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1e Introduction

The inverse spectral transform (IST) method, which has
been intensively developed in recent years, allows a study of
& large number of various partial differential equations (see
esgs /1,2/)s One of the bagic problems of the IST method is to
describe a class of differentisl equations to which this me-
thod ie applicable. Another important problem ig the reduction
problem. A simple and convenient description of the equations
integrable by the second-order linear spectral problem was pre-
sented in /3/. The method suggested in /3/ (the AKNS method)
has been generalized to the matrix spectral problem of arbit-
rary order /4-9/ end to & number of other spectral problems
/10-13/. The reduction problem has been comprehensively studi-
ed in recent time /14-17/.

In the present paper we are going to consider both these
problems (the problem of description of integrable equationg
and the reduction problem) for an arbitrary-order linear mat-

—EZ —;7- :/AA-F P/.Jt.'_J é))}” (1.1)

where A is an arbitrary regular matrix (iseee 8ll its eigen-
Talues are different), ﬁj-{,éfis the N x N matrix, such that '
/ Pﬁg t)= A , where /%: is an arbitrary constant mat-

j% =g oo
rix .

We shall construct an infinite Abelian group of trensfor-
mations A0-» p’cannected with the bundle (1.1) and show that
f the genersl form of equations integrable with the help of (1.1)
ig es followe: !

LSS DT P

had =0

1% is noteworth that in Refs, /3-13/ it is assumed that

ﬁi,= O« Generalization to the case fzﬁ # 0 ig a non-trivial
one, \




where —Qn {f{, ) are erbitrary functions which are mepomor-
: A i i d

phic with respect to H 7:.,,,., =f;} ,M,,,(AA + Poo A’

(7:,,?;)5(4 stands for the projection of the matrix [frm Gnio the

zero component of the Fitting decomposition (see below);LAcP—_-

=-Z+ qawhere [A, Ca]f'__..ffcp and the .IOperitnr ii- is
8% 00 : A
Z = ‘9_1_ -'I"[P{.H)J -]F(A} + ¢ [P{#)iﬂ‘[dg [plrwj ]ﬂi"}]-

We shall show that all equations of the form (1.2) are

Hemiltonian ones with respect to the infinite family of Hamil-
tonian structures. The explicit form of Poisson brackets, symp-
lectic forms and Hamiltoniens is given. Equations (1.2) are
Lagrangian ones as well. We are going to examine the transfor-
mation properties of equations €1.2), in particular, to descri-
be their groups of symmetry.

The reduction problem will be analysed. The specific fea-
ture of this problem within the frame of the AKNS method lies
in a possibility of enumerating the functions __QH{/L i) for
which equations (1.2) permits a definite reduction. As the
examples, we shall consider the Z" and A reductions, the
,Drz ~ / reduction and the others. The general form of equa-
tions for these reductions is found and their Hemiltonian,g:a—
racter is proved. It is shown, in particular, that under Z”
reduction the problem (1.1) is equivalent to the Gelfand-Dikij
spectral problem: ZH‘ V {x) {_"'_a.)x} - ANJK .

— ?X

The paper is organized as follows. The group of transforma-
tions connected with the bundle (1.1) is constructed in secti-
on 2« The general form of integrable equations is found in sec-
tion 3. The Hamiltonian and Lagrengien siructures of intfegrable
equations are considered in section 4. The classic /7 - matrix
is caleculated in this section as well. The transformation pro-
perties of integrable equations are briefly discussed in the
next, fifth section. Section 6 ig devoted to the reduction pro-
blem within the framework of the AKNS method. The reductions

ZN and Zﬁ and the other linear reductions are considered in
the seventh, eighth and ninth sections.

g

II. Construction of the transformation group
connected with the bundle (1.1)

In an analysis of the transformations connected with the
bundle (1.1) the so-called Fitting decomposition of the matrix
algebra f/f&’q}with respect to A plays s significant role. It
is the ecompogition into the direct sum: f//ﬁ C) =
; {?w 9 y;(,q‘; where Cf/pca) is the “subalgebra of the

a
andI;;E( commuting with A [ aw=1g€ gtinc), (9, A]=0})
4) 18 a direct sum”of non-zero root subspaces (see,
eeZe /18,19/). Recall some properties of the Fltting decomposi-
tion /18,19/: the subapace 59{4} is the Lie subalgebra
ﬂ’u,ﬁam 'y yﬂﬂj ), the commutator of eny element from
ia(,q) with any element frnmgg(,‘, belongs to SFwmy ¢
[94(4‘, ?;{M]C 3;-@ « If A is a regular element of i/ﬂd
(i.es all the eigenvalues of the matrix A are different{ 'l:h;
subalgebra fﬂ(ﬂ 1s Abelien, is of dimension N and is the Car-
tan subalgebra. For an arbitrary matrix of order N we have

unique decompogition 3-‘-‘30@ + ﬁF'GlJ s wheraﬁ#{g is the
projection of untnfpm; . and & gryis the projection of
onto fﬁ'(du » These properties of the Fitting decomposition
are widely used in all further congtructionsa.

For the potential matrix we have the following decompogi-
tions /D/-I; f/-‘-’ F:?{A) /X,f)‘f' &(44,‘#. A role of the variab-
les pﬂﬂﬂ (%,2)ena Pra)Xt/in the dynemical systems connected
with (1.1) 18 very different. As is known (see, for example,
/20/), the linear spectral problems possess a gauge freedom,
that allows various gauge conditions to be imposed on P(X Z) .
In our case, the problem (1.1) is invariant under the trm:sfor-

e VIOLE NSVt N-Gheie), P(y,2)—
PIAY=Clt) Plt)e i t)~i 2t o4y

where c&;tj: ggﬂq ﬁl)t). In terms of pn@ and &'{A} ’

respectively,

o 59> Rt~ Gt) R b 6 ()~ 208G ey




B~ Bt~ C 9P 1) .

Ag is easy to see, sn appropriate choice of G/.X}'l{} always
allows to have ﬂwﬂ' [ A Hence_ /DE@; ie of purely geuge
neture, l.e. there is such a matrix that PG(AJ ==
wy & . Dynsmicel variebles are the varisbles /2 . (¥&/
o~ only. In view of this, it is natural to consider
the gauge Pﬂ(A):o' Ite meaning is to exclude purely gauge de-
greeg of freedom from Pﬁ;;‘J. ‘This gauge is all the more na-
tural since onlarPF(A) ig reconstructed from the equations of
the IST method (for the diagonel mairix A gee, 8e¢Ze f2/)«

Now, we proceed to reduce the tremsformations in which we
are interested. Let us first give some information concerning
the direct scattering problem for the bundle (1e1).

e i
We shall assume that the matrix A =;\A"'E. ise rgg'ular, iees
all the eigenvalues A} /£'= d,..., /] of the matrix A eve
different. Let us intraduae.i_ in s standard menner, the funde-
mental matrixz solutions A 'end / , which are given by their
aaymptoticmth £ F;;_-_—_F“E whareHE is & fundamental
matrix-golution of the system 3? =¢AE .« As is well known
(see, e.ge /21/), this system has the infinite set of fundamen-
tal solutions. The latter are distinguished by the right multi-
plication on en arbitrary conatant non-degenerated matrix. We
shall consider the solution of this system, i.e. the asymptotic

of the problem (1.1), of the following fs_m: _
._ iz
Ef*“:“‘):'g()‘)e‘ (2.1)

where Af.k =JV;, 5:“ and 3 is the matrix diagonalising the
o~ e - ; !
matriz 4 (Q AD=A) *
The mattaﬂng'matﬂx is also determined in a standard

way? Fﬂg&:;ﬁg&ﬁy}m scattering data - the main

spectral characteristic ‘of the problem (1.1) - is constructed

* Another asymptotic of the problem (11), Ed= e.fP&Ax"
is connected with the asymptotic (2.1) as followss: fd '=an- .

from the elements of the matrix .5' « In the compact form the -
scattering data can be represented as the matrices:

d re B
Ré{SF{;] (Soa;) {ﬂf R f——e-{ (&Sla.{i]) j SF(JIJ'

Note that the matrices of scattering data have the same number
of independent elements as P(—“,'ﬁ)[in the gauge Pﬂ{d} =0).
Traneition from one choice of the agymptotics of the problem
(121) %0 the other (£, £, = EK) leads only to a trivial

redefinition of the scattering matrix ':S.f"" S"'-"K-‘asf{ K)e
Let u?w:a.‘:e numm :wc- ug:‘.:i'f:xf lzpenéizala ﬂﬁ, ¢)ana P x,t)
B8 = o
responding solutinn: Vl;ifx{{%}(;id”é%;i’:j of ;LE-E:D;:::W‘*
(141). It i8 easy te JuaEfy that the following relation holds:

Vit iy [y ey
i 4

Putting P =£F 7
obtain:

(2e2)

in (2.2) and going to the limit X—* = oo » We

s - S=-(.5 jd.r (F?‘iﬁaf_;p}(,r*/)'

, (2.3)

P Formula (2.3), which relates g change of the potential
/Jt', 2‘/ to a change of the scattering matrix ,.S" (/], 7-') s DPlays
a8 fundamental role in our further constructions.

K (fhfamgping /D/XJ 1‘/’_—"" ,_SI{J_,I/‘), which is given by the bun-
a 1), determines a corresponden

tiong o —» P f on the set ofﬂzotint:;:ar P?;.nﬁth‘}‘:;ﬁ?i?:;;
and the transformations ,S’ - ,j' 'nn the get of ngc:.:na “}
S [AJ t) ~ » This follows from an obvious diagram

/D(?-':t’J
Tl T
pit {20y ¢’ ;




Let ué conglder now the tremsformstiona T such that

ST S (A t)= B S C,#) e

where B (A4 ¢/ ena C (A, ) are arbitrary diagonal matrices,
i.e. arbitrery matrices satisfying the condivions 8= 8 o¢a)
and [f = L o¢A) (recall that A is a regular disgonal matrix)e
Under transformations (2.4), for the matrices of scattering da-
ta, we have

R4 E)— R'(At)= BARA)B(,¢E
A Y s WV W

Thus, we confine ourgelves to the transformations P-wp,
for which the scattering matrix 5 end the matrices of scatte-
ring data are transformed in & simple linear way (gee (2.4) and
(2+5))e Transformations lews (2.4) and (2.5) are & generaliza-.
tion of the bazic ides of the IST method. Its essence im to mep
the nonlinear evolution law of the potential, according %o the
nonlinsar differentisl equation, into the linear (and readily
integrable) evolution law of scattering date (mee, eege [1:2/)e

The main achievement of the generailzed AKNS-method con-
gigts in congtructing, in en explioit form, the transformations
of the pntantial P> P , which correspond to the transforma-

tiong 'S—r ‘of the form (2.4)e

. Tet us rewrite the relation (2.4) in the form Ky
_ﬁr 3}’5’ S{’-’f C) From comparison of it with (2.3) we find

(B Hr-8)8 ™ l d(ETP-PUFY ), o e

*  1If we choose Ly= EXD 1 AJ‘ » as the agymptotic of the pro-
blem (1.1), then the matrices /4 and ( in the trensformati-
ong law (2.4) should satisfy the canﬂitians B=8 G(A) end

C=Coca) »

where C;D :
: Fla) ~ ‘;D *CPP(E)? (%(EJ)EK % q?::.' 5:-'#.' .
(¢ k=4, N
Note that the :rollow:l.ng equality

(05, 1y fdx 2 llFT BN ), =
- o I -2l 8)-(8) - B)() ],

F(a)
-4

holds, where 8 = 28D s ‘Boualising the right-hand sides
of the equalities (2.6) and (2.7), we obtain
[ -]

"Idx {{F*)"/E(p “p.)- (P -e_)g;)(F*)'fmfﬁ. W
Writting (2.8) by components and introducing the notation .
++ ;
(@Myﬂ i [F ?’f-"’ (Fj‘:nu have

dxtz{(ﬂﬂ f){P/x t)-P.)- (Axt)- .,)E(J’UJQJ?:I{-AJ} .9)
| (c¢n)

where h stands for the matrix trace.

Lef us represent now the matrix 3( 'J; f/ in the farm*.

Nt - — Il
5(4’; t)=>_ 8,(At)A (2.10)
n=o
whnre B,-. (A f) /ﬂ ) ”'ﬂéra the numerical functions, and

A" = the i&mtiual H x N matrix. Since all the elements of
the diagonal matrix A are different, any diagonal matrix may
be represented in the form 'LE-;H}} (see, eeg. /22/, chapter VIID:

Correspondingly, for B8 ’

Hote that in Refs. /T-9/ we have used another representation
for arbitrary dlagonal matrices.

9




3(,] z) = .8 (A, f)/ﬂl (2.11)

Using (2.11) and teking into account the squalities

zl(/f CP) L'Z //ﬂfn} qba{.u)}'l' iz //FfAj FfA} p{ }]
and qjafn} (W) ==t 5‘7{? (’o'&ﬂ c;E}F.ﬁﬂd (y) = Fd’*‘)(;d /)
(Eea appandix}, one can rewrlte the equality (2.9) as folluws

de tZ{ Z Z( (}07.!}.— “)-—{'P{x)-p ) hro ﬂfﬂ;

_amo

/\ 8, (A, *)fdj(P@}ﬁraj F(a) (3))9[.?))&{”

(2.12)

Formula (2.12) contains the product /\ q?F‘ {J} given in
a local way at each point /l of the bundle (1. 1) The bundle
(1.1) allows to transform this A= dopal product into the
global one. Indeed, as is shown in Appendix, the relation

-AA CR::-.) (/\) = A qDF?A) O\) (2013)

holds where

AP+iZE{ PB Pl - Pl PB)cy*
+/ Py J [(oo- ®r Doty = ¢ g(’o‘p P o P

10

122 (Tom (P11-P ) = (P19 Pa) Tom] KB 04%550-0

4 (g, A, PEAP),.
. Hence, fa; eny entire function Sn (-'L f).
B, (A¢) Cpp(i) A= B, (A,.t) q?':il (), (2.15)

By virtue of (2.15), %he relation (2+12) is equivalent to the
fullawing ones ; '

drtzfaz_}__( o (PO £)-(PO)-R)T:,n) -

‘3'-'

fdy{ P(g)m,q) Mmf)cgfn} Mn)hﬂ (A‘“’{) ﬂi’zp{ﬁ;) o
HN! # {
22 (o (P18-22) = (06)-PL 7). (T 0L

ve Tinelly, equality (2:16) may be written out as follows:

1d!i?§@m]{!){t228 A, HN) {ﬂm (F-£.)
P (2:17)

-{p- Pa.)ﬂm]« ) PE)- 219 F (T, (P*R) - (P-R.) Im}awf

]

+ZE 3( +)(A .Jm{ Hm(p P) (P P") ”m)F“J}F(AJ]

H=*0 M=y

. + o def i +
where A q) (A (p A Cpn.nd the operator A is an
operator adjoint to the operator /| with respect to the pili-

near form (Y D3 = ng 2 (Y () Py 1)
AP-22 (puppy- P Pl) ey ..
L J(PP=PD), LW ~i Pl I[P PD,

 where (yf)/x)ii jafyftyJ

Formula {(2.17) is a relation between P P and /'_ Fun-—
der trensformations of the form (2e4). !qualit,? (2¢17) 1!! sa-

11
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k

iﬂfied if

i 8 :
= ; n(Amf)m:) {EM{P -pﬂ)-(P"pﬂ) 7:""');:(,4)

T, (P RIPARSRL) T ke
: ; (2.13)
44 p y/y;m/PLe,) _(F-Pn-) nm)p(g)}zg‘

1

. Thus, we have found the form of transformations of the
potential P/Jf,f) y which correspond to the transformations of
the scattering matrixz of the form (2.4): these transformations
are given by the relation (2.79) where 'B,,, ('.J,, %¢) is arbitrary
entire functions.

The reason, for which we have confined ourgelves to the
transformations of the scattering matrix of the form (2.4), is
clear now: for transformations of this type we can find, in an
explicit form (i.e. in the form containing only P and Pr),
the corresponding transformations of the potentiale. It is re-
markeble that these "restricted" transformations (2.4) and
(2+19) are quite wide and, as we shall see, contain all trans-
.formations typical for equatione integrable by means of tha
problem (1.1) and these integrable equations themselves.

Transformations of the type (2.19) (in the case N = 2 and
P_, = 0) have been considered by Calogero end Degaaperis /23/
for the first time. Just these authors have turned attemntion
to their significance. i

At P,, = O the transformations (2.19) coincide, with an
sccuracy to the redefinition of the functlons Bn, with the
transformations constructed in Refs. /7-9/.

IITI. The general form of integrable equationes;
integrals of motion

Transformations (2.19) form, ae is easy to see from (2.4),
an infinite-dimensional Abelian group. This group contalns the
trsnafumatiana_af various tj’paaf Let us exsmine the one-pars-

12

me!_:er subgroup of this ggpup. which is given by the matrix

B, =g d 2 lh3)

(3.1)

where _QH (j;f) are some entire functions and ¢ = B. There is
no difficulty in justifyin
A ’S':::’/) -g-)}:— i’(tjm; Jthese transformations are time
=H S = P ) » The corresponding transfor-
mations (2.19) El‘ﬂ;, in the explicit f?m, the time evolution
of the potential :p/-f_, f)""‘-‘-'" P#;f} « Different evolutions
laws correspond to different functions -Qn {/‘J t). An identi-
cal transformation is given by the functions Bn —— I 81=

= Bﬂ-f =0 . !Irat us examine the infinitesimal displace-
ment in times £—» £ =7+ £ where E—20. In this case,

Plat) = Plyt)+ £ 28

B, (4.2)=0,. SR e (3.2)

Substituting (3.2) into (2.19) and keeping the terms of
first order in & s+ We obtain

0Pt et B + + 1M
__#)'*ﬁZZ—Qhamf)(LA) {[THMJ P=p 1=

As0 m=p h Hgﬂ3l3}

+£[PJ 'y[-ﬁ"": PJ A =0
bl o2, L+ g;.’_JA.p ( P"—'P), s O(A) }}

[”--%%— + [P{JE)J ':{F(AJ + .'.'[p(x); y[PJ -]am]:{:a.#)

Correspondingly, for the scattering matrix from (2+4) we have

d&f}) - oL iy )
d_fézt "Z‘i-ﬂh(’\.ri)A; S ()ﬂ_,‘f)] (3.5)

If one uses the equality ;
Z (L) [Tom, P~ [P, I[Tom, P,
" (La)” [ (") oty » P]
.




equatione (2.3) may be readily written out in a more convenient
form:

N-1 3+ \m
ggﬁ)+£‘g#'zpﬂn(L: 3 t) {L*) J: (Tm""')pl“}] P}=@3-53

Thus, we have obtained the evolution differential equati-
onsg as the infinitesimel form of transformations (2:19).

An insgignificant modification of the constructions menti-
oned above makes 1% possible to show that the more general
class of equations, namely, the equationg of the form (3.6)
with arbitrary functions _D.,.. (}i, f), meromorphic over ﬂ . -
connected with the bundle (1.1)}e

A broader class of equations may be represented in the

form (3.6), if P and n depend on several varliables of time
t:,r’ga. These are the equations

Z Gty ty) Potineate)
{=

9t ;
o S + . - .
G Z bt ) G) (O, PIS”

* where f,‘ (AJi‘.'I"‘J if‘) (l'=f,...,P) and —(2 n (AJ ‘2‘1;“': tﬂ)

(n=4,.., N-1) are arbitrary functions. For the case N = 2,
Poo = O see Ref. /23/. :

Evolution partisl differential equations (3.6) are just
the equations integrable by the IST method with the help of the
bundle (1.1)e Using the IST equations (Gelfand-Levitan-Marchen-
ko equatione), onme can find, in principle, a broad clase of
exact solutions of equations of the form (3.6) (multi-soliton
solutions) (see Refse /1,2/)- '

Choosing concrete ftmntinnuﬂh {/\,f‘) s there ig no dif-
ficul$y in obtaining a number of concrete examples of equations
(3+6)s At p... ® 0 we return to the equations considered in Refs.
/4,5,7=9/ (with en aceuracy of the redefinition of the functi-
ons ﬂh Jo In a particular case when_D,z = ﬂa '-‘...ﬂﬂ_fl'?n
equations (3.6) is equivalent to the following one:

e —

R af A

i .;i.-'_:,,".-".i‘;'."iﬂ-_ .' R

9P{x,ﬂ
H ‘Qi (l:.té) %E’ =l

At N = 2 formula (3.8) gives the general form of equations in-
_tegrable by means of (1+1)s Moreover, if (e,)z., =(Pm)ﬂ(and

N = 2), we obtain the equations considered in the paper /24/ by
ancther method. .

Let us now turn our sttention to the fact that at any
functions _Q,,,fﬁ_,'f)' the quantity Sﬂ (A) » by virtue of (3.5),
i1s time independent:

(3.9)

Lif WRe o(a) =0
dt

Thus the diagonsl elementsg of the scattering matrix, at
any » are the integrals of motion. Just a8 in the cage
Po = 0 (see /2,9/), one can extract a counting set of explicit
and local integrals of motion from this continual set of inex-

plicit integrals of motion. Indeed, expanding & S: OU in
agymptotic geries of X $ J

Yn S (A =f A" C{FJ Gii,---, ﬂ) (3410)

Mef -

we obtain the counting eet of integrals of motion: C :'H,

(1 = {gsenyl; now 1,29.3. 0., These integrals of motion are of
the form:

C;HJ:_,J:JX (}:"J(xlé) —-}EH}(uﬂJfJJ (At

in) .
where the quantities },‘ (J!,f) are calculated from the atan-
« dard recurrence relationg similar to those which occur in the
case P__ = 0 /9/.

An important property of the integrals of motion is their
universality: they are the integrals of motion for any equati-
ons of the form (3.6). Really, in their construction we have
taken advantage of the time independence of 0 (A) and the
form of the bundle (1.1) rather than the form of the functions

15




_.D_,., “,'U. The universal cnarasteir of the integrals of moti-
on C""” indicates that their existence is not associated with
a cuncLﬂte gtructure of equationsg (3.6), but only with the fact
that these equations are of *he form (3.6).

IVs Hamiltonian and Lagrengiea structures of integrable
equations; the clasalec & « matrix

Let us congider %the equation of the form (3.6) with ;

D, (8= 3 v, (9)7 (4

g
where 61.?,,,,..,, {f) are ar‘nitrary functiong. In Appendix 1t is
ahown that the fullawing ralutlcm

(Z: ZA ”m] =~ Z )I‘H[(Thm)m“ H}jm 2)

<o
holdas where

() et — [ 5 (Cpé?% f}‘))'t
( a,f,m)x,,i"’fl(fﬂ-&)a g

Expanding the equality (4.2) in agymptotic peries of A—i s W8
obtain

[A ”mi “"2 (L [U-“*’)O(AJ p] (443)

e

and 3
15 (m [ : :

LA [A, ”th = [A : :1111 ] (H‘l = h-&.-_l’_‘ﬂ-izj__)(ih%)

were  [1%) fy,#,)) = S A" 10 (w.4) Y

Using (4.3) and (4.4), equation (3.4) with functions
of the form (4.1) may be rewritten as follows:

C.L1hy ( EF 2 Wy, cf)ﬂn)?& )e-f[d Mov, ] 5

'D{' i £=0

e

B
.k
byl
-

However, by virtue of (4.4},

SR 0 e v R

Since
” & 4 1 -anh é¢
n+{+f-t (h*""f't}'! ,a(xrjhﬂd'q

M k,10)

A= oo
equation {4;’5} (and hence (3.6)) is equivalent to the following
ona: ey i

Hul-
a iz 5w, (4= Ak
= = -0 | [(4:6)
'Df ( ) "z FZ:: he (h-uﬂ!' f)"% 9!-1” ' 4 t
A_

where g iz arbitrary integer.
Let ua uaa now the relatiun (2+3)e It follows from it that

Ssm i rd"z 5Fe %, {)(CP (J" f'\))é‘g (: n=d,...N)
~oe K &+
'h“ag’s’ and Ep are '-’-I'hitrﬂrl" variations consistent with

(1.1}. Hence
nm)

(CP' (’*"))fx EPHIH) 'S‘hm () t) (4e7)

(£,€ m, n=1,. S N)

where — 18 a variatlonael derivetive. For the quantit:;

r (2,4,7) we have
5 BTxt) iz(A en Sam) {’l)) (4.8)

" (1)) = ¢ 2=
where P atanda for the transposed matrix P

By virtue of (4.8), equa.tian (4.6) may be representsd as
follows:

y A
2RLL).: 2 ps LA {%; s

17




where E:I o . 4 ahfj+(-€ Z g
= ,, [t - 24 S s,
JF-? OZH%‘ ;a neé ({")H*f*('f);ra?l-)hihp‘i M 'g( 4..10)

A=oo,

It is easy to see that equation (4.9) may be written out
in the Hamiltonlan form:

?Pf**)z { P (5,2, }efi /s

2

with respect to the infinite set of Hamiltonians }f"f (4.9)
and the Poisson brackets:

{J .71’};12 _%—Ydyiz(%{w([:)f[ﬁ, %)if]) (4011)

where f is an arbitrary integer. The fact that the braclket
(4.11) is really the Poisson brackets (skew-symmetry, Jacoby
identity) is justified by direct calculation.

Thus we have shown that equations (3.6) are Hamiltonian

ones with respect to the infinite set of Hamiltonian atructures.
The existence of the infinite set of Poisason brackets of the
type (4.11) was pointed out in Ref. /25/ for the first time.
' The hierarchy of Hamiltonian structures for equations of the
type (3.6) with ¥ = 2, P, = 0 was anelysed in Ref. /26/. The
general theory of the structures of such a type wae discussed
in Refa. /27,28/.

The set of closed symplectic 2 - forms corregponding to
the brackets (4.11) looks as follows:

WTLEP) <3 dsta (5 A, (9LL)5P-5.00(2)% £) o

where € i.‘l.ﬂﬂem arbitrary integer. For the case N = 2, Py = O
and A =04 see Ref. /26/. A group-theoretical interpreta-
tion of the structures of the type (4.12) isg given in /28/.

Note that the Poisson brackets(4.11) and the forms (d.12)
are the same for all equations of the (3.6). Therefore, the

i8

L
=

phase gpace of the dynamical systems, which are described by
equations (3.6), has en universal symplectic structure in the
genernsl position.
40 0 ¢
At N = 2, A ={g-4/ and P ={ rp the simplest Poisson
bra.cket{ ]ﬂ coincides with the well known bracket /1, 2/
] :

R ML e ¥ Sy A 1,
{Jﬁ ,R}u_£d5(§?fg,fl 59(4t) 3y Stlyt) /- 41

For the case N = 2 and P__ = O ;

the Hamiltonien structure of equations of
the form (3.6) wes considered in Ref. /29/ in considersble de-
t‘-aila-

It is noteworth that, by virtue of (3.10), the Hamiltoni-
ans (4+10) are supzrpositions of the integrals of motion iﬂj
and, therefore, they are local and explicit functionals of the
potential P/X; t/. One can also show that all integrals of
motion O} (V= 4,.., N, <42, )ere 1n ixvolution, i.e. that
{C‘:‘“: C(:’h = 0 for all ¢, K,/ hand § .

Let ues touch upon the Lagrangisn structure of equations
(3.6)e Since these equations are Hamiltonian and the Poisson
braclcat{ : }p is canonical (the quantities /Df-{,'f) anﬁ,?{Pr/’J,{))A

form a pair of canonically conjugated dynamical

~verigbles), there is no difficulty in constructing the Legren-

gianf over Hamiltonian}f ¢ 1t is quite enough to use the
usual Legendre transformation (see, e.ge« /30/). Hence, for

equations of the form (3.6) the Lagrmgian.,l: is equal to
i

x“'*EZZ(P%&'}f' (414)

+ oo

~ : ot
where jrf is the Hamiltonian density(}fE fdlﬂ{.!ﬂ Indeed,
e =

the Euler equation . sk
oL __ 2 L5 (PA)T_ 2% _,
5P =47t Z P
ie equivalent, as is easy to see, to equation (4.9) with
q = 0.
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The general theorem on the Lagrangian nature of equations
integrable by the rational bundle (in enother gauge), was pro-
ved in Ref. /31/.

In conclusion of this section, we ave going to calculate
the Poisson bracket between the elements of the scatfering ma-
trix. The knowledge of these Poisson brackets is necessary to
congtruct varisblea of the action-angle type.

So, let us congider the Polsson bracket
{‘S"’!k:t f)lg) .f,,ga (A, ’} « By virtue of (4.11) and (4.7), we have

{frfxi( il ok }h_gdxiz(‘pu ‘B A IA q%x‘;a }54.15}
Using the equality )‘ [A CP ]__f_"_ P ]?req

(4.15), we find

DA Sielhd 5;,00) f-t = lirm L4, (Pl P

Since ( CP{H :da))nmd{‘! (F [’U)h n{‘Fg"‘.!) m? e thﬂjL:“E
(Ai J-Aa){ "'t.i Ky "‘)J S’::.r:(- ’)}p g X=tz

!
- ._[/F(x V) F /‘:)) ({F/M;)) F1 .-.-.))

(417)
2300 €

X=+2
(416)

*RE

_ Taking into account the asaymptotic properties nf/-_ and
; , We have

[, 00, S 09)f, =
=5 {A,,),g‘ n(A) o i, ’\!;As) (4.18)
= Gty rom (A k) Sy (M) S, ()
| rm"«m()h) )"
L lm L (E2, AJE (2)) . (fzwff 2"

E-B

where

(4.19)
A-hz

20

The matrix f:;;',ﬂm“‘:"it) is none other than the clas-
sic 77 - matrix (see, ee.ge /32,33/)s The method, by which we
have derived (4.18), is close to that used in Refs. /34,35/.

Taking into account (2:1), the /~ = matrix may be rewrit-
ten as followa:

ety ()= 2 (D700 D) e, (B0) DY), -

Libvy EXP ( (~Mans * Mosy = Man + [Ms £4)Z = (4420)
ey ( Ai "'}‘J.} ‘

(f?’“‘ ﬂ; KI, 't:.! =d-') -.J/V)

fo find the explicit form of the /©~ = matrix, it is ne-
cesgary to know the matrix 2')(,&) and the eigenvalues of the

matrix A 4 + £

For the sake of simplicity, we shall consider the cese of
the dimgonal matrix A (A ik = aa-u: Q,* G,
and all C; are real) and P,y = O. Taking ini:c- account the

known equality V. D, L €2XP1G T E{_f”‘?ﬁ[ﬂwe ob-

tain F-P o }-

Pm”ggi (1‘1’1)= f"',,.,,,,,.gl (‘at'/\l)=

gmr gnxi( L2 (m «Sgﬂ(an'an E(l;—l)}

AL = Ax (4.21)

: 4’ %
where Sh(}) {‘ g 3 end $¢ m(o)= O . Note that

{Sii 41(}‘1) Sl‘.lz {‘ll‘]} 0 (I'i i "11: 'H} 1t fDllﬂWE immedi-
ately from this that the intagraﬂ.a of_pntiﬁn C are in invo-
lution. Indeed, by virtue ﬂ? (3+10), 2. Z ()L,_J_ (A.,:} {Cw

12 l
= Q. Hence, {c::} ; ci}""] =0 , Mm=4 nad
a
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The Poisson brackets ‘( -S‘.r', & [/11])5:2 £y {ALJ} for any g
will be calculated elséewhere. 1

V. Traensformation properties of integrable
equations

The group-theoretical properties of equations of the form
(3.6) are completely analogous to the corresponding ones of
integrable equations with P = 0 /36,37/. In view of this, we
ghall dwell upon them very briefly.

The infinite-dimensional group transformations (2.19) con-
tains the infinite-dimensional Abelian group of symmetry of
equations (3.6) as a subgroup. In the infinitesimal form the
symmetry transformations are the following ( P—> p= p*gp}:

Nd y
ot eed SollaJU0 ) I omy, P G50

n=d M=

where :f,,, {J) are arbitrary entire functions.

It should be mentioned that the group of symmetry (5.1) is
universal: any from the equations of the form (3.6) is invari-
ant under transformations (5.1). The groups of symmetry and the
integrals of motion C‘-r"’, posses the universality of the game
nature.

Transformations (2.19) with functions Bn s which are

time independent, are auto-Backlund transformations: they trang-~

form the solutions of a cerfain equation of the form (3.6) into
the solutions of the same equation. Just like to the cage
Peo = 0, discrefe auto-Backlund transformations may be repre-

sented in the form of combinations of elementary Backlund trans-

formations ﬂaﬁ] (P-i P‘, l.es transformations (2.19) with func-
tions B,, , such that Bu = A "'}«"":}j 8:=.: Bx-f&j-"gﬂ.{jl’h&
known soliton Backlund transfnmatians are particular ca::es of
discrete Backlund ones.

Transformations (2.19) with time dependent functions 8.,
transform the solutions of a certain equation of the form (3.6)

into the sclutions of another equation of the form (3.6). Trang-

formations of such a type are referred to as generalized Back-

22
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i

lund transformations (see /23/). Generalized Backlund trans-
formations act in a transitive manner on the whole set of equa=-
tions of the type (3.6).

Thus transformations (2.19) is a condenced expression of
the transformation properties of equations integrable by means
of the bundle {1:1}&

VI. The reduction 'problem in the AKNS-method

The number of fields in equations (3.6) (i.e. the number
of components of the potential /Dﬂ'_,'f)) grows fastly with inc-
reasing N {(as N° - N Jo In this connection, the reduction Pr'o=-
blem for the general equationsg arises; i.es« the problem of de-

creasing the number of independent fields. To do this, some

restrictions are imposed on the potential A /4%), these res-
trictions being consistent with equation (3.6). In thig case,
the reduction is said to be made in the general system (3.6)
(for the formulation of the reduction ﬁmblam see, e.ge /38,39,
1,20/« Not long ago Mikhailov /14,15/ hae made & gignificant
step in this direction (also, see F16,17/)e

Within the framework of the AKNS-method the reduction
problem is divided into two problems. The first one is to con-
struct a non-trivial group of reduction for the bundle (1.1)
and the second is to find the class of functions _Q“ Pt
for which equations (3.6) allow this reduction.

Let us recall briefly the approach to the reduction pro-
blem, which has been proposed by Mikhailov /14,15/+ Let

;'%‘p = {//I,/\) W/X,A)

(6a1)

" be a linear spectrai problem. The existence of the non-trivial

reduction in the system (6.1) is connected with the form-inva-
riance of the problem (be1) under the transformetions:

W/I)j).__;. W!/X‘: Aj': G (XJA)LP(H; ,\)J' (602)
A-ﬂn )\j = 9{/\); | . (643)
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3, S 5 )tfx) . (6.4)

where (6.3) is a certain transformation in the complex plane

of the varlaeble A and (6+4) 1s a transformation of the vari-
able X . '

The invariance cundi.tion under the transformations (b.2)-

‘
=(6.4) meang that HV /A’ Af} is also a solution of the prob-
lem (1.1) and that "

U195 §)= 663 ULs; A6 11 e Ehgensr

The condition (6.5) of form-invarianea of the potential {//-l',))

under transfurmations (6.2)-(6.4) is a system of equa-
tions on {//J‘; /l) » Solving equation (6.5), we obtaln the
emaller number of independent variables.

In our case (for the bundle (1.1)) the condition (6.5) is
aquivalent to the following one (for simplicity we assume that

x X, ._@-0}:
;{A)A + Plxt)s G(a)(AA-u-P@,f))g (/«)“, i

Thus, to enumerate reductions in the general system (3.6),
the non-trivial solutions of the gystem (6.6) sghould be founa’ .
As a repult, we obtain the solution of the first part of the
reduction problem.

Let us turn now to the problem of enumerating the func-
tions n ¢ Tor which equations (3.6) allow the reduction
{_'h'lﬁ}l /

Let w (Jf l) be any fundemental matrix-solution of the sys-
tem (1.1)s Since W/ /}' ()J).s glgo a matrix-solution of the
system (1.1), there exists such non-degenerated matrix Tf)-)

that WI/J‘:J{A»:. (;//x,iﬁ))T(/\).

Combining (6.7) and (6.2), we obtain

¥
~ Note that reductions of the type (6.6) do not exhaust all
possible reductions of the equations (3.6).

(6+7)

24

CNY(A)=¥ (6, 9)T(H . e

The condition (G.8) is satisfied both for the molutions
F and F~. Since £ T{AN=FINS(A) ana F+f?f/{)]“ F{ M})ﬁ[{“’)
then, by virtue of (6.8), the scattering matrix {J f,l gat
fiea the following condition

S[gth,4) = TO) LA H) T il A} ses usiny

Thereby, under reduztion (6.6), for the elements of the
scattering matrix ine relatiuns (6.9) hold, which decrease the
number of independent elements of S.

In sesticn IIT it is shown that if the evolution of the
potential PfX,€) is given by equation (3.6), then the evolu-
tion of the scattering matrix ,é[), +) is given by equation
(3.5)s Therefore, along side with the consistence of (6.6) with
(3.6) we should require simultaneonsly the consistence of (6.9)
with equation (3.5)e As & result, we obtain the following rela-

tion
Y(q,e)= TN Y(A B ("‘) (6410)
where Y {"\ 'I')dE{Z-—O- {}‘ {')A « Solving the a:rstem (6.10)

with respect to s we find the form of functions _gz,,.,at
which equations (3.6) allow the reduction (b.6). Indeed, at
guch functions __rlH[A,E) the relation (6.9) is consistent with
equation (3.6) and, hence the relation (b.6) is consistent with
equatian' (3+6)« Uging the explicit form of operator Lt.‘ ; one
can directly Justify that for functions n 9 Which satisfy
(E+10), the condition (6.6) ie consistent with equation (3.6).

Thug, we have the following procedure for an analysis of
the reductions of the general equations (3.6):

1) Pirst of all, we find the reduction of the linear bun=
dle (1.1), i.e. solving equation (6.6), we finﬂc?(fl), the mat-
ﬁxG{A) and the form of matrices A and P/.f;f; 3

2) Then, we calculate the matrix 7—(’\) according to the
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3) Prom the relation (6.10) we find the form of functiong
_leﬂ for which equations (3.6) allow this reduction.

It should be emphasized that in the general cage the mat-
rix 7“(A) does not coincide with the matrix [; (A) ¢ they are
related by formulsas (6¢11)s The form of the matrix ?"fA) s with
8 given matrix C; () » depends on a choice of the agymptotic of
the linear problem (1.1). Note that in Refs. /14,15/ the cage
T = G was analysed.

The method considered above ig effective for'any reducti-
0ne which are generated by linear constraintg on the elements
of the potential ijk;f/. it was suggested in Ref. /40/ in which
some linear reductions were congidered. A similar method for an
eanalysis of reductions for the other gpectral problem

T g < Y

Py 2 ?{IJ +.ﬁ )} has been examined in the papers by
Calogero and Degasperis Ll Bl I T/

In conesidering the reduction problem, the following impor-
tant problem arises. Ae has been shown (section IV), equationg
(3.6) are Hamiltonian ones in the general position, meanwhile
under reductions we have dynamical systems with constraintg,.
There exists the well known Dirac method /41/ for an analysisg
of such systems, in which one goes without the solution of the
consiraints. Another, more direct, method is to solve the con-
straints between dynamical variables, to iniroduce new, indepen-
dent dynamical variables, to rewrite equations in termsg of in-
dependent dynamical variableg and to study the Hamiltonian
structure of thege equations. We shall follow this direct me-
thod. Within the framework of the AKWS method one can show that
under reductions the equations (3¢6) are also Hamiltonian and
calculate the set of the corresponding Hamiltonian structures.
At N = 2, Py, = O the Hamiltonian structure of the reduced equa-
tions was studied in g remarkable paper /29/.

The relation (6+11) is obtained from (6+8) at |X|—>00 ,

26

VII. %, - reduction

In this Béctinn (and in the nest ones) we shall congider
some concrete reductions of equations (3.6) as the examples.

Reductions of the iE' = type are connected with the group
N ‘. A ( = ex 2 N_jr)
Z;.‘, of transformations A— A'= 7 i PT: g e
of the complex plane of the variable A . These reductions was
enalysed in Refs. /14,15/ for the first time. Equations (6.6)
have a large number of solutions. We ghall ng?iier here the
cage of the diagonael matrix A and P w D,'-—I- = 0. From

(beb) we ;a‘fz G - GA, G-iP G = P L (T+1)

+#
Hence

o
;
)
D

S

TS (7.2)
0 Cf ,:
/ g ™ty Q0 0, \
&op s 5 B R, O Al
AR0h

Op-2

WG, 6D e o @ 0

N N_

Note that A =i: G & 1 » :
Since £ = fﬁP (A x from }b.‘l‘l} we obtain T = G. Taking
into account the relation GAG_ =?A. from equation (6.10) we

The solution of (7.1)-(7.3) was found in Ref. /14/ for the
first time.
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find that the functions _Q ghould satisfy the conditions

Dnltht)=Dnthe) b, 0) . |
gatisfied by any f-:u.ntiﬂna '/‘ﬁ ; i..{ -QTh:jei :naiﬁj{.nnn are

Thus equations (3.6) allow the reduction (7+1)=(7:3) ((we
shall refer it to as a pure Z, -reduction), if _15.

o T Rl R

Let us rewrite now equation (3.6) under the pure ZN -
~ reduction in terms of N-1 independent variables ﬁg, ﬁ;,
tgﬂ__z- The constraint GP=PG are solved as follows. We intrn-

duce the matrix Q such that all its non-zero elements are inde-
pendent. For example,

J Buea =.. 01 0, Qa'
Qoo 2@nsicvisoigy sininss sl 0
L RIS PP
: (T+4)
o 0 gt g0

'.Ehan; 'I:he potential P of the form (7.3) may be represented as
follows:

ﬂ - 77 ”m
P S ER ) 8T s

me=d

Let n introduce the projection uparntinn d, :
(@ﬂJl:'—‘ S‘.f m“‘i In pﬂrﬂﬂﬂﬂr. p‘ .

One can nhcur that thu relntinns

L CHHM (%) = A CFE)-,M (/\) . (7.6)
s %F"”m>-_= NP () (s

(=) (m) A
(_}Q f. nma M ot
n-i ;

4 s Rink= g IR (/1 e o

2.‘3

end the operator Z ‘& f."!. [p P) where P ig of the form

(Te5)e |
Separating independent variables in all the relafions and
using (7.6), one can reducs equations (3.6) to the fnllnmng

form fﬂ-Zf:

’20 ;Z_Q (L{o.l;é)l{n} [A7 a]'ﬂc?.'n

=4
where L:ﬂ, and I&,J are the operators adjoint to [.;,,J and
J_’" y looo
Lo P=Z (e s .,
i oy Y, , S0 (7+8)
15,P =2 (6"((L3)"P) ¢™)

'i
Equations (7.7) are a form of equations (3.6) under a pnra
Zﬁ - reduction, which contains only independent variables

0::- Qg, @H—z L

Equatinna (7.7) are Hamiltonian ones. Indeed, one can write
out them as follows: /f42/

/b =(f )9 7 O (7:9)
= @ 5ar

whers f ig an arbitrary integer, ﬁ -¢ are some functlio=

nals and : '

DR E L DIE R

I+ is clear that equations (T.9) ere represgentable in the
" Hamiltonisn form: : '
]




%%"_*3‘) - {0(1..*), Jf’_r fg

with respect to the infinite set of Poisson brackets{-;ﬂ }f’} :

o §
{Zkfegﬂ[dgtz(%w@;;)iﬂ —i-——é"z—t-:,) ety

where f is an arbitrary integer. The proof of the fact that
the brackets (7.10) are Poisson brackets ig cumbergome.,

It is obvioue that the met of brackets (7.10) ig obtained
88 a result of the Z,, reduction of the set of brackets
(4.11). Note that under the ZH reduction r.?, R},?pg::p""‘a
for any functionals JF ena F@ if gEEN-1 (im0, Eeks oy,

The behaviour of the get of symplectic forms (4.12) ig
determined by the following

- Iheorem /42,43/. Under a pure Zﬂ-'reducticn (Ta1)=(7.3)
one have

W38, 80)] o™ ot (50, 5 0)-
- g‘_ de tr (3; Q{r}@:(_i_a)”&i Q-3 @ﬁ)ﬁ;a‘:})’ég)(?.ﬁ}
(&=40, t4,22.:).

There is no difficulty in seeing that two-forms e 11)
correspond to the Poisson brackets (7.10) and vice versa.

Note that equations (7T.7), as a particular case, contain
the equations of the two-dimensional Toda lattice, congidered

in /14/ (_Qi=...=_QMJ w1 R 2 ) N

The matrix pure Z” -reduction may be considered both in
& gauge of the type (7.2) and in the so-called A - gauge in
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a gimilar way. (For detmils see Ref. /42/).

At ¥ = 2 the Zs - reduction means that P, = P,, and
equations (7.7) are equivalent to the equations considered in

Hef. ;"29:"-
o

VIII. Z, - reduction; comnection with the
: Gelfand-Diki] spectral problem -

to consider another solutio f equation
gt lpp 20 Let R, # £ and iéo&c? o One of
(6.6) with —_ -EXP a e . .-BA

the solutions of the ;::.rstam (6.6) 18 of the.form
{1 Mg-1) 0...0
*iq 0 G{A) 0 1 Aj-g)..0
. L SR ‘ . '8.1)
A: . a4 ; T A{‘!'.IJ Ba1
0 q Pl 0 LF !

f O~ Wig' = 280,09\
{ 0 Qﬂ-?. s b ¥ @1'01
O 449 O & (R idnpmy L Q,

PN= 0 0 1*1*?1 et

: hy & r - : [812)

-
-

et
et k- B D

We refer to the reduction (8.1)-(8.2) as the Z_N reducti-
= N=-2 .
on. For thig reduction G/?HIA)G(ﬂ .4) G{fU:‘f .an:‘i"Ir _
(A'l' -';E)ﬂ=ff, while for the pure Z 5 reduction "= A7 = { ®
Calculating the asymptotic E{r"a) from (6.11) we find

-

- gq -




7_(/])'“' : : : ' o . (8.3)

; ; 0
0 Bk sk grd)
\(/\ (q-ifﬂ MR i wilishat
Note that T/f ﬂ_‘-’l)*“ T@A) T{/U: f. Hence the matpices

C(A) and T(-'U are different representations of the same ?.v -
-reduction group.

Using (8+3), from equations (6.10) we obiain —Qn {ﬂ’l: f)=
= ﬂn (At) (n=4,... N9, Hence equations (3.6) admit the re-
duction (8.1)~(8.2), if ULy = (2, (z\ﬁé) (r=1.., N-1) .

Just es in the case of the pure Z# reduction, equations
(3.6) may be rewritten in the form which containg only the in-
dependent dynamical variables @, &;,..., Wp., and show that
they are Hamiltonian with respect to the infinite set Hamilto-
nian structures.

Here we would like to attract attention to the connection
of the linear bundle (1.1) under the Z, - reduction with the
other important type of spectral problems.

et

Lemma /42,43/. Under the ZN =reduction (B8+1)=(8.2) the
spectral problem (1.1) is equivalent to the Gelfand-Dikij spec-

tral problem: éﬂ Vi {x}{-fﬁ-) x} =)\H} with Vn = 1, md: 0.

Coefficients Y, , Vi,..., Uy-pare connected with G Gi:“'; Qs
by the following relations:

S Velt) | B ) Jayen =0 e (B R i

=0

+ o (x) K
where P(K ) 7‘"“?’% P T p 4 /D;?:_,Eéﬂi (B = 15000,
N~ 1)
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The Lemma ig proved by direct calculation for /'( = 'i"ﬁ
where ‘.U= f'ﬂ. WH)T. Relations (B.4) are readily solved with
#
respect to _ eand V, . For ¥ = 2 (q = -1) we have the well

2T
known result (1, =-V, . At N =3 {q=€JPT]

Va“_"-f:(i*f) ’3_1‘&}{—5 #)} VyF -('2*9)6}1

& i ¢ +—':——- P_E =-_1_..
& * 1+ ¢ Vﬂ .2+? 2y ﬁ‘ 2,,? 4

Atn=4(q=exp%'5-") we have
V,=-(3+29+¢") &,
V= i(339-29") 52 -(40)(2r9-¢) 00,

2 Z § 2 : ’a@
V, =(+4-9) {0+ G0+ iteeg gm0 ],
For arbitrary N, in particula;r,_ -VN"Z =

: f_"i K-1 ":_
== {Z. Z 4 ) 0N-z
KRed (=4

It follows from this Lemma that equations integrable by
the Gelfand-Diki] speciral problem /44/ sre equivalent to equa-
tiong (3.6) under the Zﬂ reduction.

Equatione which are associated w_ith the Gelfand-Diki] spec-
tral problem are of the form /44/

7 gl s K 3 2
‘%}::SZ:E fr.s‘ m (r"o-""’ﬂz)* (8.5)

Also they are Hamiltoniaen with respect to the Polsson hracl;at
(The Gelfand-Dikij bracket) /44/: :

- 33
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-+ =

N-2

_ = 3F 0.

{Jj }f}c 2 = Z gd.l if"..r‘ —-.f? y : (8s6)
< K= - a'vr JV,["

The relation between the Hamiltonian atructurus___(ﬂ-ﬁ} and

the set of Hamiltonian structures (4212) under the Z, reduc-
tion is given by the following

_ Zheorem /42,43/. Under the Z, reduction (8.1)-(s.2) we
have
(€) /
W= (5,P 5P =0
bl Pﬁ;

A & T 0521522, 004), andt thit sat of closed gymp-
lectic forms

Y

W5,V 5V) & w‘””'ﬂ(a; P,,gp)}' A

F

=Pz
M-p to° . ”
S Tasvomzay e
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where M;? are definite integro-differential operators, de-
termines the hierarchy of Hamiltonian structures for equations
(8:5). In particular, (v .5.! is a symplectic form corresgpon-
ding to the Gelfand-Dikij bracket (8.6).

Proof. The first part of the theorem ig verified direct-
ly. The explicit form of operators M,..:r is found by direct

calculation. For axample, gt N = 2y
Ty 2o

Gl g’ e uid : 4
MM "21" d&' Efdg aug wVJ(&W’E;%)
coincides with the well known symplectic form for the get of

Kav equations /1,2/:1 +ee

_w‘{i’ [0,V o, V;)?zt-iﬂ"ﬁ &Wm( fd;fé;‘b:{g)— .fdgé U;q,}):

+ b :
-4 deﬁfdg '{wmgM[g}~5,1/:(x)m:(ar)).

-
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At N = 3 we have
bt o

(§) watp (4008
MH s Man =0 )

Moo+ BB - < ] oo o[y

®
(4
The matrix Zx "= reduction is congidered in & similar

fa v
way. The connection between the matrix Z” - reduction end the
Gelfand-Dikij spectral problem is determined in en analogous

manner, too f42/

™l
Similarly to the pure ZH - and Zﬂ - reductions, the
general Z . reduction may be analysed.

IX:. BSome other linear reductions

Not all the linear constraints have the form (b.6)e As en
example, of the linear coupling not reduced to (6.6), let us

consider the congtraint

DEL R (9:1)

where R is the congtant metrix.

The reductions which are generated by the constraints (9.1)
differ, in thelr form, from the reductions congidered in gecti-
on VI. However, for thelr anslysis one can use the game, in its
egsence, procedure. : :

 For the simplicity we assume that the matrix A is diagonale
The constraints (9.1) is congistent with the bundle Ej-1) in

the following cases: gt
af) R“ A R;:[:A_ } Rﬂl’} (-A)I) R‘i = l}) ()1’_;()} L
4 £ f+ L
P Re ARG =-A R P ANR" = T4y,

=4
Let us first congider the case (9.2d), We have Ri g {‘}:*)‘

The reductions of the type (9.1) have been considered by
Mikhailov, too.
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T S 7 [’IJ f) ﬁd + The consistence of thig aquﬁtion
with (3.5) gives Ry Y/-A,4)R;'= -Vt Hence (), (-A) =
=E0™ R, 0) (r= 4.5, 49
Thus equations (3+6) admit the reduction (9¢13-(9.2%Y ) at

the functions JS2, of the form e = A"”_D_H()g‘} . i

P gerticular, at Ry = 1, P = =% Therefore, 1 (), =
= /\ w(A)and A 18 an arbitrary diagonal matrix, ‘equations
(3:6) admit the reduction to the algebra 30 {A{O} o In thisp
cage independent variasbles ig convenieni to introduce as fol-
lows: P= ﬂ"ﬂ’r where £ :{s the upper-triangular matrix
with zeros on the main diagonal. In Ref. /9/ equations (3.6)
have been rewritten in the form containing & only and it has

been ghown that they are Hamiltonlan with respect to the met of
Poissgon bracketg e :

{3;38}" =i:dx t (&'%?T (i;}H9+ %gf) (h=4:-1,tz,...){9 -

where ,3

+ : . 150
® 4 :?T_‘[Q-QTJ Jemwa T "([a_a: ']Fw}a

and

snd A denotes the projection onto the upper triangular part
of the matrix (P, = Q).

Note that under the reduction P’ = -P

{3: }f}'t“ P=‘PT i 0 {I’l = ﬂ,t",té,atu)
for sny two functionals F }f whﬁf.ﬂfa =0 and the
set of forms wg‘l{&aj; Q)?_-_ﬁ r.:.lri"'“}{a;q g;)”::i__;r

corresponds to the set of Poigson brackets (9.4).

+
At N = 2 the upera‘torfb =% and we obtain the equations
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L ey gy “2[9(1):[_@ [olg-0Ty), DF 1o ] -

conaldered esarlier in Ref. /29/.

! -4
Lét us now congider the case {9..?,)3}. Here Rﬁ S’ {'1'_4 f)h=
=S Rs o R Y(A#)=-Y(\4) R, 1t to11ows that(~4)"N] ()=
= =, 1)) . (@ = 1ye04,N=1), Hence g1l [0, =0
end the functions |/ 3,.4 are arbitrary.

Thus equations (3.6) pdmit the reduction (941)-(9.2p) if
—QEH =0 (nrf,”.} [g]) end functions _(22,”1 are- arblt-
rary.

Reduction (9+1)=(3.2 g) contains, as particular cases,
the reductions of the genersl equations (3.6) to clessic alge-

bras SO(M C} and ,gp (2N, C) .

inda&d. ulﬁmbms Sa[ﬁ'fg)and ,fp(-fﬂ’: C) mey be separated
frop general linear slgebra f/ﬁ"_. C’) by the conditions

p"’,-ypy"_ (9+5)

where y are definite skew-symmetric matrices /18/. Assuming
'QF Ty in (9.1) and (9.2), we obtain the reductions of equa-
tions (3.6) to eclmsnic algebras.

It ig convenlent to introduce the independent varisbles
. —a T, _

under these reductions as follows: P?- ﬁ"y Qy whare @
ls the mairix all the elementu of which located below the gi-
de diegonal are zeroe. In Ref. Ff45/ equations (3.6) have been
rewritten in the form which contains Q only. It has also been
shown that these equations are Hamiltonisn ones with respect
to the set of Poisson brackets:

{5535(}" :—-zdy t2 (g% (ZE)H[A, %%—tg]) (9.6)

where M is an arbitrary integer, and

Aot o Vi B e i R

(9.7)

«ifoe, [ dy [Ply), 29l omy I TPt0, Pt e U]




L

-2 T |
where D= /)~ :ﬁ’ﬂ yand V' is projection operation onto
the subspace of matrices of the form ﬁ(ﬁp— 7 .

and RP = <P"R where *» * stand for the hermitian gng complex
conjugation may be congidered in the game Way ase reductiong
(9¢1)s Note that for Bome concrete equations thege reductions
have been analyseq in refs. /38,39/,

X. Conelusion

As we have seen the AKNS method is effective for the solu-
tion of two problems of the IsT method, which have been formy-
lated in the Introduction. This methog enables one to describe,
in a simple ang convenient manner, the general formvintegrable
€quations and to pregent the clasgses of equations which admit
One or another reduction, Also this methogd allows to analyse
the Hemiltonian giructure of integrable equations both in the
general position and under the reductiong.,

The results of the presenteg paper may be generalized in
various directiong. Firet, for the cage of the bundle (1.1)
with an arbi trary 8emi-gimple matrix A (TOr Pon 'm0 g /8/).
One can congider the bundle (1.1) with éﬁ? grading (the poten-
tial O ) e e Poth the commutating and anticommute.
ting variableg). The quadratic and arbitrary polynomial bund-
leg (for Po = 0 Bee /12/) may be analysged in g similar way s

The author ig indebted to Prof, ?-E-Zakharov, o SeViMg-
nakov and Dr. AVoMikhailov fop fruitful discussiong,
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Appendizx

We shall derive here the relations (2.13) and (4.2).
Let ug denote ;

(P le ulEIL, (P P

Prom the equation (1.1) we have
~

Chim A [A, Cfﬁ‘}ﬁ +i P E}-Df'."}x) ~P P, (a1

Dx

Hence
%) ﬁ.-r;u iug ‘) -
OBl o 31~ Ea00) .
X ;i i

From (A.2) we obtain

: i (e e B0 FE
CE);}:; (x) = Q?}?M’("' "") iy f(P q’i‘-‘f;J i qJF(!J p)&f# (4.3)
X

ﬂr"' [ Rtiu P 1 tin) ) D

Py DI~ Fointmi (PP - Pl o A1

¥y’ X o B0
def
A [‘{"’:’-‘_[dﬁfﬂ, f{ = !dg fy).
b4

With the use of the aawmptntia'prupertiaa of 3* and F and
equality (2.1) we find that at Z —® co

: & (Ptn ) 2
(ag Uh}@))rf i Q)k“(fb_i)"e ¢ (ﬁ i w2 (Ae5)

ol _-E —f § -E(_‘)"'m 'f‘-j,'!
(P o))ee = 2. Sun Dem (2re o

39

P T PR TRr LY T




Taking the Projection of the equality (4+1) onto the sub-
space cgfﬁtj and taking into account (Ae3), we obtain

Nﬂ'hj § +U'l‘..}
A Bt = AJA Friw (] +

+ P‘(,) Cpat;;}“”) - g;:}(-l-an) P{_xj (Ae7)
(:;h-{,..uﬂ)

where

AP =i~ (PP - RyPL) +

i P f) j (PP -@p )ﬁmj ¥ ‘XI (A9~ ¢Ji/,fﬁ‘m-

| : A
Let us consider the quantity CP {Jﬁ'}. Because for large Z it
is of the form (Ae5), there always exist such values of indices
h: and N , which are not equal to each other, thet st least

the
) ;aa.a of comple;x ':'r'*; ym //w,, —/.4').}0- As a result,
: r such ¢ ang t-{.z' " (*)=0, Let ug denote the subspace of
these quantitieg C;D“"" through @4 |, Hence

A CPF?A) 3 /\[A; CpF;l (k)] | (4.9)
l.e00

AA C'DF?A} i /\ q);::” (’l:- Jt')_

lation. Note that A:: cpiﬁ@ld*q: -.--A"‘Ca .

Let us now derive the relation (4.2), Writting oug equati-

s of the type (Ae1), (4.2), (Ae3) for the quantitr('@""‘
it is not difficult to show that =

- - 4

‘ ('t il (L ;
Z.’- ' ,i-(:J) =‘/\[A: q.?'-‘{nl m}"'[cpém: {""’)JP(IJJ]u.m
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where. Z*— = .A.-*(P;:gl As a result

+

(L2-Y) [A, @ 1= [ B, 8] aa

Taking into account that €722 €A (e f4;)2 = O} py, rom
(A+6) we have Zhen

[Cﬁ;ﬁﬁ@ M))fré’ R, St't' ,@c{* (B_)"‘? : -. (4.13)

Multj;plﬁring‘(the left- end right-hand sides of equality (A.12)
by (A *2:_5'—: » summing over ; from 1 to N and taking into ac-
count equality (A«.13) and relatianﬂizﬁ"; A , we obtain the
following relation

[[; -—/\) [A ﬂ”] == [(El)arﬂb P, ﬂ] (&14)

PR T
where CP“ ¢

d Wiy .
LA b i

Because A 22- XHLM, we obtain (4.2).
m=p ;
We would like to emphasmize that in derivation of the relas-

tions (A«1) and (A.10) we have not use the fact of commutativi-
vy of the elements of the matrix P at all. This means that the-

ge relationg hold for the operator-valued elements of the mat-
rix P{L'ﬂ as well.

(A.15)
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