L] -
. B "B " 8 B B " B BN
- 8 ® 8 % 8 B ST @8 B B ® N
- . e 8 " B @ @ - B & 8

-
& F B B B 8 W
L B B B BN e e

@ & & & @ L] LN L & » - & @ R
- . " @
A E EE EEEEEREEEEEEEEE " E .lIl-l".lli.illiillll'.'ili.'-‘.--

L L
= & & & 8 B 5 8 B @&
- L L
LR SN 0 B O O
s 8 8 8 & B

8 8 8 8 " 8 B8 @

F.M.Izrailev

S - NEARLY LINEAR MAPPINGS AND 1HTIR
APPLICATIONS

& & & & ® & ® &
& B & % & & @

L 8
" @8 & % 0 B8 B B E W
8 B B % & & " B 8 B B B @
L s " & 8 5 & BB 0

. 8 % B & & " B2 -
. .8 B L

&

Ill-,.l-
li.t'-‘

L
L]
L]
-
L]

-
- & ® % & @ " B ® &

L
-
& & & & % a

L] L]
- = & ® » 8 B 8 8 8 B

" 8 B & B B B F W LI
L]

- » - . ¥ 8
& & & 8 % & B & & B BB A0
. % B B " B & @ L] L
L. a s » = 9
C R O B B B BT

L]
& 5 B @8 L]
" 8 ® W -
L B
L ]

- 8 @
LN B B B
" 8 B

. " 8 8 @
L] L] -

" R & &8 & B B 8 B 8 8N & 8 ® 8
& 8 & % 8 8 & % &

L
L]
L ]
-

L L N O B R e
" ®.» -

& @ -
» @ ® & & & & »
& 5 & ® 2w 8 & % @

5 & & = 8 8 8 L
. 8 & 8 B % & B . F 8% 8B B B B " B8 B W



NEARLY LINEAR IIAPPINGS AND TH
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Simple 2-dimensional mapping is considered, both analyti-
cally and numerically, for which all nonlinear effects are of
the order of vperturbations and of the same origin. Peculiari-
tiles of the stochastic instability are exnosed taking the beam-
-beam interaction in a storage r~ing as an important nariicular
example of a dynamic gystem modelling by such mappings. i ane-
cial case of time-denendent manpings is discussed. It ig' chovm
that low=Trequency time denendence sharnly cuts down the criti-

cal nerturbation strength for the stochastic transition.




81. TNTRODUCTION

An efficient way to studv physical nrocesses is Lo con-
struct an appropriate mathematical model. Such a rodel must
retain the main pronerties of the phenomencn under study and
must describe, at least qualitatively, the bhehavior of the
real system. At the same time, it is certainly hishly desi-
rable to have a model that's simple enourh to merform the
theoretical analysis. In a sense, the so=called "manpinc”
may be considered to be one of the simnlest evamples of such
a model. Various mappings have recently attracted -vide atten-
tion (see, e.g., Ref. /1-2/). This attention is motivated by
the understanding that the simplicity of a mannins does not
necessarily imply simplicity of the system's behavior. Con-
sider, for example, the manping which seems to be by now the
most thoroughly studied (see Ref. /3=7/) :

=- + 1?‘ S'
D, ,,= P + ¥ Sin x,

ko

£1)

% =¥ + D
t+1 £t Te41

Here p and x stand for the momenta and coordinates (or the,
"action=angle" variables); kﬁ is the only mrodel narameter
that characterizes the perturbation strength. The difference
equations (1.1) describe 2z nonlinear oscilla%or under the in-
fluence of an external kicks—=like force. The same maoninf 1S
used to describe the motion of a charred particle in a mag-
netic tran /8/, the narticle-wave interaction in & nlasra /9/,
etc. (see review article /7/). Furthermore, the maoping (1.7)
rodels the motion near a nonlinear resonance in any arhitrary
oscillating system. For this reason it was called the '"stan-
dard mapping" /7/.

A study of mapping (1.1) has shown that the motion of
this system is larrmely denendent unon the' strength parame-
ter ko' For example, for-k0< 1 the oscillation is stable,
while for ko>‘1,'there arises a new tyne of motion usually




called stochastic. Moreover, the motion in the latter case
looks chaotic. This fact, striking at the first glance, is
related to a strong instability of the motion that leads to
a rapid mixing of trajectories in the phase space and to

the appearance of statistical properties. A thorough nume=
rical study reported in Ref. /7/ has proven that for k > 1
the motion is completely coverned by statistical laws. In
the intermediate rerion, for K. 1, the behavior of system
(1.1) cepends sensitively on the initial conditions and can-
not be described in any simple manner (see Ref. /10/). Such
systems were called "systems with divided phase space" /11/.
The area preserving mapping (1.1) is a particular example of
a Hamiltonian system with a nonlinear perturbation which
depends periodically on time. According to the semi-qualita-
tive approach developed in Refs. /12-14, 11,7/, the interac-—
tion between nonlinear resonances plays a key role in the
appearance of stochasticity in such oscillating systems.
For perturbations smaller than the critical one, the inter-
action between resonances is weak and the motion is essen-
tially stable. Under a sufficiently strong interaction, the
nonlinear resonances overlap, thus creating in the phase
space a region where the trajectory is irregular. Even though
the analytical estimates of the critical perturbation in
such systems based on the study of a single resonance /14,7/
are not rigorous, they turn out to be, nevertheless, very
efficient for the analysis of certain systems (see reviews
/7,11,14=16/). The derivation of such estimates is based
mainly upon the investigation of the basic characteristics
of the nonlinear resonance, such as the resonance width and
the dependence of oscillation frequency on the energy. Quite
unexpectedly, the estimates get simplified significantly if
the uneprturbed motion is nonlinear, i.e., the perturbation
is weak as compared to the nonlinearity /7/. From this point
of view systems with nonlinear unperturbed motion and a weak
perturbation seem to be the most convenient for analysis.
If, on the contrary, all of the terms in the Hamiltonian,
that represent the nonlinearity and the verturbation of the

sytem, are comparable in order of magnitude, this results

in a nonlinear motion peculiarity and, consequently, the
analyvtical consideration becomes rather complicated. Never—
theless, there are many important examples when an unpertur-
bed motion represents linear oscillations and the nonlinea-
rity arises only when a weak perturbation is involved. The
mappings which describe such systems will be called "nearly

linear" mappings.

It should be mentioned that nearly linear systems are
typical for the asymptotic theory of nonlinear oscillations.
This is the very case when the method of asymptotic exvpan-
sion in a small parameter provides solutions for a number
of problems in nonlinear mechanics (see, e.g., Ref. /17/).
However, the most striking phenomenon - stochastic motion in
the dynamic system - has not been found. As is clear now,

the stochasticity is caused by the specific interaction of

nonlinear resonances which was not considered previously
in the traditional theory of nonlinear oscillations.

In this paper we consider the main properties of a
particular nearly linear mapping. The main objective is to
study the conditions necessary for the appearance of stochas-
ticity. The interaction of colliding heams in a storage ring
is taken as a model. In the simplest case, when one beam is
far weaker than the other, the interaction between particles
in the weak beam can be neglected. The problem is thus re-
duced to the study of repeated interactions of a single
particle with a fixed strong beam (see, e.g., Ref. /18/).

§2. THE BRASIC MAPPING

The simplest model of the periodic interaction of a
single particle with a beam in storage ring can be described

by the following equation :

x" + K(s8)x = £(x)5, (s) (2.1)




where x is the transverse displacement, x'Sp= %% is the
transverse momentum of a particle, 5 is the longitudinal
coordinate, and 6, (s) is the periodic delta=function of a
period L. The nonlinear function f(x) is determined by the
change of the particle's transverse momentum due to the
interaction with the electro-macnetic field of the beam ( see
Refs. /18=-19/). For simplicity we will call quantity f(x)
the force. The ripgidity K(s) is produced bv the structure of
the focusing magnetic field in the storase ring and, gene-
rally, depends upon s. As is seen from (2.1),only one-degree
of freedom motion is considered without any connection to

the motion on the other transverse coordinate. The model (2.4)

means that the particle-beam interaction is assumed to be
point=like. The latter assumption is valid only when the beam

is bunched and the bunch is sufficiently short along the lon-
gitudinal coordinate s /18/.

In storage rings, the dependence K(s) is periodic. For
simplicity we assume that its period is equal to that of the
external perturbation. Consequently, I= L /m_  , where m, is
the number of interaction points over the ring, L, is the

length of a closed orbit for the particle with zero trans-
verse energy.

Thus (2.1) is a nonlinear equation with coefficients

periodically dependent on the "time" s. Consider, first, the
motion between kicks :

x"+ K(s)x = O K(s+L) = K(s) L2 )

Using the Floquets theorem /20/, the general solution can be

represented as the sum of two narticular independent solu-
tions :

x . (8) =3 (s)ettMs/L
1,2 9 <

25 (s+L.) = y. _(s8)

1 142

L = const (2.3)

Therefore, it is convenient to look for x(s) in the form /21/ ¢

x, ,(8) = 18/ 2(a)et (%) e G

1

where the new function B(s+L)=B(s) is introduced. The relation
between B(s) and ®(s) can be derived from the ‘Wronskian con-

stancy conditions :
B(s)®'(s) = const 2¢5)

The function B(s), known in the theory of accelerators
as the B-function (see Refs. /18,22=-23%/), has an obvious
physical meaning. According to (2.4), it determines the in-
stantaneous amplitude of transverse (betatron) oscillsations :
x (8) ~ B@{E(s). The square root of the B=function actually
ﬁgves the envelope of the betatron oscillations along the
longitudinal coordinate. From Eg.(2.3-2.5) we obtain

s+ E
w= [ as/B(s) (2.6)

Tt means that parameter | is the betatron phase advance be-
tween two neighboring interaction points. We may now intro-
duce the dimensionless frequency of transverse oscillations
averaced over the revolution period (the so-called tune) :

1 s+
V= ;E“ = é%’ f 2 dS/B(S)

For B=const we have v = LO/ZnB = R/B, where R is the mean
radius of the particle equilibrium orbit /23%/.

Substituting (2.4) into (2.2) we find the relation be=-
tween the B~function and K(s) :

5 BB~ 7 B'%+ K(s)B? = 1 2.7)

Hence, the solution of (2.2) can be obtained once the depen-
dence B(s) is known. The result is




O ) [ ndss 7 a3 [ o8- 48]  (2.8)
x(8)=AB 3 Cos[- +® ]+-BB 8)Sin [ + } 28

v 2 : v . : The same equations can be used to describe an oscillator
with a constant frequency K=const and B= 1/“43; Therefore,

From (2.8) the mapping for (x,p) in the period L can be rea- mapping (2.11) may be regarded as a general model of a linear

dily obtained oscillator with frequency w = 1/ under the nonlinear force

Sin p 1 1 in the form of periodic 6=function kicks.
o Il ¢ 2 .
e [1+ EI? ]zg+-[Cos gl s H]Pt P Numerous analytical and numerical studies of mapping

(2.11) have been performed (see, e.g., Refs. /1,3,24~33/),
Although this mapping seems to be highly specific, it is
actually of a rather general type. This becomes evident when

. 1
‘xt+1=(005 H- » B'Sin u)x£+.BptSin M

The mapping (2.9) is almost equivalent to eg.(2.2) the the mapping (2.11) is rewritten in another form :
only exception being that it gives solutions only for certain S i o (2.12)
particular values s=s, . Since (2.9) are given in the form t+1 =1 g, gl wSans

of difference equations, their numerical simulation appears
to be much simpler than that of (2.2). To iterate (2:9), 1t
is sufficient to know p and the value of the B-function and
its derivative B'(s) at the interaction points s=s, . The
‘time is measured in number of iterations (2.9). Certainly,

where ¢ =2 Cosp, d =B Sinp . Equation (2.12) is a differen-
ce equation of the second order and has many applications.
Specifically, it is used in the theory of difference schemes
(see, e.g., Ref. /34/).

reducing the difference equation (2.2) to mapping (2.9) makes As mentioned above, in general, there is H? rigoro?s
sense only when the values B(s, ) and B'(s_ ) are known. This theory that could provide the answer for the main question :
is the case in storage rings for which B(s) is determined by under which conditions is the motion desc?ibed by (2.12)
the given magnetic structure of the facilities. stochastic? Therefore, the semi-qualitative approach deve-

loped in Refs. /12,14,7/ is the only way to derive analyti-
cal estimates of the stochasticity criterion. Let us choose
the force f(x) as (see Fig.1) :

To obtain the total mapping for system (2.1), the influ-
ence of the particle-beam interaction must be taken into

account. Since the perturbation is assumed to be point-like,
it effects only momentum -

P =p +£(x) : £(x) = - 4 x A=exp(-x/20%)
Eex s o (2.13)
the val x ]
Here the values of (p, X) after a kick are expressed via hin Torch GEetpaiiie v6E TRoatlY YhE WIth & Coulstak
values (p, x) before the kick. Since in the interaction i 3 1 th
bbb B'(S Sl e NRsTlng Cob cab cedud te 3 transverse charge distribution which depends only on e
P : i g ; displacement x from the central orbit. In (2.13) 0 is the
X £t mean square root of the transverse size of the beam ;7 B is

Pesq™ -‘FE Sin @ +p Cos p +f(x, )Cos u the B=function at the interaction points. The parameter & >0

determines the interaction strength and is proportional to
the beam current. The negative sign corresponds to the inter-
action of opposite charges.

(2.11)
X ., = X.Cos p-ertSin.u-rﬁf(xt)Sin 1l




Substituting (2.13) into (2.11) and introducing the di-

mensionless variables X= x/0, P= B.p/0, we get the basic map-— ?RXJ
ping : lLO
P o= = X Sinu + RCos | + F(Xt)Cosu (2.14)
X, 4= X Cosp + P Sinp + F(X )Sinp
2
F(X)= ~-4TEX j:ﬁ_xﬂé:w
% X* /2
Note that the mappiﬁg (2.14) depends only upon the two para- -1.0 1

meters, £ and u.

Consider, first of all, the motion for small X € 1 for
which the force F(X) is linear. The condition for the stabi-

1lity of small oscillations can be readily obtained from Fig. 1. The dependence F (2.13) on the dimensionless
(2.1%) /30/ disa}acement X=x/0 for normalized parameters
8nE/B = 1.

- 2Ctg u/2 < = 40 < 2tg u/2 for Sinpu > 0O
(2¢15) | E‘
2t w/2 < = 4nE < = 2Ctg u/2 for Sinp < O 104
As is seen from Fig.2, the main region of linear stability ’,
is above the parametric resonance given by u/n= k, with k
an integer. Condition (2.15) repeats in p with a period

T

7/

A A YA
/ . S

Au=mn. As follows from (2.14), for the total nonlinear map- g _."h*- *...\” Tireesy 1"'
- )\ \e" ¥ o
N

ping (2.14) the period also equals Au=n. This is due to the

assymetry of the force F(X) with respect to X= 0. In general,

Ap =21 (see §5). Outside the shaded area in Fig. 2, the small "
oscillations are unstable and the amplitude is restricted

only by the nonlinearity (see §3). -10+

Y KY
g

If the force f(x) is linear everywhere, the mapping
(2.11) is exactly equivalent to the Hill equation with the

frequency dependence on time given by the periodic &-=funce Fige 2. The stability condition (shaded areas) for small

tion : oscillations (2.,15). The values £ < 0 and & > O
3 correspond to the interaction of the same and
' ively.
<" 4 ng = -onﬁL(g) (2.16) opposite charges, respectively
11

10




1 - 2 -
where 51fs)= t(1+21§1005 1 “%ﬁ) . We now rewrite W, , A, Note that the analytical expression for the stability borders
in terms of & ,V and reduce (2.16) to the usual form: ig in good agreement with the numerical resulis /35/ in which

“
only a finite number of terms in the sum 121005 1Q%s were taken,
Tt turns out that at M 2 5 the border already changes slightly

Q0
x" + (b=-2q ,Z.CoslQs)x = O
and practically coincides with (2.14).

(2.17)
To obtain the trajectory shape in the phase (x,p) for

2 2TV
Vi Alh T nehtY B . -
5 d m the linear mapping, we use equations (2.11) where the force 1is

= Xx. One can perform the linear transforma-

b 2

linear: f(x)= -
tion from (x,p) to new variables (x* , p') in such a way

that the mapping (2.11) becomes the usual rotation

In the standard variables -2q/b,‘{€ﬂ the stability areas
(2.14) shown in Fig. 2 have a more familiar form (see Fig. 3).

Pt s = *Sin p*+ piCos

2

'-?f& } t+1 B*
Jﬂ i i (2.18)
25?? x:+ﬂ= 31005 That's B*plSin The
ggji The new parameters p*, B* are related to the previous ones by

3 = the following relations /21/:

15 _ el Cos p*= Cos p ~ 27E Sin p ; B*Sin p*= B Sin

: (2.19)

-~

o S

o o
Wnlulunhuu“uhu
l||l|ll'l[r]_|'ll'[|]II'[Ill+

=4 > o
__...g ///// p = B*\ 1-4n2 " s4nE Ctgu
% % where only two of them are independent.

The stable trajectories in the phase space described by
mapping (2.18) are elliptical with a ratio of maximal sizes 1n

1.0 2.0 3.0 4.0 p* and x* equal to pl/&i: 1/8* . Hence, the influence of the
linear force on stable motion leads to a stretching of the pha-

se ellipse by a factor of 8/B* along p and to a shift in

T

\
=

0.

o

Fige 3. The stability condition for the Hill equation

(2.17) in variables q,b The shaded areas corres- . : i F
pond to those in Fig.,2 for £ > O, The left lines angle equal tou/2 in variables (X,P) The stability conditi-
of each stable zone are described by the simple on (2.15) in the new variables becomes very simple: |CoSs i< 1.
enalytical form:=2q/b= 2(1= vt /b) , where . 4 . | |
q51f?ka Tgk/é-_Thgge léne$h§ogrespond to the We can see from relations (2.19) that for small & the
vertica ines in Fig. 2. e dotted horizontal : i
line denotes the limit value of =2q/b which value L changes slightly (Ap= p*-=p € p) This change equals
iguals _-255:;/‘b= 2e ’ghis is the case of two interac- approximately Ap=2nf. Since p.=21w/m0 this means that the
ion points: = 2. : : :
¥ Mo change in the oscillation frequencies is also proportional to

12
13




¢ and equals Av=m £. This is the linear tune shift caused | v EE R Vs tds }
=N p= \,%l Sin[‘? : 73-] 2 'Q-COS‘P‘E?IT*{:'B'

by the particle-beam interaction. This shift is proportional
to the beam current and to the number of interaction points in

the storage ring. In the variables (J, ¥) the new Hamiltonian is
llowever, the above expression for AV is only valid far 2.23)
away from the parametric resonance, when Au < 2ﬂ6 with * H=Jv + V(J,W)&T(e) 2

—{u/%}- (the braces denote the fractional part). An exact
fpr9351on for Ap is derived from the relations (2.19):

Ap = arc Cos(Cosp=-2nESinp)-pIn the limit case, in the vicini-

where 8 has been replaced by a new dimensionless variable

“Ens/il. The kick period equals T= ;ﬂ/h, .

ty of the parametric resonance =nd above i1t, we have: If the values of B - function in (2.1) are the same and

te ﬁu:een-\f—g Therefore, if & ( ’I/f-m £ the tune shift can be B'(s)=0 at the interaction points s=5 the notential in

“l@lflcantl.‘f smaller than m @ In this case Av=m (1— The (2.23) ig independent on © . Then the relation between (x,p)

ghase ellipse slightly above the parametric resonance is stron- and (J,¥) for these points becomes the usual:

§ly stretched with o ‘ e me (o DA
;;'P. = B.r x:\,E’JB(sb) Cos VY ; P = \[BTS_L)' Sin ¥

The peculierity of the model Hamiltonian (2.20) is that
the nonlinearity is caused only by the perturbation. This fact
complicates the study of the stochasticity criterion. lleverthe-
less, the general approach based on the investigation nonlinear
resonances appears to be very fruitful in this case as well.

This means that the transverse momentum at the interaction po-
ints becomes very large.

Now we consider the particle motion which is not restric-
ted to the linear approximation. Ior this purpose we write an
xact Hamiltonian corresponding to equation (2.1):

§ 3. The Simple Resonance Approximation

2 2
H = E—igéﬁlzﬁ-+-V(x)6L(s) : V(x)= - [f(x)dx (2.20)
| The potential of the particle-~beam interaction for the
Using the generating function o
force (2.13) can be written as
2 S 2
; o - SRR ds G 1 ,__=2VM (3.1)
Flx,Y)= 35 tg[‘l’ -« ! T] m B3 p=p(s) press) N v(3,¥) = _Bgll-n c° £ e : an
we carry out the canonical transformation to "action-angle™ where
variables /36/: - 5
Y = a.Cos ¥ 5 & = JB_ = [ I“‘] (3.2)
u_"_‘ VS 2 ds g 2 20
=Ned P Cosf?- g—t— + [ ] 5
"o . s Here X is the maximum value of the particle displacement;
m

28 jg the transverse energy. Since the perturbation is assumed

15




to be small, it seems natural to extract the most esgentiagl
resonance terms. With this aim, we put V(J,¥) and GT(G)
into a TFourier series

m

bl o L o . B
VW) = S VW1 5 (@) wnd e (3.3)

o

After a number of manipulations we arrive at

1 00 -+00
B =“Jv+s fﬁl[ﬁ-e“a’] il (an)e'““‘*'] y elk® (3.4)
o T N ==C0 - = =00

Here In(an) 1s the modified Bessel function of the n - th
order, and €t 1is a new strength parameter, €= é-mOEGZ o

In the approximation of the single resonance*, only the
influence of the nearest resonance is considered, This is equi-
valent to the averaging of the perturbation over an unperturbed
motion close to the single resonance under consideration. Con-
sequently, in the Hsmiltonian (3.4), beside the zeroth harmonic,
there remain only those terms for which 2nW-k0 ~ 0 . In this
case, taking into account the relation-é::Q::En/T::mo the
resonance condition is

= E&E (3.5)
2n

Due to the symmetry of V(x) with respect to x=0 , the Fou-
rier expansion has only even harmonics 2n ., As a result of the
nonlinear perturbation, the tune ¥=v + Ay devends upon the ac-
tion J . Thus, for given kyn condition (3.5) is satisfied
for only certain value of the transverse energy. Being affected
oy the resonance, the energy will increase and the system will

move out of resonance. In this way, the nonlinear single reso-

nance (in contrast to the linear one) stabilizes the motion., In
order to fin< the denendence AV(J) it isg convenient to single

out from the perturbation the nonlinearity which is independent

*
The single nonlinear éconance as applied to the theory of
accelerators has been considered in detail in Refs. F 31,22, 087,

of the phases Y and © . Then the Hemiltonian (3.4) can be

written as

1
H=Jdv+e [ & {1-e—anlo(&ﬂ)} -
0 n
(3.6)

1 o0
-2 [ %P g QﬂI : (an)Cos IO(EnW-kG)
0 1,71 nlg

Summation over 1l Ain (3.6) implies, generally, the necessity of
taking into account all the resonance terms for which

3 (2ﬁ§ -k2) == 0 . The contribution of the resonance termc
w%tb. 10# 1 in our model can be rather gignificant /39/.

For further consideration it ig convenient to transform 1o
k6 i 1 J T be the
; = - assuming the action e
& new phase ¥ 4 o 3 g

ni : i
Then the new lHamiltonian will not depend on the external

Salle . '
phase 8 .+ The generating function for this transformation is
* = . . « In the new variables we obtain the
FZ(J,ﬁnk’e)_ - (6nk+-8)

resonance Heomiltonian which remains constunt

el )

Inlo(an)Cos 10211.19“k

where § = v-%g- is the detuning from the resonance value of
nk n

frequency. The motion equations in variables (J,® )  are

-5 0

= . 3 Cos 2nl ©
( B
o0 1
: dh ¢=8M 1 T  (an)Sin 2nl O

The first equation in (3.8) describes the slow change of a new

phase 8nk y which can either change infinitely or oscillate

17




around a resonance value. The last case of phase oscillation
1s just the case of the nonlinear resonance /7/. It is clear
that when the sum in eq. (3.8) for =5nk is sufficiently small,
the frequency of the phase oscillations can be readily obtai-
ned: w_,= 5nk= b Av(a). In the same approximation Av(a)
yields a nonlinear tune shift which depends upon the transver-
se cnergy of a particle:

Tl

m

S -
av(a) = — [1-e axﬁca)]

(3.9)

for a €1 Trom (3.9) we obtain a result Av=m & which we
recognize to be the same as that in 8§ 2. In another limit
case, for a 2 1 the tune shift is inversely nroportional to
the energay: av=m0§/h (see Fige 4). As will be showm below,

2.0 -l- ﬁg

-
-
- .
ll‘ b
-
-
e

3
1.6 +
1
.

16 $
- o
I
e
1.2
4
E 3
.-
I
I
1.0 +
-
b o
-+
0.8 +
p
L 3
-
-
+*
0.8 +
-
-
-*
0.4 &
p

0.2 T

-+
-+
0.0 ¥+

Fig. 4. The nonlinear shift dependence Av ong (a i1s a
half transverse energy of the particle). Curve I re=-
presents the mean tune shift for linear oscillations
(3.9). Curve II is the maximal tune shift for the pa-
rametiric resonance pn=1 (3412); curves IIT and IV
are the same for the low-order resonances n = 2 and
n = 3 respectively (at the phase 8=n/2).
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the nonlinear dependence Av(a) is one of the most important
characteristics of nonlinear resonances.

Since the tune shift Av(a) is proportional to the strength
parameter g it follows from eq. (3.7) that (3.9) is valid
when the sum L:§1 Inlu(a) is small. Clearly, for small n
this condition is not fulfilled. Consider, for examnle, a para-
metric resonance: n=1 (it is equivalent to p/m=k or

v=n k/2 , see § 2). It is necessary then to take into acco-
unt all the terms in the sum, since for moderate values of a
terms & (an) decrease slowly with respect to 1, « How it seems

g -
more convenient to rewrite the Hemiltonian (2.7) as

1 0
- d s -aTl (3410)
H = J61+ € £ 7? {1 e D§ : Ilo(aﬂ)COS 2108;}

The motion equations for J,0,  are

m. & A
8 = 5 + &vq(a,ﬁk) ;-&v1(a,6k)= {1-e & :I 7"(a)Cos 2108¥}

Kk a A
; B 400 (3.11)
J==2¢ f gn,e-an & 1.1I. (an)Bin 210
1 01 0 k
0 10_-..-00 0

From (3.11) we can easily find the fixed points SE,JO which
satisfy the condition 6k= J =0 . From the second equation in
(3.11) we obtain ®’= 0, * ®/2, +=,...,.Since the maximum value
of the sum in the first eq. (3.11) equalst:EuJio(a)z >

for 51 >C)there are no fixed points. It meens that above the
parametri¢c resonance, for v:>1m§vﬁ the phase oscillations are
absent., If ﬁﬂ < 0 the zero voint 62: 3% 0 'is_a stable
fixed point under the condition m £ < 61/2 « The latter relation
coincides with the criterion of linear stability (2.15). If,
alternatively, m > 51/2 the zero point becomes unstable and
another stable fixed point appears. Its location is defined by

the relations:
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{1} T -8 4 -
13}{ = t w3 |6 ]= e " § Izl+1(a1) = ﬁV,:(a,!) [ 3:12)

1 1=0

In this case the region of the nonlinear parametric resonance
cen be found from the Hamiltonian (3.10). The qualitative re—
nresentation of this region is given in Pig. 5, The separa-

J |

@Y.

AL D The.qualitative representation of the phase trajec-
tories near the parametric regonance in J and
variablegs. .. thick line is the genaratrix,

trix that divides the oscillation and nhase rotation regions
lies partly on the axig J=0. From (3.11) it is seen that the
trangverse thergy can drastically change slightly below the pa-
rametric .esonance. This creates strong oscillations of the non-
linear tune shift &vq(a) around a mean value, which, in general,
can significantly ciffer from £3.9) s Tor example, at exact resgo-
nance (b=n/2, a= a,) a mean velue iz derived from (312). The
maximum tune shift is reached Tor a € 1 and equals (Av ) =

L 1'max
el 1 €y i 1 3 * 1 s »
_2m0§. this is two times higher than the mean tune shift for 1i-

near oscillations (3.9). Relation (3.,12) for zngga) (Pigs 4)
describes not only the shift for the resonance value of energy

2a but also for any motion at the moment of the phase passing

1 Gl W3
9=mn/2 (see I'ig. 5). We can compare the nonlinear shifts of

other low resonances n= 2:;3% ( at the same phasge 9= 1/2
As is seen, (Fige. 4) forn=3 the expregsion (3.9) already
e

appears to be a satisfactory approximation for Av(a).

Fige 6 illustrates the phase plane (X,P) of manping (2.14)
for various initial values (XO,PG) /30/ 4 Since m,=2 and
V = 3.65 for these calculations, the strongest resonances ac-

iiiiiiiiii

iiiiiiiii

------- \
Fig, 6. The phase space structure for basic mapping (2.14)
with m,=2 , The horizontal axis is the X - aris in

the raﬁéelxj = 10 ;3 the vertical axis is the P -
- axis in the range |[P| < 15 , The center of the pic-
ture corresponds to X = P=0.JFor each trajectory

here and further the number of iterations (2.14) is
N=10" .The unperturbed tune equals V = 3.65.
Fig. 6a - for£=0.12 ; Pig. 6b - for & = Qe 24,

cording to (3.5), are 2k/2n=2/32 and 2k/2n=1. For convenien-
ce, we neglect the integer part of v. The resonance 2k/2n = 3 /4
in Fig. 6a is not seen because, as will be shown below, the re-
sonance strength drastically falls as n increased. The num-
ber of resonance regions for the chosen force (2.13) is always
2n . The region of the parametric resonance is clearly seen
near X=P=0 1in Pig. 6 (see also Fig. 5). .1ls0 seen are the
stable trajectories which surround the resonance at large trang-
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verge energies,

The resonance value a, can be readily determined with a
computer experiment by introducing a slight damping for the
nhase trajectory located inside the resonance region. The in-
fluence of this damping is such that the tra ajectory is attrac-
ted to the fixed points. (¢+X_, t]i) thus determining the coor-
cinates of these latter. If we know K1 ,}i in the linear
approximation the transverse energy may be egstimated as
23 *ﬁ(X?+Pd}4JThe valueg of a are a° = 0. 29 and a’ =~ 15
fo“ E = O 1? (Fig. 5a) and for £ = 6 24 (Fig. 56), regspec-
tively. The cnalytical estimates obtained by (3.125 for & ;ﬂ3ﬂ2
and O0.24 are a =~ 0.35 and a,=~ 1¢5 regpectively. Differences
in the numerical and analytical estimates of a can be explai-
ned, for exemple, by the influence of strong r;sonance 2k/%n =
=2/% (see Fig. 6b). The width of the parametric resonance in ‘
a 1g derived from the Hamiltonian (3,10) which remains cong-
tant and equals zero on the separatrix. The maximum value of

a_ 1s reached at 9=+ n/2 @and is determined by the relation
am,q o0
5 a -1
$.a=mZ%/[ 7?-{1-6 [Io(n) +21§1(—1)111(n)]}

0

Using the data from Fig. 6a, the numerical integration gives

a = O.7¢ AT the same time, a ?ough determination of a  from
this figure gives the value a = Os5¢ In Fig. 6b the separa—
trix of the parametric :coonance for &€=0.24 apnears to be
destroyed. Thisg is a result of the action of the neighbouring
regonance 2k/2n=3/4 whose influence for a given value of E
leads to the creation of a stochastic region close to the sepa-
ratrix of the perametric resonance (see §4). Nevertheless,
the size of the separatrix (a° =~4.4) ig in 3 i
the analytical estimate (a ==m4.0) ) o, S SO SR

m

Jor a given force (2.13) it is found that forn > 5 the sum
in (3.8) is significantly less than the nonlinear shift Av(a)
Therefore, an extraction of the nonlinearity in (3.7) becomes
convenient in deriving analytical estimates. In this case, with
respect to the extracted nonlinearity the remaining terms that
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depend on the phase-f}nk can be congidered a weak perturbation.
The fact that for high resonances n »71 the amplitude sharoly
decreases is associated with the analyticity of the function

£(x) . Thus, although the mapping (2.14) is nearly linear, for
&1 the problem is reduced to the case in which an unper-
turbed Hamiltonian is nonlinear and the perturbation is weak.
The latter situation, as mentioned above, is simpler from the
point of view of obtaining efficient estimates /7,11,14/.

Congider now a high-order nonlinear resonance n 2 1 .
The Hamiltonian (3.7) can now be written as:

; (3:175)
H k(J, ﬁnk) = H (J) + €V (J,&nk)

where H GI) is an unperturbed nonlinear Hamiltonian, and the
perturbatlon ev? is weak compared to H, (J) . This implies
that the change AJ 1is small near the resonance value (“k)

which satigfies the relation

o)
l’lk

m g {1 e-&nkz 3 (a )} . J(n,k) > ank 20.2 (3-14)
nk |

It is convenient to perform another canonical transformation to

a new action q , resulting in the change of the previous acti-

on J near the resonance value J(“ <) via J= J(“ k) + q.

The corresponding generating function is F3(J’ N 8) =
= =(J - JC“ s % & o +8) . Using new variables and taking a small

value of q € J(n"-) into account, the Hamiltonian (3.7, 3.13)

becomes much simpler

Hn(q,ﬁnk):=§;.(ﬁv); +'EV0(J(H,R)’ﬁgR) ; (av)) = agauéa;;

(3:15)
} d ¢=8M 1  (an)Cos 1 2nd
o N Nis N 0 nk

0
where (‘W); and V are taken for the resonance value
J::J(“'“Z Eq. (3.15) was derived by using the expansion of the

unperturbed Hamiltonian HG(J) in q wup to terms 1in qz and by
taking into account relation (3.14).
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If in the i 0 (gnyie) |
perturbation eV (J*° ,3ﬁk)‘we,ﬂeep only the

f?rst t?rmnof the sum (see (3.7)), then the Hamiltonian (3.15)
will coincide with the Hamiltonian of a pendulum /7,14/:

2
B (0,0 ) =% (av)! + eV °Cos 2n §

nk

1 (3.16)

Vo e 27 S SO0
. £ n ° In(an)

h . L] ]
The size of the region occupied by the nonlinear resonance

in J as well as the resonance half-width in the frequency v
can be readily obtained from (3.16):

3 (3.17)

1

(av),, =(3) )} =2 \[ (av)} eV

The approximation in which the Hamiltonian (3.15) has been ob-

tained is known as the approximation of moderate nonlinearity
/Ty14/. 1t means physically that if the unperturbed motion is

esgentially nonlinear and the nerturbation is weak, then the

slze of the resonance region in J will be small compared to

the resonance value of the action: AJ ( J(n’k) The second con
dition of the moderate nonlinearity is that thé change AJ :
must be much smaller than the distance between the two neigh-
bouring regonance values of the motion: AJ ¢ J(n"k')- J(n‘k)

For the frequency this implies that the width of the nonlinear

reson
ance 2(&1;)n must be much smaller than the distance be-

tween the two closely spaced resonances:

m Kk
2(A'U)nk { Vv 5. 4™ ¥ -

- Bl - nk ) vnlc o zn (3‘18)

Actually, (3.18) is the condition for the applicability of the
averaging method which allows for the neglecting of all resonan

ces except ones.

The pecularity of the system under consideration is that

A | , :
he pendulum approximation (3.16,3.17) appears to be more rigid
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than the approximation of moderate nonlinearity (3.15), This 18
associated with the particular type of perturbation for which,
in general, it 1s necessary to take into account the infinite
number of harmonics with ]Tgffl for the single resonance
(n,k). However, the numerical calculation shows that the cont-
ribution of the second term into the sum (3.15) does not exceed
20% even for m = 3. when B > 3 the terms in the sum (3.15) de-
crease more rapidly so that the simple estimates (3:17) can be
used to obtain the width of the nonlinear resonance.

The latter estimate has been obtained for = > 25, which
corresponds to the maximum displacement - A > 100, 1T & 328 1N~
creased further (a » 1) the relation Vgn(a)/vz(a) approaches
unity. This indicates that the pendulum approximation 1is not
appropriate at large values of x . However, from a practical
point of view the most interesting situation is when the partic-
le displacement ¥ 1is only geveral beam widths. The particle
diffusion created by the overlap of the nonlinear resonances 1in
thig region (x < 100 ) (see § 4) results in a considerable
change for the worse in the real experimentse.

Compare now the analytical estimates with the resulﬁs ol
computer simulations 730/« The structufe of the phase plane
(X, P) Zfor the mapping (2.14) with values mj = 2, V = 3,08
ig illustrated in Fig. Ta. The high-order resonances k=3%n +1,

n = 8,10,11,12 that grow as they move away from the center are

]

' 5 - T _ 1. “ 1 . g
R B B e TN R o VEeR
- - F .o i . : -
- L] : &

B i L et ¢ F iy Py
Fig. 7. The phase space for V3,08 Pig. Ta - for & =0.204

|X|€ 30; |P|£ 15 ;3 Fig.7b - for &= 0.48; | X]<3%0; | P|<30.
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clearly defined in the figure. Since n ®» 1 and a is not
very large, the location of the resoninces can be derived from
(3.8, 3.9)3

mok

e r - -
_2? g T __E___ {,1_3-& IO@)} : a (34-19)
a

2k

The cirived formula (3.19) gives satisfactory accuracy in compa-
rison with the numerical data. For example, for the parameters
in 'ig. Ta the accuracy of the determination of the position of
the resonance center in x grows rapidly as the resonance num-
ber is increased and reaches 35%, 15%, 105, 2% for n = 810,11,
' 8,10 might be ex-

1 the
detuning from which is not large (61= 0.08 ). &as we know ( § 2)
in the linear approximation this leads to the stretching of the

12, respectively. The discrepancy for n

1l

~plained by the influence of the parametric resonance n

phase ellipse along p by a factor of B/B* However, due to the
nonlinearity, the stretching must depend upon the trangverse
energy. This dependence can be taken into account in the follo-
wing way. ‘hen comparing the nonlinear dependence of the tune
shift Av(a) (3.9) to the linear approximation Av=m & it is
ceen that they formally coincide if the strength parameter &
depends upon g according to (3.9): & - 5 {1-8-310(8)}¥ Hence,
1f the change Aa 1is small compared to 5 , the relation B/B*
(2.19) may be replaced by:

B/B*= 41-4w2€252(a)-r4n§g(a)0tgL;
(3.20)

g(a) = % [1-e"® In(a)]

For a € 1 from (3.20) we arrive at the linear approximation
(2.19), and for g » 1 the stretching disappears: B/B*=» 1. The
comparison of the estimate (3.20) with the numerical results /30/
gives satistuctory agreement in the aeterminetion of the relati-
on B/B* For example, for the parameters in Fig. 7, the accuracy
of B/B* (which approximately equals E;/X;_) appears to be no
vvorse than 200,

Thus, the influence of the parametric resonance can be
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taken into account by means of renormalization B -» pg* (3. 20)
and £ +E* in the Hamiltonian (3.4). But from (2.19) we see
that £/8*= B/B* . Therefore, €= €® and eince a=2a"= (xm/E’CT)Z
such a normalization for the initial data X =X 3 D,= O does
not change the value of the nonlinear perturbution at all., On
the other hand, the tune shift change (due to gﬁfz _E:,+__§;_§§f)
and becomes equal to P gan gt B

av(a) = mEtg(a){1-a § « 2 &)} (3.21)

*
where &%= 5%/8 «nd g(a) are determined by (3.20).

The method used here allows us to take into account the
main effect of the parametric resonance. lLue to thig, the nonli-
near tune shift (3.21) becomes also dependent on the phase shift

M « The expression (3.21) agrees vith the numerical results
better than does (3.19) in the region where the effect of the
parameiric resonance is strong. I'or example, for the data in
Fig. 7 the accuracy of the determination of the resonance loca-
tion for n=8 becomes no worse than 1754 instead of 35%, and
for n = i0,11,12 - better than 5% 42704 170 T'or large values

a 1 eqe (3.21) is simplified and if n €aCtgp then
av(@)=n 2/ a)1+ 2 ctgn].

It should be noted that the nonlinear shift depencence

Av(a) on the energy (3.21) cun be improved aoten by step uning
more and more accurate approximations for B/B* . Tor exzamnle,
instead of (3.20), in the next approximation we can derive f.~om
(3.21) the following dependence B/B* :

sty ‘ ‘ (%88
(B/B*) = ll’l *-411:25,‘52;12-(&) +4nZg (a)Ctg 1

K
where 81(a)=:g(a){1-a é" g%'[é*] « Another renormalization ac-
cording to (3.22) for(g/@f%and.(g *) yields instead of (3.21)
even more accurate approximation for Av(a).

48 was mentioned, the pendulum upproximation (3.17) can be
used to evaluate the resonance width for n ? 1. In narticular,
from these estimates it follows that the resonance width (in J)
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grows proportionally toa , i.e., to the energy, when the re-
sonance moves awuay from the center. Therefore, if the nonper-
turbed tune reacheg the regonance from below, the

resonance ared grows runldly and approaches the infinity (see

Figs. 6-8).

§ 4. The Stochagticity Criterion

Consider now the factors that cause a strong instability

of the motion in our model. As we have already mentioned, the
single nonlinear resonance stabilizes the motion. This is illu-
strated in Fig. 6a, where at a given value of & the center
becomes unstable, but the growth of the resulting oscillations

is limited by the nonlinearity. Beyond the resonance regions,

the trajectories are also deformed by the nerturbation, however,
they remain stable too (see also TFig. 7a). The only place where
the instebility arises is in a small region near the geparatrix
of every resonance. As was shown by eanalytical and numerical
studies /40,14,7/, under the influence of any small perturbation
there arises the so-called stochastic layer near the separatrix.
The motion in this layer appears to be always unstable. This is:
cauged by the fact that the frequency of nonlinear oscillations
near the geparatrix is very small. Therefore, any perturbation
caused by nonresonance terms may have a strong effect. This
produces a local instability in which two initially neighbouring
trajectories diverge rapidly;“becaming far apart in only a few
oscillation periods. Nevertheless, such an instability in the ”
case of one-degree of freedom does not create any notable diffu-
gion of the phase trajectory since at small, perturbaulon the
width of the stochastic layer is exponentlcllj small and the
layers are separated by stable trajectories (see Figs. ba=-Ta).
This phenomenon is consistent with a strict numerical  ‘theory, na-
mely, that of Kolmogorovﬂﬂrnold-Mozer (KAM) /41-43/. ‘According to
this theory, in the nonlinear system the action of 'a sufficient-
ly. small perturbation destroys only a part of the so-called reso-
nance tori, those that satisfy certain resonance relations.’' The'
remaining tori are only slightly deformed and the motion along
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‘their surface remainsg stable (for more details see, €.g8.,
Ref. /44/). In our case, the destroyed tori are the separatri-
ces of nonlinear resonances (see Figs. 6a~Ta).

However, the KAM theory does not provide the answer to a
rather impqrtant practical question, namely, at what critical
perturbation does the destroying of tori create 2 strong insta-
bility. The latter term refers to an instability strong enough
to create a diffusion over a sufficiently large area of the pha-
se space, Defined in this way the instability is very weak insi-
de the stochastic layer. Naturally, the search for the critical
nerturbation strength in particular physical systems is an ex-
tremely important problem., However, this problem cannot be sol-
ved in terms of any strict theory. In this case, the semi-quali-
tative approach suggested by B.V.Chirikov /12,14,7/, seems to be
very useful. The physical idea of this approach will be illust-
rated with our model.

The enalysis ( §3) shows that as the perturbation increa-
ses, the regions occupied by nonlinear resonances tend to grow

and eventually overlap at a certain critical perturbation stren-
gth.

The trajectory will thus be capable of passing from one re-
sonance into another. This situation is illustrated in FPig. Tb,
where the perturbation strength ¥ is well above that in Pig. Ta.
It 1s seen that such an increase of ¥ produces a large area
which is occupied by only one trajectory. The motion in this
area appears to be chaotic or, as they say, stochastic. Thorough
numerical studies (see, e.g., Refs. /6-7/) have shown that the
motion really does possess statistical properties.

The appearance of stochastic motion in a dynamical systemn,
in which no extrinsic irregularity exists, can be attributed to
the local instability of the motion. In this case two neighbou-
ring trajectories diverge rapidly from each other. If we denote
the distance between two nearby trajectories in the phase space
by R on the average, its growth will follow the law Z=2 eht
The value h is called KS-entropy (see, e.Z+s Ref. /11/) ;;d
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determines the average rate at which trajectories diverge in
the phase space. In the nonlinear oscillation system, strong
local instability always arises as soon as the regions of non-
linear resonances overlap /7/. It is for this reason that
B.V.Chirikov has suggested that the condition of overlapping
nonlinear resonancesg be a criterion for stochasticity.

For the model under consideration, the stochasticity leads
to a rapid increase in the particle's transverse energy, which
ig an extremely undesirable effect in real facilities. Therefo-
re, it seems very important to determine the parameter values
at which the motion will be the most stable. I'ig. 8a illustra-
tes the situation when a stable area in the phase space near
X=P=0 is rather large. This may be accounted for by the
fact that olightly above the parametric resonance the harmonics
of the nonlinear resonances are large: n ? 1 .These resonances
are therefore small and become of appreciable size only for

a ?1. For v =3%.2001 at the same perturbation &=0.24
(Fig. 8b) the main stochasticity area shifts towards smaller
values of X and ig reduced in size. In this case, only two
resonances actually overlap: n=4 and n=3 In contrast to
Fig. 8a, for large values of X the motion is stable. This 1is
due to the fact that the value of X isg glightly larger than
the resonance value V = 1/5. Hence, for X »1 strong resonan-
ces are absent. But if we take Vv = 0.3%2 which is slightly be-
low the resonance value v = 1/% (Fig. 8c), the area ocdupied
by the resonance n=3 appears to be very large (see § 3).

Pig. 8 illustrates the situation when the perturbation
strength is slightly above the critical value. Here the resonan-
ces either touch each other or partially overlap. Nevertheless,
this ig sufficient for a strong diffusion to arise along the
destroyed separatrix of different resonances. Correspondingly,
the Chirikov criterion for stochasticity can be then written:

| Fig. 8. The ph '
2(Av) (4.7) ¢ DPhase gspace for different values of the t
8 = e Slightly above the stochastic threshold. Fgg.ugg :)
Vo™V - for v:’,‘».%i;;é §8=O.52f; Fig. 8b - for v=3,2001 ; E=0.24
- FaBe RC = 20T ‘Val.02 3 £20i24
where 2(Av) is the maximum width of the nonlinear resonance in In all figures |[X|< 10 ; Ip[< 5.
n
30
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frequency, and vn+1-vn 1s the distance between the-neighbou-

ring resonances.

For given values of v (see Fig. 8) the digtance be-
' i : : 1 1
tween the main neighbouring re e - = - - =
we a neighbouring sonances 1s voey = .

. E"G,i?IT ,Since n = 3 the pendulum approximation (3.16-3.17)
can be used. We then obtain:

S = mmoén(n+1)\IEfn(an)g'(an)i (4.2)

nl)
£()=fE " I (anan; g'(a) = 28
0

a=3a

where g(a) is determined by the nonlinear betatron tune shift
(3'9)3

g(a) = ;-{'I-e‘a Io(a)}

The condition for the touching of separatrices:S = 1 may
be taken, in a first approximation, as a condition for the ap-
pearance of strong diffusion. Thus, the critical value of the
parameter éc depends upon M,y Vy Iy 8,¢I1% should be noted
that for a given value of the betatron tune v, the resonance
number n and the resonance value a  are dependent. The ob-
tained expression (4.2) reflects a fairly complicated dependen-
ce of the criterion (4.1) on the model parameters. In particu-
lar, for the perturbation evﬁ (which is proportional to
fn(an)) one fails to obtain a simple estimate since the integ-
ral in (4.2) depends mainly upon the ratio a to n . In the li-
miting cases, for a/n » 1 or for g/mn € 1 an estimate of the
integral can be easily found. If often appears, however, that
the most interesting cases from a practical point of view corres-
pond to intermediate values of a/n. For v = 3.2001 the conditi-
on (4.2) gives a critical perturbation value of Ec = 0.32.
»7ie numerical value for &, reported in Ref. /30/ is in satis-
I'actory agreement with the analytical estimate. For comparison,

Je

Figes 9 gives the results of numerical experiments on the deter-
mination of §, for system (2.14). This is the condition for
the touching of separatrices of the main resonances in the re-
gion of restricted X .= 10. A strong instability created by
the overlap of these resonances is well illustrated in

Yig. Bm, b, c.

It should be noted that the meaning of the critical pertur-
bation itself is somewhat conventional. I'or example, we may be
interested in the creation of a not so large stochastic region
for certain values of Xm - say, for Xm=1i2. In this case,
we should consider the overlap of only those nonlinear resonan-
ces that are located in this region. e should also take into
account the resonances of higher harmonicgs as well as additio-
nal resonances caused by various modulations (see § 5).

iThen analyzing the dependence gc (curve II1Fig; 9),

we see, first of all, that §C is only slightly cenendent on
{p/&}zz{v} over fairly broad ranges. liowever, the value

€. in /30/ was determined as a condition for the appearance
of a large stochasticity area caused by the overlap of main
resonanceg for Xm< 10. Therefore, the size of the stochasztic
area and 1ts location vary depending upon V. This is especial-
ly clear when approaching the parametric reconance fTrom above.
In this case, when {V} < 1 the motion becomes much more
stable (see Fig. 8). i scharp increase in Ec (Fig. 9) is due
to the perametric regonance which recuces the tune shift AV
(sec § 2 and § 3). Furthermore, in this region of variations

V there exist only resonances of large harmonics n » 1,

P

The gstrong effect of the parametric resonance n = ~ on
the total motion is, ecvidently, the most characteristic feature
of nearly linear mavpings. At small cisplacements, when Xm < 1,
the action of the parametric resonance con be linearly anproxi-
mated (8 2) and can lead to the stretching of the phase ellipse
such that ultimately the center X=P=0 appears (o bec degt-
royed. IF'or X » 1 the narametric resonance becomes essentially
nonlinear and#occupies & large area in the phase spvace even if
the dctuning from the resonance value 51=,v..mnk/2' is large




%c‘ . : ‘?c

a1 . L 0.56
Q48- e
0401 ' ~ Fouso
0.321 , s
02 \ e L0.24
046 Voord pood \ B MY 10.16
0081 b o n Léie

OE v r v v - - T Y R
041 02 03 04 Q5 06 07 Q8 09 O {%}
{

Fige 9. The data of the computer simulation from Ref. / 30/
for basic mapping (2.14). The curve I is the 1i-=
near stability condition (2.15). The curve II-the
cr}tlcal value of the strength parasmeter . TO®
which the separatrices of the main resonances
touch each other (see Fig. 8). Curve III repre-
sents § for the case of modulation (5.1) with
the data: Ag; = 1.5; vy = 0.01. (see § 5 and
Fig. 10). The horizontal line corresponds to the
fractional part of u/g.
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(Fig. 6). Note also that an exact condition of the resonance

vV = mok/2 for even values of m k coincides with the

external linear resonance condition Q = n| where R, 1is
the frequency of the external perturbation and n, is an in-
teger. Although in our model such resonances are absent beca-
use the force is only dependent upon the coordinate, in gene-
ral, they can exist. Therefore, 1t seems interesting to inves-
tigate the combined action of the parametric and external reso-

narncese.

According to the analysis, taking into account the para-
metric resonance can substaontially change the estimate of the
overlap criterion (4.2). It is necessary, therefore, to renor-
malize B and & in the same manner as it was done in §3
(see (3.20)). This implies that in (4.2) the parameter & must
be replaced by &* and the dependence g(é) - by the depen-
dence determined in (4.2). As a result, the estimates (4.2)
become even more complicated.

The derived condition (4.1-4.2) is approximate even far
from the parametric resonance. It may be somewhat improved,
for example, by taking into account the difference in the gize
of neighbouring resonances n and n+1. It seems natural then
to replace the value (ﬁv)n by *%[(&v)n+1+(ﬁv)n] in {4.1).

It should be noted, however, that ingpite of this improve-
ment, the stochasticity criterion (4.1-4.2) is, in principle,
still an approximate condition. This is related to the fact
that the expression for the nonlinear resonance width has been
obtained by neglecting the action of neighbouring resonances.
But this approximation is not valid close to the resonance tou-
ching. It is clear that the resonances begin to interact with
each other even before the touching. Therefore, the stochasti-
city condition may be improved by taking into account the high-
-order resonances which lie between the main resonances. As was
reported in Ref. /7/ for mapping (1.1) taking into account the
hi gh-order regonances «nd the finite width of the stochastic
layer around the separatrix reduces the critical value of the
parameter kD by approximately a fuctor of 2.5. The comparigon




has shown good agreement ( =~10%) between the improved
analytical estimates and the numerical results. Another inte-
resting approach to finding the critical perturbation has been
suggested in Ref., /45/. As a condition for the appearance of
the infinite diffusion (in momentum p ) in (1.1) /45/ the con-
dition of a full destruction of very high-order resonances
which lie between the low-order resonances was used.

Compare now the analytical estimates obtained for our
model with the computer results. Consider, for example, the si-
tuation when the overlap of two main resonances ( n= 3 and

n= 4) creates a large stochastic area (Fig. 8b). The numeri-
cal value of the strength parameter E‘c for which the resonan-
ces touch each other has been reported in Ref. /30/. According
to the data in Fig. 9, gcmo.16. Since the unperturbed beta-
tron frequency v is v =3.2001 and is well above the para-
metric resonance ( 8§, =v =3 =0.2001),we use the simplified
estimates (4.2) without taking into account the parametric reso-
nance, As is seen in Fig. 8b, the size of resonances n = 3
and - = 4 differs significantly. Purther we take this fact
into account for deriving the stochasticity limit. As a result,
we obtain gth' 0.22, which exceeds the numerical value by on-
ly a factor of 1.37. Therefore, even simplified estimates give
ug the correct result for the critical value of £o The further
improvement of the analytical estimate for gc is related,
first of all, to taking into account the high-order resonances
and the finite width of the stochastic layer around the separa-
trix.

§ 5. Time-Dependent Mappings

After comparing the results of numerical simulation / 30/
with those of real experiments on colliding electron-electron
and electron-positron beams /46-48/, the model described by
mapping (2.11) does not seem satisfactory. The values for §
obtained by numerical simulation (fig. 9) are found to be 31g—
nificantly higher than the corresponding experimental values
( §c==0.05—0.08). One of the important factors that can decrea-
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se Ec (in the 2-dimfnsional model) is the modulation of cer-
tain model parameters . Leaving aside the physical meaning of
this phenomenon which is related to some neculiarities of the
particles!' motion in the accelerator /49-52/, consider now the

most important types of modulation.

If in the reference gystem of a particle the center of the
strong beam slowly oscillates, the strength of the particle-
-beam interaction will also oscillate. For our model this can
be taken into account by proceeding from x to a new variable
o 3

s
u=x+ACos VvV t £S5 1)
S s S
in the force (2.13). Here AS and vV_ characterize the modu-
lation amplitude and frequency ( > € v ), respectively. Then
the mapping (2.14) becomes dependent on a dimensionless time
given by the number of kicks.

A numerical study of the mapping (2.11) involving (5.1)
has shown /30/ that the critical value gc decreases conside-
rably with modulation. This is illustrated by curve ITII in
Fig. 9 for which As = 1.5 and y_ = Oe01s A typical phase
plane is shown in Fig. 10. With the time- -dependent mapping the
determination of g becomes more complicated. This results
from the OSGlllaulOH of the location of the nonlinear resonan-
ce. In this situation, the overlap of the main resonances and
the trajectory movement from one resonance to another can be
eaglily observed on a display which is connected on-line with
the computer /30/. The trajectories for different initial data
are clearly seen in Fig. 10. As is seen in Fig, 10b, when
§ = 0.04, the resonance = T already overlaps its inside
neighbouring resonance.

Another way to represent the system motion in the case of
modulation is to plot the trajectory on the phase plane not at
each step of the mapping, but at the modulation neriod o

= = oI

The role of increasing the degrees of freedom will be discus-
sed in §6.
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Near a single resonance ( § 3) the Hamiltonian has the form

.
H=Jv+e [ %?'{1_3-(a+d)n Io(an)Iz(rﬂ)Io(dﬂ)} -
0

£5+.3)
1 s +00
"l -3 b 9

where the dependence on the unperturbed phase Y 1is given by:

ﬁnPka = Cn+p+qQ¥ + (p~q +2m)¢ - kB (5¢4)
e R SR i T g s =v_ 3 & =m,
- ' . vith the :
Fig. 10. ggguggﬁgnszggc%fgdtggemggzgf;?gv(i 154)1 2’“’1; " ; 500 and the introduced values a,r,d are expressed through X_
A,=1.5 ;3 |X|S 10 ; IP] £ 15. Fig. 10a =~ The and A via the formulas
stable trajectory below the stochasticity thresh- s
old for & = 0,02, Fig. 10b - The overlap of the X a2 A_y2 A _x_ (5.5
two resonances for & = 0.04. a = [Eg'] s G = [23-] e P = “ad = = rays

/33/. Then all additional resonances will be clearly seen on
the phase plane. This is due to the fact that in a modulation
period the total mapping will not depend on time. The total

From (5.4) we obtain the resonance condition

m0k+(p-q+2m)vS

+&\J=T-‘—'— D
mapping equals the product of'ﬂa;nonlinear mappings (2.14). 7 n+p+q (5.6)
Although such an expression is impossible to obtain, for the
computer experiments this method of representation appears 10 The spectrum of resonance fredquencies (5.6) involving modulati-
be very convenient (see Ref. /33/). on is much more complicated than (3.5). .n onalysis of (5.0)
The strong effect of modulation in our system results suggests that even for v_ =0 ( A_# O) there exist acditio-
from the appearance of many additional side-band resonances. nal resonances not present in (3.5). Note that these acditional

resonances can be induced by time-independent shift of the beam
center even without the modulation. The condition p+q = + 1

corresponds to the first side-band resonance. The c¢istance bet-

The Hamiltonian corresponding to mapping (2.11) is in J and ¥
variables (see §2):

1 AU sN +00 1B ween this ﬁﬁsonance and the main resonance n is
H=Jdv+e [ meh, - O R (Av) = 0 which for n » 1 is half the distance bet-
3 o (5.2) s _ en(n+1) ! -
ween the main resonances:vn-wn+4zkmu/T2n ).As follows from (5.7),
the amplitudes of the additional resonances are determined main-
(x+A Cos v t)? ly by the condition p = O, qQq=1 and p=1, q = 0 and de-
S aailbasnieselliea 5 =
- o ’ x = \2JB Cos¥ pencd upon r .« for r>1 additional and main resonances become
comparable and the critical value §c must decrease by a fac-
38
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tor of 2. Since the denominator in (5.6) can be odd, for

A = 0 the degeneration observed for (2.14) is absent. This
issdue to the fact that the interaction potential V(x) 1is
not symmetric with respect to the sign of the coordinate x .
For v # O the distance to the nearest side band resonance is

(&v)nﬁa v /n €V .The strength of the side band resonances

s
falls as the values of p,q andm are increased (see (5.3)).
However, the distance between the side-band resonances is very

small, and they will overlap at much smaller values of £ than

the main resonances. Then the overlap of these small resonances
results in a weak diffusion*. If the total region of overlap of

gide-band resonances (in frequency vV ) is comparable to the
distance between the main resonances, this leads again to the
overlap of the main resonances and to a strong diffusion, as
in the case of the time-independent mapping.

It is, in this case, difficult to derive analytical esti-
mates for the condition of strong stochasticity as is apparent
from the farmof Hamiltonian (5.3). However, even in this case,
some conclusiongcan be drawn, especially when comparing diffe-
rent types of modulation. Consider, for example, the situati-

on in which the period I of the beam-particle interaction is
slowly oscillating. For (2.11) and (2.14) this leads to modula-

tion of the phase advance between the interaction points:

B = p, +B Cos 9Et (5.7)

In the single resonance approximation the Hamiltonian for
such a modulation is

:
el M $1ee™ T (an)} -
_ v+e£n{-e o(a‘rl}

(5.8)
- 2€

O Y

%?_e—an In(an).Jm(bn)Cos(2nY-k9-+m¢)

% Heré “wnak.diffusion" meang that the diffusion is restricted

" to a small area of the phase space due to the overlap of only
a few gide-~band resonances.
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Here Jm(bm) is the usual Bessel function of m=th order with

the argument b = Bdmon/$5 « The resonance condition for
(5.8) can then be written

km +mv
0 s

V + Ay = g~ s (5.9)

A comparison of (5.9) with (5.6) tells us that the spectrum

of resonance frequencies is simpler for this tvype of modula-
tion than for modulation (5.1). Specifically, for (5.8) the
degeneration is not removed and the resonance harmonics are
only even. However, the distance between the additional re-
sonances (f_w)nE = vﬁ/?n.is two times smaller than for (5.1).
The most essential difference between the modulation under
consideration and the previous one is as follows. The strength
of each side-~band resonance m # O for any n depends upon
Jmen) and for b_ » 1 changes slightly with increasing m. For

the previous case (5.3), the contrary is true and the strength
of the side-band resonances falls sharply as m is increased

(for @ € 1). The estimate for the total width of all the side
band resonances can be derived directly from (5.8). The maxi-
mum value of m* can be found from condition Jm*(bn) = const :
m*<b=Bmn/N_ « ForB /v >1 we obtain a fairly wide
range of frequencies. If the total width of these resonances

is comparable to the distance between the main resonances, the
overlap of side-~band resonances creates a strong diffusion
along the main resonances. This is the case for By 7 B°=%E—T;T,
where [v] is the integer part of the frequency v. As is °
seen, the estimate B® does not involve the modulation frequency
Vs since with the decreasing of o the value m* increases while

the total frequency range occupied by side=band resonances
remains constant.

It should be noted that even the overlap of several side
band resonances may turn out to be essential for practical
applications. For example, in a somewhat different model /33/,
the overlap of 5-4 resonances created a stochastic region of
abaut.&X;a 1¢5 in width. This means that the density of charged
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particles in the beam c¢ross section will decrease. As a result,
the interaction between such beams will be also lowered.
Therefore, in storing rings the influence of side-band reso-
nances may appear to be rather significent /33,49-52/.

Another modulation type, which is less efficient at first
glance than the above modulation, seems to be worth noting as
well. Assume, for example, that due to some physical effects
(see, e.g., /33/), the perturbation parameter £ cannot be
constant at the interaction points and its dependence on th?
dimensionless time t is determined by a weak modulation :

€ =€+ d_Cos v_t a <€z, (5.10)
In the perturbation spectrum there are only two side band re-
sonances, one on each side of the main resonance ¢ ¥ + vs/T2n)-
However, taking into accont effects of second order in.d.s/'ls0
we have again the aﬁove discussed modulation of the parameter
(5.7)« In fact, the first order approximation gives only a
weak modulation of the unperturbed phase. In the second order
approximation this modulation also influences the perturbation
and therefore there appears a wide spectrum of additional re-
sonances. This situation was investigated in detail in Ref./33/.

§6. Conclusion remarks

The applicability of mappings and, in particular, of the
nearly linear mappings, is much wider than it might seem at
the first glance. In our example, the differential equation
(2.1) can be easily reduced to a mapping because the pertur-
bation is a delta function. Therefore, we can easily inte-~

grate the unperturbed motion in the time interval between

the kicks and then take into account the influence of the
kick. In general, for a time-dependent perturbation the
differential equation can be reduced to a mapping by integra-
ting the equation of motion over a finite time interval. This
integration may be quite complicated. In some cases, however,

this approach is much simpler than a complete numerical solu-
tion of the problem. In fact, it may not even be necessary

to find an exact mapping. An approximate one may be sufficient
for certain applications /53-54, 4-5/,

The mapping is often constructed using the so=-called
Poincare' method (see, e.g., Ref./2/). In this case the map=-
ping describes exactly but not completely the motion of a
continuous dynamic system. In a sense, a two dimensional map=
ping is equivalent to a continuous dynamical system with a
three-dimensional phase space. In parvicular, it is the case
of a conservative system with two degrees of freedom. Clearly,
the analytical and numerical investigations of mappings are
much simpler than the integration of differential equations.

The model considered above clearly illustrates the main
properties of nearly linear mappings.First of all note the
strong influence of the parametric'resonance on the motion
of the system for a wide range of the model parameters. As
compared to other nonlinear resonances, the parametric one
has rather special features. At small amplitudes it produces
a linear effect, the rapid growth of transverse oscillations
at the interaction points. At large amplitudes, above the 1li-
near stability limit it leads to nonlinear stabilization of
the particle motion. Consequently, it is often necessary to
take into account the influence of the parametric resonance
in the derivation of various analytical estimates.

Another feature of nearly linear systems is that the
pendulum approximation, in general, is not valid. This is
seen, in particular, when the low-order resonances including
the parametric resonance, are considered. Nevertheless, for
high-order resonances in the model under study, it appears
possible to use the approximation of moderate nonlinearity.
The reason for this is a drastic decrease in the resonance
strength with an increase of the resonance order. Moreover,
there exists a parameter range where the pendulum approxima-
tion is quite applicable. From this point of view, a very
important problem is the question of how validity of a certain
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approximation depends on the type of nonlinear perturbation.

The pendulum approximation is convenient since it provides
a universal description of any arbitrary nonlinear resonance
and allows for derivation of fairly simple estimates for the
resonance overlap criterion. As is shown, for nearly linear
systems such a universal method does not seem to exist. Deve=
lopment of a common approach that can combine these bhoth ca=
ses, is one of the important problems in the theory of sto~
chastic oscillations.

Conserning the interpretation of our model from the
physical point of view and the comparing of the results of
computer simulation with real data, it should be mentioned that
the twodimensional mapping describes the motion only along one
transverse coordinate. In this connection, of special impor=-
tance is the mutual influence of the motions along the two
transverse coordinates. The mapping, which describes a model
with two degrees of freedom, becomes four-dimensional and
thus complicates both the analytical and numerical investigaw
tions. For the system with two degrees of freedom, the number
of possible resonances increases drastically. This is due not
only to the additional resonances introduced by the motion in

% 5 but also to the appearance of the new coupling resonances
/37, 22=23/, These latter are derived from the total resonance

relation 2n 5 +2n v_~m k=0 for k=0 (n » n_, k are integers,

positive and negativa). Consequently, for the qtochasticity
criterion it is necessary to take into account the possibility
of overlapping nonlinear coupling resonances with each other
and with one-~dimensional resonances.

The four-dimensional mappiﬁg has long been a matter of
interest (see, e.g., Refs./55-59/), The main difficulty in
the numerical study has been the determination of the type of
motion. Since the phase trajectory occupies a four-dimensional
volume, one has to consider only its projection on a certain
cross=~section. It becomes difficult to distinguish between the
stochastic and regular motion because the areas of nonlinear
resonances in such representation cannot be seen. Therefore,

it is common to use some qualitative characteristics, such as

the KS—~entropy (see §4) which characterizes the mixing rate
of the phase trajectories.

Note also that multi-dimensional nearly linear mappings
can have specific features not present in two-dimensional
ones. This is shown, for example, by some numerical experiments
with a conservative system consisting of three linear oscilla-
tors with a nonlinear coupling /60/. The frequencies of the
unperturbed motion in this system W, ,W,, 0, are related to
each other by two resonance relations : 2m =w, and 3w =W, .
As shown by a study of this motion /60/, the stochastlcity
criterion does not depend upon the perturbation strength. The
perturbation parameter is found to determine only the rate of

the stochastic diffusion and not the size of the stochasticity
region.

Finally, the author wishes to thank Dr.B.V.Chirikov for
fruittul discussions and for critical reading of this work.
The author is also grateful to JeL.Tennyson and I.B.Vasserman
for many productive conversations and helpful comments as well
as to L.F.Khailo for her assistance in computation.
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