg of the transition matrix. Then

Aet /g;'_/%z\=§):=0 | (3.2)

Thus, soliton solutions correspond to the degenerate bas-

es P‘;’_. in the constructed above pencil of vector G-bundles.

At /1=23 various types of soliton solutions are possible.
This is.due to that what diesgonal elements of the trangition
matrix have zeros (see, for example, Ref. 11). Different vari-
ants of a degeneration of the bases F’*-’ﬁ corregpond to dif-
ferent types of soliton solutions.

2. As known, partial differential equations integrable by
~the IST Method pnaéess the infinite sets of the integrals of
motion /1-3/ and, correspondingly, the infinite symmetry
groups /14/. Among the groups admissible by an integrable
equation there are infinite Lie groups acting transitively on
the integral ~ manifold >, of this equation, The minimal of
" puch groupe is called a dynamical group /15/. The dynamical
group conteins the group of Backlund transformations as a sub-
group. All these groups admit a natural interpretation within
the framework of the pencils of véctnr G-bundles.

Let us consgider equation :F(E) containing the finite
number of variables Z (i.e. a local equation). Any solution
of this equation is a certain cross section of the pencil of
vector G-bundleg. Therefore, the transformations which trans -
form one solution of the partial differential equation to ano-
ther one, are the transformations of one.cross section to
another one. In our case, these are transformations which the
following equations remain invariant:

12
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DD{-F:/E) }-_) = i:fr(zj}u) F{EJ}\)J (3.3)
=@¢?’{{i(sz)--$dw£(% )q.) +[ﬁ(%A)JZUJ{§A)]=G{3.4)

These transformations are the pencil of the well known
/7,8/ transformations from one local coordinates in a bundle
to the others:

sz A= F'{z A= g{z > F/E ).) (3.5)

Wi N> U0 (2 )= G\ TN\ N, g0

where 9—[2 }g)is the Q-valued function of the z-coordinates

‘and the parameter /\ #, It is here important that Q(E%):Ln

not the arbitrary function of the parameter ,5\ » It is neces-
gary that tranafnm&‘biuns (3.4) conserve the form of depen =
enca of the connection ‘?,U'[’E ,‘\.) on the paresmeter )\ s 1,8, that
MI[E A= Z{ﬂ[ﬂ }) This impoges strong limitations on the
pogeible dependence of éZ{E )u)on i,

It 18 clear that a major problem is just the enumeration
of all possible g[%):), if 9@))31-3 known, we citn restore all
the solutions of the system (3.3)-(3.4) starting from ons
solution. The IST Method and ite various K variants reduce main-
ly to a construction of admissible g(%%}-

 From formulee (3.5) and (3.6) an essential difference
between the Backlund traneformations of continuous spectrum
and the soliton Backlund transformations becnmee obvious. Con-
‘sider the transformation (3.5) for baaas P /" . For the conti-
nuous spectrum, c:{E'f f:* :,ter_‘J d&l" ;C’"" = 0 and hence,
the transformation matriaes ?{E}y are nnn ~degenerate., In the
cage of Backlund trenasformationes which add one soliton to the
golution, d’ef F; =0 Therefare, the ma‘trix 9{3 f)corres—
ponding to this transformation is degenerata :
(a{g{ 9(’5}3:]_0}, and the formula (3.6) is absent. An analogue
of transformation {3 6) may be only written for some non-dege-
nerate submatrix of the matrix Q . Thig reduction
leads to Backlund transformations usually considered in lite-

* Tramgrormation (3.5), (3.6) coincide in their form with gauge
ﬁransformatinns in the Yang-Mills theory. :
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rature.

Let us draw our attention to the fact that transforma -
tions (3.5) and (3.6) are not the most general transformations
s@mipsible by the basic partial differential equation. As
known, integrable equations possess the Lie-Backlund symme try
/14,16/ groupes for which

z>2z'=H(z)

and the functidns -{l depend on all the variables £ . In the

trensformations (3.5) and (3.6) the matrix gﬁg%)cgn only depend

on the varisbles 2 which enter the basic equation and, there-
fore, Lie-Backlund transformations are not contained in trans-
formations (3.5) and (3.6).

The way out is the.fciluwins. It ie necessary to consi -
der not only eqs. (3.3) and (3.4} but all possible their dif -
ferential consequencies either, Consider the system

, D (2= ?TJ '(z ) Frz A,
2 9. Fle )= @g Wiz VFE B0
(3.7)

@ o DD/ P[i‘ })'— 9 ---@LW[:EE})F[Z )")

F P
# ' & * £ = oy ar

It 1!.l§ji tﬁ see that the integrability cunditiuﬁ of the in -
finite system (3.7) is the equation (3.4) with all its diffe -
rential consequencies: :

£ gt )

A
D S5, .{‘=o

e De =

a "

A symmetry group of the infinite system {3.7) (3.8) is . the
group admigsible by the basic partial differential equation.
The minimal group acting transitively on the solutions of the

(3.8)

14
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syatems (3.7) and (3.8) is the dynamical group of the basic
differential equation. It containg the infinite-dimensional
symmetry group end the infinite-dimensional group of Backlund
tranasformations as subgroups.

IV. Conclusion

We see that the IST Method can be formulated in a natural
way within the framework of differential geometry as a theory
of pencils of principal and associated vector G-bundles with
zero curvature. Emphasize that we have considered non-arbitra-
ry bundles but those with a linear gtructure group. Just such
bundles lead to linear spectral problems.

The more general iype bundles are apparently asgocinmted
with the theory of prolongation structures /17/. A study of
the structure of such bundles sghould help. to understand much
better the procedure of prolongation /17/.
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