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INTRODUCTION

A maximum luminosity of colliding beam facilities is limit-
ed, as known, by the electro-magnetic interaction effects. An
experimental study of this problem seems insufficient for the
adequate understanding of all the reasons, which cause a decrease
in luminosity of some facilities. This is explained by the fact
that in the experimental conditions it is rather difficult, and

- often -impossible at all, to separate one mechanism or another

and to determine its role in the phenomenon under study. On the
other hand, the theoretical inveatigation.éonfronta with serious
difficulties caused by the essentially nonlinear character of
the force of a colliding beam. In view of this, the interest to
computer simulation of the beam-beam effects is currently grow-
ing. This approach often makes it possible to reveal the cha-
racter and the relative role of the effects under study with
fairly simple models.

In the paper /1/ the modulation of the betatron motion by
a synchrotron one was found to lead to & significant decrease
of the 1imiting current h?cauaa of the presence of a dispersion
energy function at the interaction point. The goal of the pres-
ent paper is to investigate the other possible types of modula-
tion and to consider their joint effect. ‘

The first section describes the basic médel, presents some
analytical estimates for the "round" and "bgnd" beams and dis-

cusses the results obtained in /1/. The influence of the modula

tion of a betatron phase advance is studied in section 2. Sec-
tion 3 is devoted to the modulation, the creation of which is
due to tba dependence of the )5 -function on the azimuthal co-
ordinate, And, finally, the effects of various types of modula-
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tion are compared in section 4. Their mutual influence on the

gtochastic instability limit is discussed in section 4 as well.

1. Description of the model

We will consider the behaviour of a single particle mul-
tiply interacting with a constant bunch in the usual approxima-
tion (see, e.g., /1,2/). The colliding beam is assumed to be
~infinitely short along the longitudinal coordinate; in this
case, the motion only along one transverse coordinate, disre-
garding the other coordinate, is considered. The radiation ef-
fects (noise and damping) are not taken into account. This
means that only the strong effects, "evolving"” during the time
periods shorter than the damping time of betatron osctllations,
are considered. Despite the evident limitations of such a very
simplified model of the beam-beam interaction, its investiga-
tion seems to be useful, particularly in our case, for compari-
son of different types of modulation, This problem will be dis-
cussed in more detaill in section 4. If the interaction points
in a storage ring are located in a period of the magnetic sys-
tem, then the motion in a single particle may be described by
a comﬁarstively simple mapping. Such a mapping conmnects the
transverse coordinate ‘and the momentum of a particle after some
interaction with a colliding beam, with the values of the co-
ordinate and momentum after the previous interaction. In the
simplest case, if the nonlinear effects, which are due to the
motion of a particle between the interaction points may be neg-
lected, the mapping will consist of a linear rotation on the
phase plane (%,/# ) and a nonlinear kick caused by the beam-
beam interaction. IZ the derivative of the /5 -function over

the longitudinal coordinate S is a zero derivative at the
interaction point ( :'gz-. g ), then the mapping has the form:

Knes = X @S P Sinf+ fo fl5a) Sinpa (1.1)

Pre, =~ S Snfro o+ fese - o

Here X and P= % are the transverse coordinate and mo-
mentum, fB,- is the value of the _A-function at the interaction
‘points; M- is the betatron phase shift between the interaction
points ( M= %—’f , where Y 1is the betatron oscillation fre-
quency over X and M, 4s the number of interaction points
over a ring). g :

The quantity (%) in (1.1) is proportionsl to the rela-
tive change of the momentum aAp and is determined by the
charge distribution (%) in the transverse cross section. In
what follows, for the sake of simplicity, f(-ti will be refer-
red to as a force. In Ref./1/ two limiting cases concerning the
various transverse charge distributions were considered. In one
of them the beam is assumed to be round in the transverse plane,
with the Gaussian dintribﬁtian Plxl=f exp (- "Zzﬂj , where by

X is meant the distance from the beam centre. In this connec-
tion, if the initial momentum of a part:lcl_a is directed along

this direction (along the radius), the notion_ remains one-dimen-
sional and can be deseribed by the mapping (1.1) with the force

s G
(- act) |, _MNeTfxzbzx
lxxf b} .F.r'z' J-Ff‘i‘::(‘}_*‘;} {1:2)

fe--GFe =

where N, is the mumber of particles in the bunch, T, 1is the
classic electron radius, Y is the relativistic factor,

6= 6;55.3 is the rms beam size. The parameter ¥ is intro-




duced by an usual way and characterizes a magnitude of the
interaction.

On the contrary, the second case corresponds to the strong-
ly stretched cross sectiﬁn in one of the transverse directions,
for example along the storage ring radius. In the limiting case,
such a beam may be considered to be a band one, and the motion
in the field of this beam will be also one-dimensional. Then X
should mean the transverse coordinate along the small size of

' the beam, In the existing devices this case corresponds, to an
extent, to the beam elliptic in its transverse cross section
with a large relation between the transverse sizes, The force

of such a "band" beam with a Gaussian distribution f’(x) has

the form:
. -2
P L
AR 7 ot el (1.3)

The computer simulation for the mapping (1.1) has been
carried out by various authors (see the review 72/). The main
problem is to find the critical value of f at which the
stochastic instability leading to an appreciable increase of
the transverse energy arises. As imown, the meéhanism of such
instability is the interaction between nonlinear resonances
/3-6/. The neighbouring resonances caused by the nonlinear per-
turbation, overlap and form a stochastic region in the phase
Bpa'ce. It means that the particle can move apart from the centre
of the beam. It should be noted that the idea of a critical
value of }c is conditional to a certain extent. In the com-
puter simulation by fc is often meant ‘the value of F at
which the particles with the most typical initial data (x.,p.)
achieve, for a given number of iterations (Af'-104-106), large

Xm (see, e.g. /1/). It is more convenient, in the other
cases, to follow the relative increase of the transverse par-
ticle energy, as it was done in /7/. In view of this, a direct
comparison of the values of .}; derived in this manner with
the experimental valuas- is conventiqnal, too. The main advantage
of this approach is the dependence of f,_ on different parame-
ters of the model under study rather than the absolute values
of }'c « As the VEPP-2M data evidence, even such a simplified
m;del as‘ the mapping (1.1) reflects correctly some experimental
dependences.

The computer simulation in /1/ showed a noticeable decrease _
of fc when the modulation of the colliding blean centre was
introduced into (1.1). This modulation occurs if the dispersion
energy function % at the interaction point does not vanishes.
In this case, the orbit of a particle whose energy differs from
the equilibrium éne by the quantity A€  shifts from the orbit
of the equilibrium particle by the quantity /8/:

= -A‘E : (1.4)
4x =v¥R S ;

where A 1is the mean radius of the storage ring. Hence, the
particle whose energy deviates from the energy of an equilibrium
particle at the interaction point passes through the region of
the beam with the lower demsity and the larger nonlinearity.
The presence of synchrotiron oscillations leads therefore to
the modulation of the colliding beam force acting on the test
particle. In the model under consideration this results in the
change of X in the force expression (1.2; 1.3):

X —» X+ Ay Cos (LT, /) : (1.5)

»

where J& . and )_’, are the amplitude and frequency of syn-
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chrotron oscillations and /% is the number of a kick ("time").
The angular intersection of the beams at the interaction points
leads to the modulation (1.5) as well /9/.

The decrease of ¥  during the modulation (1.5) is ac-
counted for by the appearance of additional, synchrobetatron
resonances, which facilitate the overlap of the main resonances
and thereby decrease the stochasticity limit. In the paper /2/
some analytical estimates of the conditions of overlapping the
resonances for (1.1) ﬁith the force (1.2) have been obtained.
The overlap criterion turned out to depend, in a complicated
manner, on the parameters of the model, namely: the parameter

¥ , transverse emergy @ , betatron frequency Y

, and the
resonance number /L . The latter parameter is not independent,
and it is determined by the values of ¥ , ¥ and @ , Due
to synchrotron oscillations, the analytical estimates become
more compléx &nd give mainly the qualitative results, In such
a situation the resonance structure analysis of a perturbation
is very important. It enblea one to make some conclusions on
the relative force of the modulation (see, e.g., /10/).

Let us write the Hamiltonian corresponding to the mapping
(1.1) in the "action-phase" variables ( X= V2Tf. ¥, L=

rha‘f" , see /2/):
H=TY,+ V(9% 06) &(6)

Here Y, is the unperturbed betatron frequency, 4{0} is the
periodic delta-function, dependent on the phase # introduced
instead of the azimuthal coordinate § : 8= J-T%

4 is the -interaction per.'u;d. The extermal perturbation

s Where

period Vf-z ¥6) is given by the value of 6, , which is equal
to B= 'e%_ . The perturbation V= ?:0) is determined by the

8

force p*p(x) and is as follows for the round beam (1.2) /2/:

Uz,
V(g'gng__ glf..’_cz’;.(__—-’)—.{z (1.6)
f
1If a modulation. of the type (1.5) is available, the quantity
l{s also depends on the phase g ', which plays a role of the

dimensionless time: -

. 2
R~

Similarly, for the band beam we have:

V; (z¥e)=-HE G“J—f' S8 L (1.8)
The .comparison of (1.6) and. (1.8) shows that despite the sig-
nificant difference in the force £(z) the perturbations as-
"sociated with the round and band beams have similar resonance
structures. It becomes more noticeable if we proceed to the
resonant Hamiltonian, which describes the beha-viour of the sys-
tem near a particular resonance. To do this, it is necessary,
ag usual, to expand the perturbation in Fourier series of p i
andr & and to keep the most essential resonant terms.

For the round beam we have /2/+

| H=hreS .;z[,_ o Ty, (22)1, (ﬁzjj 4
: p (1.9)
aefdz 02 2 1 (a2 1, (29 1, (e2) Ly (504 Wy
5 =

P §,mAax= ..




. : ;
imilarly, one can obtain a resonant Hamiltonian for the band
beam:

:f( =T« £.f { (ez)I ‘(zz}.(‘,(wf 2}

&

-(Qv
= j% zz,(w.r(wf(w;,(&)wzﬂ o

£8.45m 0z -0

(1.10)

In (1.9-1.10) Ig stands for the modified Bessel function
and U aphom is a new unperturbed phase of oscillations near a
particular nonlinear resonance. For the convenience, in the
Hamiltonian (1,9-1.10) the phase-independent term, which deter-
mines the nonlinear betatron frequency shift 4y , is separated.
Correspondingly, the sum does not include the term for which

1 £
all A, ¢,R,mn are zero simul taneously. The new perturbation pa

ram
eter € is related to ¥ by the relation &= 1m€F/4,
and the quantities @, T and A

£ ]
are .expressed via the ampli-
tudes of betatron and synchrotron oscillations Xm and -fg

cording to formulas: b
a= (Za)'; Ruff); e ok - BeZe
: 2 .zG‘) o 26+ (1.11)

Genarally speaking, by G it is ricese vy .o me;an the total

rms size of the beam, which is a sum of its betatron (‘;‘)
synchrotron (G;) eizes: 0%= 6/'!1* 6-;:
as a rule, it is assumed that 6 = 6}

& .
e resonance phase ”-“fi“’ in (1.9-1.10) is determined

and
But, since G <<Gz

by the relation:

Bapgtens = (224P43) ¥~ (p-g +2m)p - kim,6 (1.12)
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where the @ -derivatives equal: Y::V,; =1 ¥ ey=V+a).

In the last relation the betatron frequency shift a4V depends
on the transverse energy 2a and is obtained below. From (1.12)
the resonance condition is easy to derive: ‘ '

: +2m)- Vs
Ve Ve av(a)e TEELT I i

In the absence of synchrotron oscillations pP=g=m=o0 ’

- therefore the distance between the neighbouring resonances 7

and M+ equals Y, = . If the synchrotron motion

F
is taken into account, -there arise the synchrotron resonances
in the system (see (1.13)). For simplicity, we call them the
side-band resonances, since they are not far, in frequency, from
the mein resonances with harmonics 22  ( V<< 7 ), Note that
if the modulation does mot occur but the constant beam shift
takes place ( Vizo0; -'9' #0 ), additional resonances between
the main ones arise, too. The condition P*i?t:f corresponds
to the nearest resonance of this kind, and the distance between
it and the main resonance /  equals (AVJ,'—' m%a(.m,;) ; at
n>>7 this distance is two times shorter than that between
the main resonances. The amplitude of these additional reso-
nances is essentially determined (see (1.9-1.10)) by the values
p=0,4=¢{ and p=%7, g=0 and depends on the quantity Z .
In the case of a constant large shift when Zz=7 these reso- ‘
nances become comparable with the main ones { #=%2=¢ ), and
the critical value of f; decreases at least by a factor of 2.
Since § is determined by the resonance overlap crite-
rion, which is inversely proportional to the distance between
the resonances (in frequency), it is clear that the presence of

the side-band resonances can decrease significantly the value of

1



resonance sverlap depends significantly on it (see /3-6/). As
Fe . Indeed, at V,<<7 the distance to the nearest side-band

follows from estimates (1.14-1.15) for the round beam, the reso-

resonance, as it follows from (1.13), is (AV_)“ = ’5/’2 << V

nances of the higher harmonics 2 , in comparison with those
The power of the side-band resonances is determined by the va-

for the bend beam, lie at the same distance from the centre of
lues P, 2, m and decreases sharply with their growth (at ;

the phase plane. And, alternatively, the resonance with the
4;<<6), However, since the distance between them is very short

’

r same number /L lies much closer to the centre of the round
they can overlap at the values of ,F which are less than it

' beam as compared to the band one. For further comparison, let
is necessary for overlapping the main resonances. In this case, :

us write out the estimates for the width of a nonlinear reso-

nance /3-6/:

the overlap of these side-band resonances efea_tes a slow diffu~"

sion, If the whole -overlap region seems to be of the order o7
I[EV Eat =42,

of a distance between the main resonances, this leads to the dif- (A:TJ1= Ji .3%5} 4 @VJ‘!'& 27 EVA (1.16)

fusion over main resonances, and hence to a significant in-

d by the resonance
crease in the transverse energy. A noticesble decrease of £ Here (A7),  determines the region occupie 5D av)
i -3 and is the
under the modulation (1.7) in the model 1is explained in Ref./1/ in the action J (and hence in energ]; ) .
by means of this mechanism. resonance width in frequency ¥ . ¢/a stands for the per-
The nonlinear frequency shift 4V(2) " is easy to find from turbation taken at the resonance value Jp I.}.-licﬁ in turn is
the Hamiltontan (1.9-1.10). Since # <<6 and hence fcc2<< 7 : determined by the resonance conditio:;_ (1.13). It follows from
then with A<<a the shift 4M(a) is practically the same as in expressions (1.9-1.10) that ( As <« ):
the absence of this modulatiu.n; ; i (EV} "’ié’/ C {zj 'gcf(@;a,}
4y, (a)= DX (1-e"%[ ()] _ g
(1.17)
"' (1.14) E
a, (¢J=—-—{f € If-t)}+’"‘r 2L [t L] €Va) = ¢ra, f %, ""”'SC‘[""Q‘)
Q o
At @<<{ an usual linear shift is obtained from (1.14): At Q@>>7 the integrals in (1.17) depend on @ only via 72,
4V=m,F , while with increasing the transverse energy - smd R, . _ .
(at @>>f ) 4) tends to zero: : The resonance overlap criterion i1s a condition under which
e m,F . Yo 2F the width of a resomance, in frequency @V},s becomes compar-
= &g, - ¥ Ve i (1.15) 1 rest résonances. In the
2ra able with the distance between the neares _

abesence of modulation this distance is equal, as alresdy men-
The energy dependence of the frequency is one of the spe- ;

cific features of the nonlinear motion, and the condition of e 4R
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tioned, to (AV/, = 1-%‘- . The numerical results /1/ have shown
that in this case ¥, is slightly different for the round
and band beams. Nevertheless, one can obtain from estimates
(1.16-1.17) that the modulation should affect stronger the band
beam than the round one, It is commected with the fact that at
a constant perturbation of l‘; and /2 near the main resonance
o, @VJg depends on @ in different ways. Indeed, as computer
simulation has shown, under the same conditions the quantity
for the band beam with modulation (1.5) is smaller than for
the round one., Particularly, the conclusion can be drawn that
the elliptical beam with the biGaussian distribution over both
transverse coordinates X and X (j’=f'e’9°('%}‘zfij) )
will be less stabie in the presence of modulation in comparison
with the round beam. In addition, since the expressions for
forces {a- and fz_ from such a beam depend on the ratio
Ox/6;,  end since their limits are the expressions (1.2-1.3)
for the round and bean beams (see /11/), one can also assume
that the instability for the elliptical beam is stronger in the
direction perpendicular to the larger size of the beam. This
conclusion is in agreement with the preliminary data concerning
a study of the influence of various modulations and noise in
the elliptical beam model (with taking into account the coupling
of transverse oscillations with respect to X and Z ) /12/.

2, Betatron phase modulation

The presence of synchrotron oscillations in colliding beam
facilities leads to a weak modulation of the betatron phase shift
A/-l between the interaction points. Such a modulation arises
due to the dependence of a rotation period on a particle energ/?ﬂ
The azimuthal deviation of & particle with momentum P +4p, from

the equilibrium one for time % is /8/:

a8 = ./?JZ’ "ﬁ"‘d"‘ .?’%% (2.1)

"where _/2.-—- is the angular frequency of revolution.Taking into
consideration the weak time- dependence of 4P, and S, o in

the relativistic case we obtain:

s pfOpen BN A IO

Here aC is the momentum compaction factor.
22, . (28) - sin (YL + J).

A similar modulation occurs if there exists the chromatism

in the ring, when .ay"*ﬁ/@p/ wo
dfinz = = pf?) (*-E/ (Y t+7) (2.3)

Just as the preceding form of modulation, chromatism arises
when changing the particle energy between the interaction points.
But since the chromatiem is usually compensated by sextupoles,
this modulation does not practically work.

With the magnetic field pulsations in the storage ring
components a similar modulation arises, too.‘ In this case, the
betatron phase advance between the interaction '_pointa is also
time-dependent. It is worth mentioning a particular case of
betatron phase mo;lulation due to the inaccurate agimuthal ad-
justment of the ring components. Here /I varies kick-likely;
fo.r two interaction points for example, the variation of M is

as follows:
AS

M=t dpie iy = HomA o | 4/4.':-7,"' (2.4)
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where AS- is the geometrical shift of the centre of the oppo-
site gap from the interaction point, indices 1 and 2 refer to
the firs?; and second interaction points, respectively. This
form of modulation is obtained from (2.3) at J, = 1f. As a rule;
Pz<<8, » therefore the modulations (2.2) and (2.4) should ma-
nifest themselves more strongly in the case ‘of Z -motion. For
numerical inve.stiga’tion concerning the influence of the beta-
tron phase modulation in the round and band beam models (1.2-
1.3) the queantity A 1in the transition matrix (1.1) is con-
sidered to be dependent on the kick number according to the

relation:
. = - z"'l/ 2 ‘7y.
/‘-/l.-ﬂ-‘/-l /\‘. 5‘0‘\’(—%’,":@-*:), /’-”';2‘:" (2.5)

Just as in /7/, such a value of ¥ 1s taken for F. , at .
which the quantity W  proportional to a maximum emplitude of

the transverse motion : .
W=W§_j2*(!gg)za l/—*x-:_* .23.

increases by AW = 2. The total time (the number of iterations)

for each experimental particle' was t,,, = 105, the valﬁe of W
being averaged during each time period, 47 = 1000, It was ‘
the way in which tlie time dependence of W/ was found. Thi;a ;
dependence characterizes either the stable motion ( W= dCans? ),
or the stochastic instability (the irregular growth of W with
time),sds the test particles, the particles with the initial .
zero momentum (9. = 0) and the initial shift JC'_- 2;4;6 were
chosen, Dgﬂp:l.te the conditionalv nature of the definition of
I,_ this approach makes it possible to investigate the ct;n-
ditions of appearing & strong stochasticity, depending upon thé
various parameters of the system (see, €.gZ. /1/). The results
-— 16 —

are presented in Pig.1, where the derived depeiﬁance ok 'F.
on the modulation amplitude 8 at a constant frequency.), =0.008,
is shown. (Such a value of Y; 1is close to the real ome for
the VEPP-2M facility.) Por the existing storage rings the quan-
tity is usually emall. n-'everthelesa, even for small quantities 8
this modulation affects strongly the quantity F. . The com-
parison of curves 1 and 2 shows that for the band beam E
becomee ever smaller than for the round beam as 8 is in-
creased, though at B = 0 the quantity F. is about 1.5 times
larger as compared to that for the band beam (see /1/).
Let us consider the resonance structure of a perturbation

under such a ‘type of modulation, With this aim, let us write
the resonance Hamiltonian, describing the oscillations near one
of the side-band resonances. Since the perturbation potential

V(J,?jin this case is independent of' & and the period of
the J’ ~function is modulated only (see (1.6)), the expres—
sion for H * is muoh gimpler than that for modulation (1.7) /2/:

4
HE=Tvee /(1 € Leawf -

7
~2e [ Y SO, (ar) T (6) @3 Bk,
H -a
ur= jy,*.e;fﬁ f1- 1 av)f - (2.6)

26 f AL &L, @IT ()08 U

tere Im(! ‘k) is the usual Bessel function of the /#7-th order
: &
with argument b = én. and A is a new phase:
gum 3 ‘m— nkm P
Vpym=~2nY-46 rmY¥;, . The resonance condition has the
form:

"« =1 =




Y= V. +JV($)= __.__.—‘em"mys (2:7) }

2n

The comparison of (2.7) with (1.13) shows that the spectrum of
the resonance frequencies under modulation A& (2,5) is far
simpler than that in case of the modulation X (1.7). It also
follows from (2.7) that for the phase modulation the distance
between the side-band resonances, (AVJM’% s is shorter by
a factor of 2 than that for (1.7). But the most significant
distinction between this type of modulation and the previous
one is the following. It is seen from (2.6) that at 6. >> £ the
amplitude of the resonance perturbation for a fixed value of

/L changes slightly with increasing 72 , up to m=m®*= &
Therefore, for all side-band resonances which are removed from
the main resonance not more than l‘fZ'-l;’; s the condition of
their overlap is independent of M . Since the distance between
these resonances is very small, the critical value of F can
be much lower than that of F necessary for the overlap of
the main-resonances /L and 2+/ and is determined by the quan-
tity Jm({w}. Estimation of the total width of the overlapped
resonances is dependent on m* and e:jual approximateiy to

ik 3 Bk 2 8&”2.
R e (2.8)

In the above estimation the ratio m.t"=2)fﬂ has been used (see
(2.7)). If the maximum number of the side-band resonance m“
is known, one can find the total width (in frequency) occupied

by all the side-band resonances:-

(4V) e = 2m* 2o < L. 72

N

are presented in Pig.1, where the derived depé-ndence o ¥F.
on the modulation amplitude 8 at a constant frequency Y, =0.008,
is shown. (Such a value of Y; 1is close to the real one for
the VEPP-2M facility.) For the exiating storage rings the quan-
tity is usually small. lievarthelesa,_even for small quantities &
this modulation affects strongly the quantity F. . The com-
parison of curves 1 and 2 shows that for the band beam £
becomes ever smaller than for the round beam as 8 1is in-
creased, though at. B = O the quantity . is about 1.5 times
larger as compared to that for the band beam (see /1/).
Tet us consider the resonance structure of a perturbation

under such a type of modulation. With this aim, let us write
the resonance Hamiltonian, describing the oscillations near one
of the side-band resonances. Since the perturbation potential

V(-Z?jin this case is independent of' & and the period of
the J —function is modulated only (see (1.6)), the expres-
sion for H‘V is much simpler than that for modulation (1.7) /2/:

‘ -
HE=Tvee /L 1 L) -

-4sf-'$“ T, (av) Uy () &3 Vg
4 i !
u}=:rg+spj~;’—-; f1-e "L(av)} - (2.6)

_2¢f % &ML, @) T (€e) Uy,

Here Jm(€x)is the usual Bessel function of the #7-th order

with argument 4-%;‘"’7‘2_ and ”'ﬂkn is a new phase:
o¥s

UMm-l.n%xﬂ +mY%; . The resonance condition has the
Cormt



> - Lo el (2.7)
V=, +4aV(a)= _—

The comparison of (2.7) with (1.13) shows that the spectrum of
the resonance frequencies under modulation M (2.5) is far
simpler than that in case of the modulation X (1.7). It also
follows from (2,7) that for the phase modulation the distance
between the side-band resonances, (ﬂv.jns'-z—%i- = ia_ shorter by
a factor of 2 than that for (1.7). But the most significant
distinction between this type of modulation and the previous
one is the following. It is seen from (2.6) that at J‘ >> 1 the
amplitude of tha- resonan@ perturbation for a fixed value of

L changes slightly with increasing #2 , up to M=m"= &,
Therefore, for all side-band resonances which are removed from
the main resonance not more than m’-)ﬂ- ;, the condition of
their overlap is independent of /2 . Since the distance between
these resonances is very small, the critical value of £ can
be much lower than that of f necessdr:r for the overlab of
the main-resonances /L and 2+/ and is determined by the quan-
tity Jm(€c). Estimation of the total width of the overlapped
resonances is dependent on m" and equal approximateiy to

B8mk _ Brm,

m*=

In the sbove estimation the ratio 72,#=.2Ka has been used (see
(2.7)). If the maximum number of the side-band resonance _/)?"
is known, one can find the total width (in frequency) occupied

by all the side-band resonances: -

~ V - 8 o
(Jijs .-.-?m‘.:!_z___ .__g__)l (2.9)

\#’H
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It is seen from (2.9) that (‘V)ﬂ.& is determined by the depth

of modulation and is independent of the synchrotron fre-
quency Y . -

As a result of this overlap, the stochastic region with
a weak diffusion arises. If the width @V = becomes com-
parable with the distance ‘between the main resonances, this
leads to a stronger diffusion of the main resonances in the
system. Estimation of the critical value of B, , at which this
effect occurs, yields:
@ay),« poi x
AV, 2n(n+e)

n

8. = (2.10)

At 8>8: the side-band resonances overlap all the J.l.J:l'I;e::"v'alil
between the main resonances /2 and R+/{ ;, and in this case
the quantity ¥, should significantly decresse. .

Let us compare the derived estimate (2.10) with the. results
of numerical simulation, For simplicity, the case of a round
beam is taken. The valusrof‘n. is then detémined by the rela-
tion (1.14) for AV,(GJV :

£ : > . ; o
.Z’-_ﬂ_;= v,,.i”&:L f:-e. “.Z;(FJ/ (2.11)

where A= (:—?J: + We are interested, for enmﬁle, in the over-
lap of additional resonances in the region X =;$"6" s 1.0, for
=62 , In our case ( Vo= 3.08, M, = 2) at F = 0.07 this
gives /1 = 11, And the value of 8. , according to (2.10)
turns out to be equal to &, = 0.014 (cf. Fig.1). At F= 0.1 we
have 7 = 9, i.e. at & = 0,01 the number of mM" equals:M*= 7,
while on a half the interval between the resonances /2= 9 and

1 = 10 there are M=T;":j
words, ihe toial, effective overlap of all the interval doeg

= /2 gide-band resonances. In other

=g



not occur. This corresponds to some growth of ¥ in Pig.1
at & = 0,01. It follows also from (2.8-2.10) that the total
overlap arises first at the larger displacements of X  and
then it expands tha'dqméin of smaller X asflor F ) is in-
creased. )
Thus, the comparison shows that rather rough estimates
.(2.8—2.10) provide not only the correct qualitative meaning of
the effect of overlapping the gide-band (aynchrobatatron) reso-
nances but are in accordance with the mumerical data.
It is worth stressing that even 4if the total overlap of the
main resonances does not occur and only a certain layer is form-
ed wherein the stochasticity ‘givos only a limited change of
energy along the éoordinate x , 81 mlinﬁ.ted diffusion over
4 becomes possible, when the coupling to the Z -coordinate
motion. is introduced. This is connected with the fact that the
diffusion in this case appears along the formed stochastic layer
(for details see /17,13,14/). Although such a diffusion is much
wesker as compared to that considered above across the layer
(along X ), nevertheless it may be strong at the values of
F Dbelow the threshold of appearing the sirong stochasticity.
Fumerical data show that despite the relatively small valuds
of the modulation amplitude B , the critical value of i
drops significantly.The modulation,which is due to the. differerpe
in the betatron phase shift in various ring periods between theg
:Lnteraction points because of the inequalities of these periodq "
(see 2.4), also leads to a significant decrease of i (rg.2).
This may impose fairly rigid r.qiiranent- for the asimuthal ad-+ '
justment of the ring elements, ror example for operation with
the coupling resonance with equal and small f-ﬁmctim at
wum,mmﬂu—tmm

—

It is seen from (2.9) that (AV),a is determined by the depth

of modulation and is independent of the synchrotron fre-

quency Y .
As a result of this overlap, the stochastic region with
a weak diffusion arises. If the width @V 2 becomes com-
parable with the distance .between the main resonances, thise
leads to a stronger diffusion of the main resonances in the
system. Estimation of the critical value of Bg s, at which this
effect occurs, yields:
8=-‘="- @y, P g
av, An(neq) (2.10)

At 8>8; the side-band resonances overlap all the :I.n1:¢':z'wzrall
between the main resonances /2 and n+/ s and in this case
the quantity -Fc should significantly decrease.

Let us compare the derived estimate (2.10) with the results
of numerical simulation.'For gimplicity, the case of a round
beam is taken. The value of /2 is then dete.mined bj the rela-
tion (1.14) for AK(‘U t

2 Me -a
=Vo*—;‘£ {"‘e I-“"/, (2.11)
where A= (—:?’_'Jf « We are interested, for example, in the over-
lap of additional resonances in the region x=;$"6' " 1.3.7 for
@=625 , In our case ( Vo= 3.08, 7, = 2) at F = 0,07 this
gives /1 = 11, And the value of 8. , according to ’(2.10)
turns out to be equal to &, = 0.014 (cf. Fig.1). At F= 0.1 we
have 7 = 9, i.e. at 8 = 0.01 the number of m* equala:m'- Te
while on a half the interval between the resonances /2= 9 and

72 = 10 there are 4, .-:—‘4—;75 2= /2 side-band resonances. In other
words, the total, effective overlap of all the interval doeg

= AT




ﬁot occur. This corresponds to some growth of ¥ in Fig.1
at & = 0,01, It follows also from (2.8-2,10) that the total
overlap arises first at the larger displacements of X and
then it expands the domain of smaller X asB(or F ) is in-
creased. y )

Thus, the comparison shows that rather rough estimates
(2.8-2,10) provide not only the correct qualitative meaning of
the effect of overlapping the gide-band (synchrobetatron) reso=

nances but are in accordance with the numerical data.

It is worth stressing that even if the total overlap of the
main resonances does not ocour and only a certain layer is form-
ed wherein the stochasticity gives only & limited change of
energy along the 6ooz'd:lnate x , an unlimited diffusion over

4 becomes possible, when the coupling to the Z -coordinate
mot:l.onl ig introduced. This i1s comnected with the fact that the
diffusion in this case appears along the formed stochastic laydr
(for details see /17,13,14/). Although such a diffusion is much
weaker as compared to that considered above across-the layer
(along X ), nevertheless it may be strong at the values of

F below the threshold of appearing the strong stochasticity.

Numerical data show that despite the relatively small valu&s

of the modulation amplitude 8 , the critical value of Fe
drops significantly.The modulatian,which is due to the. differerpe
in the betatron phase ghift in various ring periods between the
interaction points because of the inequalities of these pez_'iodg
~ (see 2.4), also leads to a significant decrease of p A (H.g.zj.
This may impose fairly rigid requirements for the azimuthal ad+
justment of the ring elements, vﬁr example for operation with
the couylink :.-esonu;ca with equal end smsll B ~functions at
wummmmmm‘h ,
", T i e ¥

close to the one-dimensional, and the results of the previous

analysis are valid.
3. Modulation of the perturbation amplitude

In particular, such a modulation is due to the azimuthal
dependence of a ﬁ ~function in the gap wherein the beam-beam
interaction occurs. This dependence is given by a formula

o 4
ﬁ_}o-ﬁ?: 3 (3.1)

where ;. is the minimm value of the 2 ~function at the centre
of the gap, f is the azimuthal deviation. For a strong-focus-
ing device - with a small ﬁ =function «t the interaction point,
a ma_gnitude of the S -function within the interaction region
can differ considersbly from J. .

The presence of synchrotron oscillations le'ads to changing
the B -dependent value of F for a particle whose phase dif-
fers from the equilibrium one because of the modulation. of the
interaction point position.

.F=F.(f+;f§)% , (3.2)

Formula (3.2) holds provided that the ﬁ-fﬂnction is much
larger in the second direction. :

Since for the round beam _}"z....%f. and 6""/); s 1t
is easy to see that under the comdition f;,-}; the dependence
of the longitudinal coordinate does not hold, and hence the
modulation (3.2) is abunt.l In view of this, for nmeriuall simpl-
ation the band beam model (1.3) has been ﬁnd. in which the pa+

rameter r varies according to the relation:

Fe F (1o A, o2 ( U2 L 3) )% (3.3)
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where A= [_;_:_]x ; S is the amplitude of oscillations of
a particle with the non-equilibrium energy over the azimuth at
the interaction point.

The results of the numerical simulation (Fig.3) shows &
significant dependence of E. on the modulstion amplitude A,
Taking into laccount the modulation (3.3) results in appearing
the side-band resonances near the separated resonance with the
‘pumber /2 . If A,<<7 , one can assume that [ =
=f,(l+‘:—‘jmx‘0};v,‘=2\’ . This means that in the first approxime-
tion there are only two gide-band resonances on each side of

Y, » end the resonance condition takes the form (cf. (1.13)
and (2.7)):

mkzav,”
2n

V= (3.4)
The smplitude of such a resonance perturbation EVa will be
proportional to ""/.’r,r .

At the first glance, such a kind of modulation appears to
be not dangerous because of small number of side-band res.o—
pances, However, if one takes into consideration the following
approximation (with respect to € , see (1.6)). then the situa-
tion sharply changes. Tndeed, the betatron phase equation is of
“the form:l";"- Y=Y, +4aV¥fa) (in the first approximation for

n>>4 =and far from the integer resonance see /2/). Since the
quantity ¥ in AY is modulated now, this implies.the modula-

tion of a betatron phase:
Ve VootV f Lo} 0+ 1] (3.5)

where @V i1 determined by (1.14) with F=F, . i.e. we
have the modulation described in the previous section. The rela~

—o0p —

tion (3.5) can be written in the form similar to (2.5):

-~ Ao

/((.-./(a-bdfl(‘ {"‘—'C ”;:9 f)
Al = - AV, (3.6)
4, = 2 §.

Hence, the parsmeter e can be expressed through & . Then
the critical value 4 at which the side-band resonances over-
lap the whole frequency interval between the main resonances 2

and 71+4 can be estimated:

2
"ﬂc = 'E"B:‘ l' - e (3.7)

‘/“a 4’&(‘:4{) @v),

In the above relation the estimate (2.10) is used and the fact

that the distance between the side-band resonances is two times
longer than in the case considered in section 2 is taken into
account. Let us compare the estimate (3.7) with numerical data
(Fig.3). To do this, just as in section 2, we shall consider
the condition of overlapping the main resonances in the range
of X, =J displacements ( &= 6.25). From the expression
for the frequency shift (i“U., (the case of a band beam) one can
find numerically: (AV/,::’??.}-O.SE . The value of /2 is found
from the resonance condition (2.7) as usual, For the values of
J. end #o taken from Fig.3, the ratio of ¢/, (derived
according to (3.7)) gives: -ﬂc/’.z 0.75 +-2.7. The results ob-
tained indicates that the criterion (3.7) gives =n overestimated
value for J?c . This is quite possible since the dependence
(3.6) does not correspond to (3.3), especially at not too small
values of A, . In other words, the estimate (3.7) does not
take into account 'complately all side-band resonances., Neverthe-
less, the relation (3.7) yields in order of magnitude a correct

value for -4,: &

i




A similar modulation occurs when the beams intersect at an
angle in the interaction point. This situation always takes
place if the beams in the interaction have the same sign as well
as it is the case for the beams with opposite signs if they store
in different rings. Experimental results obtained at DORIS and
DCT facilities show that such a modulation is most likely to
contribute considerably to decreasing F.  (see, e.g./15,16/).
The effects which arise upon the modulation of F because of
the angular intersection of the beams are numerically and ana-

1ytically studied in /9/.
4. A joint effect of various modulations

0f interest is to consider the result of a simultaneous
effect of a few modulations, since it is the situation that
occurs in a real experiment. The results of the numerical simul-
ation with two modulations (2.5) and (3.3) are presented in
Pig.4 {curve 1). It is seen that on the initial section (8=
0.603) the quantity X is mainly dete:jni_ned by the godula-
tion of a parameter F (3.3). Indeed, for the chosen value
of the amplitude of this modulation (A = 0.1) the value of F
is equal to 0.17, a8 follows from Fig.3. At &2 0.01 curve 1
coincides with curve 4 obtained at As = 0. This indicates
thet both these ¥xinds of modulation act separately in the sense
that F. 18 determined by a stronger modulation. A certain
joint effect presents only within a emall .’x.ntomodiafa range of
values, 0.003<8 £ 0.01. Apprc!ximtgly the same occurs for
Boﬁewhat larger value of J'._ s .4,= 0.25 (cf. curves 3 and 4).

The result obtained may be qu.alitatif.ely explained, start-
ing from the anal‘.ysia in sections 2 and 3. A8 has been seen,
both modulations are gimilar, and the main mechenism is the

- o4 —

overlap of additional resonances caused by the phase modulation.
The resonance structure in this case is nearly the same, and a

simple addition of the amplitudes of resonance harmonics takes
place,

Por the purpose of a quantitative anaiysis by means of the
analytical estimates derived in sections 2 and 3 we make use of
the relation between % - and 8 (3.7)s For Xm=% from

(1.14) we have (AV-’z—‘ﬂ?-f'd-?z . Therefore, for #e = 0.1 and

F = 0.17 (curve 1) we obtein 8= 0.004 and for A = 0.25
(curve 3) the value of &  equals 0,006, It is seen that the
found values of 8 are in good agreement with the intermedi-
ate region wherein both modulations gives- a coinparable effect.

Pig.4 (curve 2) also presents the result of the joint ef-
fect of the displacement modulation X (1.7) and the betatron
phase modulation (2.5). As follows from the figure, the sum of
these modulations leads to a significant decrease of Tc as
compared to the case of one modulation (2.5).

As an example, let us consider a po'int corresponding to
8 = 0.01. A modulation of the type (1.7), according to the

data of /1/, decreases ¥ et B8 =0,4 =0.46 fromF =

0.2 to ¥. = 0.1, i.e. by a factor of 2. The modulation (2.5)
at 8 = 0,005 decreases fc from 0.28 to 0.19, i.e. approximate-

1y by a factor of 1.5; while the joint effect of these modula-

tions lowers F, to the level of § = 0.05, i.e. approximate-
1y by a factor of 6. When changing the quantity & this rela-
tion changes as well. Hence, in comparison with the case con-
sidered above, both these‘ types of modulation decreases the
stochasticity threshold independently. This effect becomes clear
if one reminds the difference in the resonance structure of a
perturbation {(see sectiens 1-and 2). -As -has been shown, the -



phase modulation leads to the appearance of side-band resonanc-
es near each resonance with number 2 (see (2.7)). However, with
the presence of the modulation of X each of these additional
resonances splits in turn according to (1.9-1.10). Of course,
this strongly facilitates the overlap of all additional reso-

nances.
5. Concluding remarks

As the experiments carried out at the VEPP-2M facility
show, even such a simple one-dimensional model in which the
motion along the one transverse coordinate is cousidered without
the connection with the other, is in agreement with the experi-
mental data if determining is the motion along the coordinate
on which the beam's phase volume is larger. By the determining
direction we understood such a direction in which the stochas-
ticlty threshold is achieved somewhat earlier (“Eiior }
where ‘X and 2 are the radial and vertical coordinates).The
1ifetime of the beam in this case is due to migration of the
particles up to large amplitudes just in this direction. Special
measurements show that at the storage ring VEPP-2M the radial
direction is turned out the determining ome. Apparently,'it is
associated with the presence of a large dispersion function Y
which causes the modulation of motion over X and thereby leads
to a significant decrease of the critical value of };;-. In the
conventional operation regime of VEPP-2M the P, -function at the
interaction point is large enough ( Ax=40 cm). In view of this,
the modulation considered in section 3 proves to be insignific-
ant as compared to that caused by the presence of the ¥, -fune-
tion (see sectipn 1). Similarly, the influence of a betqtron
phase (section 2) whose amplitude is inversely proportional to

ool % T

th -
e A -function at the interaction point (see (2.2)) may be
also regarded as a weak one,

It should mention that, nevertheless, below the stochastic-
ity limit the beam size can increase in another direction (alon
Z ). This means that a decrease in luminosity and in 1ifetimeg
is determined, generally épéaking, by different effects.

In the case when the vertical motion is determining (e

ofn
the vertical frequency shift 4V,

3 or £, J, the one-dimen-
onal approximation, as experimental data show, appears to be

insignificant. To study the influence of modulations in this
case, both the two-dimensionalness of the beam and the couplin
of transverse oscillations must be taken into account. )
Also, note that the amplitude of'the modulations considered
in sections 2 and 3 increases as the beam energy is increased,

e
8 quite possible that just this fact accounts for the absen-

c
e of that F. does not increase at energies higner than 2 GeV

/18/, that has been observed at SPEAR,

Finally, the author wishes to thank A,N.Skrinsky and
G.M.
Tumaikin for fruitful discussions. The author is also grate
ful to L.F.Khailo for her assistance in computation.
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Fig.2. The critical value fc dependence on A4M (2.4)
due to an inaccurate adjustment of the ring elements

over the azimuth.
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Pig.3. The critical valte ¥_ dependence on the amplitude
As of the modulation ¥ at the interaction
point (3.3).
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Pig.4. The joint effect of various modulations on F, .
- Fig.1. The critical value fc dependence on the (2.5)
The curve 1 is the modulations (2.5) and (3.3) for
betatron phase modulation amplitude. The curve 1
A, = 0.1 (see section 4), the curve 3 is the same
represents the band beam (1.3); the curve 2 does
for A, = 0.25; curve 4 is taken from Fig.1 (curve 1)
_ 8o the round beam (1.2).
for comparison with curves 1 and 3 (J/; = 0). The curve )

2 represents the joint effect of modulations (1.7) and
(2.5) at .ﬂs - 0.4.".
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