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Absgstract

In the work presented here some simple examples are given
to illustrate the results of the theoretical studies performed
earlier. The gpin perturbations are written down in the linear
approximation for calculation of the spin orbital coupling pa-
rameter.
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introductiLon

The purpcse of this work ie to popularize the results gi-
ven in /1=9/. Two throughly studied (calculated) projects for
inserts into the storage ring VEPP-4 (Novosibirsk) are availab-
le now with qualitative recommendations of the magnetic field
parameters, quadroupoles and other components introduced in
the storage ring for getting the stable longitudinal polariza-
tion at the collision point /10,11/« The first project is the
project of the so-called "sibergm snake" at an energy 2 GeV.
The second one (at 5 GeV) is the scheme of getting longitudinal
polarization with recuperation of wvertical polarization at the
straight section output with the help of inserts of longitudi-
nal fields and quadrupolese.

2e¢ Spin motion equation

At large lifetimes of beams in the storage rings it beco-
mes feasible the display of polarizing and depolarizing effects
of rather weak "sources"™ of electro-magnetic field. An impor-
tant case 1s a proper account of the influence of the particle
radiation in the storage ring magnetic field on a spin. Both
the direct changes in spin occur directly in the acts of irradi-
ation and also changes because of the particle orbit deviationse
The latter mechanism is linked to the depenﬁenca of the spin
precession frequency on particle trajectory in inhomogeneous
magnetic field.

such a compiex at first sight problem turns out to be com-

pletely solvable for particle motion in the storage rings with

an arbitrary geometry of their magnetic fields. The theory
cnables desecribing any situations in the real storage rings. In
particular, thesge can be inserts of various kind inserts into
the straight sections of the storage rings ("siberian snakes",
Zor instence, etc.). The description is based on the congept of
the quntizing axis on an arbitrary particle tradectdég in n
ctorage ring. :

The spin motion is described by the weil known equation:



vigtic factor (¢ = 1). The first term }_n

$= (5], P Lo
e = Tall Ei
) .{f"' H + [zrg,rj : (2.1)
where g’H -+ H” ig a megnetic field in the particle rest
frame, ?, is a giromagnetic ratio, ‘?‘ (1- zr)'”z is the relati-
ig due directly
to the particle magnetic moment ¥ =¢ S , the second term pro-
portional to the normal part of giromagnetic relation %:e/m

([FF]=4[TE+THI)] ) describes the Thomas precession and

it is the consequence of the relativistic rotation kinematics.
As ig geen, the normal ?-n and anomalous 9&-- ?,-'g.q parte of
giromagnetic relation are not additively compriged in .the equa-
tion. This fact is associated with the particle trajectory
curved.

The formula for .E_i is convenient to be written in the
form

fw’zrj '?”;Tzf T

¥ s 7 (2.2)
B=(r3) G - £ g e

?;.
E—J'E ™ a"ﬂvz

At 3‘_:-3.:1‘ the last term can be neglected. From this formula
follows that during the motion in given fields at jJ'—» o= the
snomalous part of angular precession frequency is not decreaged.

It is convenient to replace in (2.1) to the generalized
azimuth of particle motion @ as it is usually done in descri-
bing orbital motion in the gtorage ring. Then we have

S=ds/e=[W5] = w=2/6 (2.3)

3. Spin motion along the closed orbit

Let us start describing motion along the closed orbit. On

the c}gsed trajectory .= the spin angular preceassion frequency

W = W (6) is a periodic function of a generalized azimuth

8 (@#/277 is a length along an equilibrium orbit in units of
its circumference ). :

W (0)= W (6+25).

It is evident that for solving the problem on polarization dy-
namice it is sufficient to build the solution of a spin motion

/,:: —
LW, S ] _ - (3.1)
on one period of a particle motion.

Let ug consider a group of particles starting their moti-
on with a certain azimuth # with verious spin initial conditi-
ons. Since the spin motion is a rotation (conserved a relative
spin orientation) at any complex spin traj ectory described by
equation (3.1) the spin orientation transfomatlon :La reduced
%0 the simple turn around a certain direction n ‘f)
at the game angle Y . In two turmns the spins apparentl;,r tur-
ned around H. at an angle RY etc., i.e. the particle spine
will rotate around. l'i'.‘F . A rotation axis I"L and angle ‘¥ are
determined by the field structure along the beam orbit and ite
Jnev*-g;r. Let now polarization at the initial instant be directed
along H. » Then having executed (during the particle rotation
erled}, generally speaking the quite complex motion n (E‘) the
Hﬂla‘.t‘lzatlcﬂ will return to ite initial direction and in this
way it will repeat at any orbit point in an arbitrary number of
turns. The salid above means that at any field and orbit confi-
guration there always exists the polarization periodical motion
executed at special initial condition.

A direction given by a periodical unit vector H. determi-
nes the direction of the particle auantization axia on the clo-
sed orbit.

e

Two other eigen solutions R and ’?*of equation (3.1) are
complex and have the property

7(6+23)= 7 ()eXp(-25Y) (3.2)

where V= Y /2§ 1is the spin motion generslized frequency. The
8pin motion with any arbitrary initial orientation is a linear

combination of the eigen solutions:
=il

= S Bt S M2 .+ 502

e
where 5-= S -’E and S, = 5? are constant. One can introduce
two orthogunal (with respect to -"1 ) orths e and E also
per:r.cd:.cal on gzimuth. Then




7= (&, +iE,)exp(-iv6) . (3.3)

— —
In the system of movable orths [Iig, e, e, :
in the cagpe of a homogeneous field:

the Epir]__ motion

ig ag simple as

5= [(G-W)3] = v [ 5],

g e ol = ) == - 2
where W, =(€:é;)ff$+ (é;'fzs)ei - (€, n)e, isen angu]é‘az :
frequency of the moveble system. Since the orths are fixe o
an orbit (given by the azimuth # ) the polariza-
e same both in

(F4)

each point of -
tion change in one turn of a partice will be th
this snd laboratory frame& The equation (3.4) describes just

the spin rotation on the closed orbit with a frequency o wiI%

ig easy to get the relation of the precession generalized fre-

—
quency 3y and an anguler rotation velocity of the gpin Ws $
= Y N = _.F";_’- (3-5]
V=W, n, — '€,
Except for special cases the frequency Yy is not multiple
to the integer number and therefore the spin periodical motion

ﬁs['ql is the only one. At Y=K (spin rea?nance poi_ziﬂ ﬂz zn—
tion is periocdical at any initial condition and n, wi €

whole uncertain.

“4. Simple examples

An ideal storage ring

in such a storage ring there ig ne coupling vetween the
Z - and radial oscillations, 7 - and phase oscillations. A%
the motion along the closed orbit the field at any point of an

orbit is vertical

H:/<Hi>: j(é; 2

where K(8)= H, /<{H,> 1s the orbit dimensionless curvature
(L= IEFXJ;/EE = {: In a circular storage ring K= 1)

Therefore“in gn ideal
perty is pogessed by the apin
field:

solution directed along the

storage ring the azimuth periodiclty pro-

e

The orthogonal solution describes the rotation around e,
7= (Ex+i)exp(-ivX), (4.1

&
" — i
where X=!ﬁ’d9 § Ex and E;r are the orths in the orbite

plane and directed respectively along the normal and trajecto-
ry (accelerating basis)

&= T R=Tly , E=XE , &=-XE

A precession frequency ) for an ideal storage ring is equal

to
Vi .,%’E 3‘?&/‘?:: '

The periodical orths €, and é:_. as 1s seen from relations
3+3) and (4.1) are

‘5':},+£ é':z =(é;+£‘ %)expf;'%(f_ g)] (4.2)

?

- and in a circular storage ring coincide with é’ and é" ¢ 1A
=L

the storage ring with straight sections the spin comporient
laying in the orbit plane is rotating around J'T:; with regpect

matiy Y
to €, with a variable frequency ¥, X and with constant fre-
quency Y {X>=4y, with respect to the orth ét-

Near the values )= ¥ the spin motion is unstable and

small perturbing fields strongly vary the direction /.. The
A -
energy values multiple to 440 MeV are resonant.

An ideal storage ring with introduce the field
into the straight section for getting the longi-
tudinal polarization at the point of collisions.

A proof of polarization stability (no% obligatory directed

along the field) opened up wide possibilities for control the

spin at the beam ccllisiuz_l points. It is eagy to invent many

ways for getting, for instance, longitudinal polarization at
the collision point. The simple examples can be presented by
the variante given in Figs 1 and 2. Into the straight section
;f the storage ring 0< @ < 6, three sections are introduced
%I,II,III} with radial fielde (Fig. 1) and four sections
(I,I1I,III,IV)(Fig. 2)(the latter variant is given in Ref. /12/).



The longitudinal polarizatmn is performed at points ().
The arrows show the direction of J’l .

F'J._E- 2

The fields are introduced in such a way to restore the spin

and orbit at the section output ( V.>> 1. Y3

g 3

o, -

EHI:S/B =0 ngxa@: 0 i (4+3)
0 ¥ -

For the spin turn at an angle 5/2 with respect to velo-
city by a constantydirected transverse field it is required at

the length f : : .
H, (ke) = gg/f(;,,_) . (4.4)

The periodical solution ig still directed along Z =-axis in
the main section of the storage ring 6,<f#< 23 . In the sec-
tion with the radial magnetic fields 0 < & < 6, we have

where % (""ak% j-H dﬂ « The orthogonal golution is ap-
parently the folchLng- 2 :
Florg)= € + (B & -sin¥y E,) »re

T(6+2%) = (€ +i e,,)exp(-uif?).

8

We gee thit in one turn the solution FE' is turned at an angle
2o & 723.. ’? EXPKLHJ),) + That means the generalized fre-
quency :LE also equal to ), = 3"%:/% s The periocdical orths
E.’. and Ez are equal to

(&

lef“ e ) ?(ﬂ_ &) , (4.7

(8 +(8& ) *(e e )exﬁffhg-(ﬁ_gg--

The common property for the variants with the radial field
is that at the point of longitudinal polarization an incident
velocity angle with respect to the horizontal plane depends on
an energy and it is equal to J/dV, » This may cause some
inconveniences. A transition to the complex rotations in a mag-
netic field varied in its direction at the straight section re-
moves this relation and gives additional freedom for the pola-
rization and orbit control.

Let us give an example with the total restoration of the
velocity and orbit position at the longitudinal polarization
point. Let us introduce into the straight section the transgver-
se helical magnetic field at a length éi, with one period:

He * CHy =0 [Hl[exp(cy +cut)

where [H:f=cann‘ 2l =27 g . w= =const  is an angle be-
tween Z -axis a.ncl initial field orientation. If the values of

o and ]H [€, are selected approximately oA >~ 026 .

iH_Llf . G?W/ x 495 kG m for electrons, then after passing
this section the spin alters its vertical direction to the lon—
gitudinal one with restoration of its velocity. The orbit shift
Occured in the direction close to the vertical (by the value

AR L SN ) is easily compensated by introducing before
the colligion point the horizontal magnetic field with the ze-
roth value which does not distort the spin and velocity direc-
tions. The reverse turh of the spin to the vertical direction
arter collision point is similarly made by the opposite image
magnetic fields.

At the present time there are many proposed varianta of
producing the longitudinal polarization with the gpin and orbi-
tal motion restoration at the gection outpuf (see, example,



Ref. ;13 ¥ 14 Ete;;-
An example with one "siberian snake"

Let ug introduce into the storage ring section the fields
bending after passing this section 0<# < #,  the spin at an
angle Ji around the direction layed in the orbit plane. If
one uses the longitudinal magnetic field, its required value

H, at length £ is equal to

H, (x6) - Lom) = 100 E (@eV) . (4.8)

At high energies ( y,>> 4 ) it is reasonable to use the trans-
versal fields. There already are many variants of the spin

turn at an angle J; (see Ref. /15,18/) which allow the simul-
taneous compensation for the orbit distortions (giberian ena-
kes)}. Two most gimple examples are given in Fig. 3 and 4.

In these variants the velocity direction is restored. The
gpace shift occured is compensated for at the next section by a
congtantly directed (vertical) field with the zeroth mean va-
lue.

I €z
|
% e,
IR AN I g
_-" E
7
v
- Mgs 3

The scheme of the spin turn around the wvelocity at
an angle 180° by the transversal fields in the sec-
tion with the particle velocity restoration. The
picture plane is transversal to the velocity. Mag-
netic fields are introduced into five sections in

a row. In the spections I,II,IV,V the spin is turned
at 90° around the field direction, in the section IIT
with radial field - at 180°.

Figr 4

The scheme of the gpin turn around the radial
direction at 180°, The field in section II ie
radial.

Let us also glve an example with more economical field integ-

ral (Fige 5). Into the section II the one helical period field
ig introduced

HotiHy = H exp(c28)

1n,rl'ie_re E‘ and H.I. are congtant, ngr 2:‘7.

| Ha Ha
{
AR RRRR BA AT — 8
1 A 3 i,
. 1 m
Pig. 5

Diagram of the snake with the helical field.

For the spin turn at an angle Jj after pasasing the section TT
it is required the field integral

iyl = {00 K@ m

The magnetic field on the section II input can be orientelin
radial direction. Then after passing the helical field the OL=
bit will be also shifted along Eﬁ:. This shift can be compen-
sated for if in the sections I.and III the vertical field are



introduced with oppogite signs. The vertical fields do not al-
ter the resulting angle of the spin turn % .« The vertical
field integral is selected from the orbit restoration condition.
Placing the sections I and III in the close vicinity of the
gection with the same field value we have the total field in-

tegral for the whole section
H,f = 130 k6'm

a(. is an angle between the spin rotation axis and the velo=

it
e ~ — 0 14

Let us give the formula for maxima of the orbit deviations in

b 3 4

IV, ’ FKomax = ‘? TV, -

this scheme

zhu.x o

Let ug find out the polarization direction !Z » the pre-
cession frequency ¥ and an orthogonal solution ., Let into
the section 0< @ < @, the fields are introduced in such a way
as shown in Figs 3+ Then, since the gpin motion in each secti-
on is the rotation around the corresponding axis, we have *

(gj_ e smT), +~QJCHS'FH
I..-
(1) =€_sm TV, +c055?»?(c05$"e;+9m &),
Ay (1) = Sin ), (€ cos f) + & ‘3”15”)*-‘-5 >{,

ﬁ'[m}- Jm(:?'ﬁ+wﬂj+ e ws(m+

n{’nﬂ--smﬂ:ﬂ(esw +é'm ) cofma;é"

L
(V)= cﬁfﬂ(%&u?' ezco:s'f’f) san:e”gé; X (4.9)
ns(e“zw)—e Sir) (H-5) + é;c&t-.' L(K-F)
I Vo I Vo
/3 <H}[m S, e §Jds ...

For. the orthogonal golution we m.we

’ In such cases the spin motion is more convenient to describe
in a two-dimensionsl Paul representation. But we do not dwell
upon this technique here, see Ref. /19, 3, 15, 20/.

12

fo=8com - Goinm i3,

— — b I [ =

(@) =€ cosmy,+ ea!(csmﬁg ~sinTi ) cos SSI)— E(awsg+mwgmsg‘)
= — E F 2 ] j

it

9’??’-"?’(‘,1{ Jr) - [E

The periodical orths € and are ag always equal to

E+(&, = i exp(cv @) . Ihe generalized frequency (since
'?"' 4?" ) is always equal to the half of unity independent
of energy (V = 0.5).

The precession frequency in the example considered is con-
giderably different from its value for the conventional storage
ring where V= 79 /9, and varies continuously with an ener-
gye Since ¥ = 0.5, by correct selecting of betatron oscilla-
tions one cen easily avoid all dangerous resonances at any ener-
gy value.

Example with two snakes

One can obtain the spin precession frequency equal to the
half remaining the equilibrium polarization direction along
the field in the main seotion. For this, 1let us introduce
two sneskes into two opposite straight sections of storage ring.
The rotation axes of these two snakes should have an angle %/2.
For example, in section I lets use the scheme of the snake
given' in Fig. 3 and in gection II = the scheme of Fig. 4.
(Note, that in section IIT with radial magnetic field (Fig. 3)
the equilibrium polarization is produced along the field).




. 8
Y SN e

Fig- 6

in the main gec-

e

Let us give the expressions for Ff; and

tions
R (6,+%)= €, , A (7+6+25)=-€,
..?-.(ﬂj:-é"x.-p{é} : n(8)= ex+£é} }

‘f{e;g;):(é'xﬂéz,)exp(-{%5{"), .

T (F) = (€t &y)exp(-(ai.) (4+10)
?*Cﬁ*gg) -~ (é-x'h': *e—:;{) @(F(_EEVG’}FE
ree, 200y = (& i Ey)erp[Vi[xdo -T)]

7+6,
- e
'?(E:FJ: é:__-{. E.'&f
Since Tz'(zm =- (o) , the precession generalized frequen-

¢y as in the previous example, is equal to the half. The pe-
riodical orths é‘: and érg in the main section can be written
in the form

é.(ﬂ):"'é'x"'fé:;‘ ’ é
E(6,7)= (&+&)exp[-i%s [Kdlb +: 6/2],
A
€ (6:+7) = (€~ (&)enp [-ia, +: (5*9;)/2], (4011)
€ (5486, +27)= (&~( €, )exp [-T0s +iV. [XdO +( 6/2]
Ji+ g,
€ (27) =&+ =.8(0

14

e Finding the precession axis on the
particle trajectory of deviated from the cloged

trajectory

Por calculations of the radial polarization level and the
time for its establishing one should also know the precession
exis direction JL on the trajectories deviated from the closed
trajectory. '

The angular frequency vector L-‘ia"- at stationary conditions
writted ag a function for action variables Ii (amplitudes) and
phases ¥ of betatron and synchrotron oscillations has a pro-
perty of the phase trajectory:

WL, ¥,6)= Wz, te2m, 8) = W(T, ¥, 8+27).

Similarly to that as in the case of oneperiodical depen-
dence at the motion along closed orbit there is the only pos-
gible direction for the precession axis }i (excluding the spin
resonance points) which posseses the property of periodicity
over all phaaas*).

; E(‘r:; ﬂ:; 9)-_ H.L/I;, %"'2:'1‘7: 9): ‘F_{'(‘E;: gf': 9+2?"-)- (51)
Vector i being the solution of the epin motion equation (2.3)
thus comprises only a fractio frequencies of an orbital moti-
on. The gpin projection SE‘-ETZ' is the exact motion integral
in the storage ring field - the spin action variable (the spin
quantum number). If a particle returns to the same point of a

phase space (the same point and the same velocity) the preces-
glon axls direction is also repeated.

When moving along the closed orbit } is transmitted in-
to Rs « The deviation of W from Fi;can be found out (far from
the spin resonances) with a perturbation theory. General formu-
lae of the linear aspproximation are given in Ref. /3,4/.

Let vue ehift to the movable system of the periodical artha:
n ’é'_"_, é"E connected with the spin motion along the closed
cr%i‘!;‘ In thie system an angular epin precession frequency
W = W-W, is equal (compare with (3.4))

o Rigorous proof of this assertion is given in Ref. /5/.

15



= []',._(}’:S*] ; .JW...= \)Es + ﬁ (5.2)

where ‘y‘ is generalized precession frequency for the closed
orbit determined by the formula (3.5), W= Cv'uﬁx: ig an angu-
lar velocity perturbation associated with the trajectory devia-
tion. From the equation (5.2) at first approximation over z::F

R

one can get the simple formula for calculation of SH = !1"-*'_1; s
4

"IJ —--ur “"J
5= Jn?ffycafa IS\ w a/.g (543)

—

Here, according to definition of n the integration constant
is selected in such a way the spect';-um of i should comprise
only the perturbation frequencies. Formally, this is equivalent
tco integrating from -e= with a negative small imaginary ad-
ding to ¥ .

Sometimes it is reasonable to present the formula (5.3)
in the form of expansion over the perturbation Fourier harmo-
nice of W€ . Let

We's P Weexp (- =)

an integer combination of the orbital motion pha-
ses (Y. =Sk ¥ Y« Prom formula (5.3) one can get:

o —- e ‘{ﬁ;
S o (J;" e kéf'("":‘)xj e 1

where V, = 5 K; ‘)‘f’ is a combinaﬁion of the orbital frequen-

cies. One can see that deviation of h’. ig very sensitive to
perturbations near the sgpin resonances

Vif vg
Having deviation SR known it is easy to calculate the spin-
-orbital coupling parameter 3‘3!?/33" through which the degree
and time of relaxation for radiative pelarization are expressed.
The derivative 3'3!1 /33"' ig obtainad at fixed transvergal de-
viationes X, Z and velocities x 2’. At the presence of a
coupling between the transversal motion and the phase motion,

16

not only the forced part proportional to ¥ - function is chan-
ged but also the amplitudes of betatron uscillations.

The formulae for the equilibrium polarization degree j"
and relaxation time T in any nonresonant situation )t e
pressed through the sum o, and difference ol_ of 'Etplll trangi-
tion probabilities per unit time for a two level spin gystem:

iy = LGP TNTP[1- P+ GV,
E- 1_1-.‘-},_3’ (!'5")2{??1?.] (FE;-;QH/Q;)>’ (544)

T= ol /d, Teols

»

where brackets <...> mean an averaging over the azimuth & .

e
b. Formulae for perturbation %/ in
linear approximation

e — .
The general formula for w= W —W, can be obtained
with (2.2) and (2.3). It is reasonsble to give the real expres-
gions in a linear approximation on the particle trajectory de-

v1atian.

Radius vector of the % particle in the accelerating
orths system is written in form

T= Z,(0) v+ x E (8)+ 2€,(8) (6.1)
where X 1is the radisl and Z is the vertical deviations of
e particle from an ideal closed orbit 2. _(8) . The periodical
orths &, , &, &= R U /dp (27 ¢ is a length of an ideal
orbit) satiefy the following relations:

T - *P&__ — — -*f*— =
.-.,7(;9‘? ) e}"‘ WE%*JGE; 6= W_EQJ' (642)

Here

¥ Pormulae (5.4) are applicable for the cases when the. length
of radiation (9,4)”' is much ghorter than the characteristic
period of magnetic field .GJH-" variation. In the opposite case,
JoH << @x__ ine formulae for the level and time are obtained in

Ref. f21fo
e | e



ﬂ‘ H
y -‘-- ? -
":-'E <Igr> i t%/- ;{x {H:b

are the dimensionless compozgfnts of the orbit curvature:

25
(H.de =27 [*.de =0

The spin angular velocity vector W can be presented in
this system of accelerating orths, however the components are
much simpler in the orth system associated with an exact di-
rection of the velocity 77 « Therefore the spin motion is con-
veniently described in the orth system

i= sl z 5? f—-[ff"] (623)

a= 7T =
AT

slightly different (because of a small velocity spread in a
beam) from the accelerating system (6+.2). In the system (6.3)
the components of the velocity precession in the directions @
and g are proportional to an anomalous moment ¢, and the
component along ’z‘.' is slightly depend on the moment %_

( 9, << 4. ). Substracting the value of an angular velocity of
motion of the basis

W= (H+ )T +( a—)g (5(%+J’R)’z’

in the linear approximation on the trajectory deviations from
the ideal one get the following simple expressions for angular
velocity one of the spin rotation in the system (6.3):

W= 0K+ (FHF),

4 "
We = Vo Ha *Vn(f‘?{'-#ﬁ_), (644)

"

My KRyl X
We=JyFHt Mg v %%

i
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where AF=g-fF H/{;{E

Consequently, the fnllowing spin perturbation is occured
when the orbit ﬂ.aviatea from the cluaed one:

+Z + +

]J(E’X )a, v( )g (6.5)
+ (K E~ KB

For compllteneﬂs let us g:ure tile known equations describing the

trensversal deviatione of the orbit for a general case:

2" 8,2 = Gay X ol -g-ﬁ'gﬁ’

(6e6)
x’ g.x = gnzﬂksf(z . —fﬁmf

where

ol e ek _ R OHy

ga* {E‘;} 32 + Ky ) o?e:n_{;fi? 2 Wx‘j{;
LR W e R

Foc™ (Hpax © SR HoTE He K

The relations between the field derivatives come from the equa-
‘tions diy H=0 ; wi =0
'GH ”E}H;_ He
{6l?)
DHx _ OHs We , OH:, | He_
2T G PR RGP -

From the expression (6.5) for the spin perturbation cccu-
red at the orbit deviations one can see that at high energies
(Ve>> 4 ) the only two components are separated . along a
and 2’ « The component w.:,_. only slightly corrects the spin or-
bital coupling parameter and further we neglect it (though it
ig easy to take into account this correction in concrete calcu=-

lati ong).
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T. Examples

Let ug get the expressions for the precession direction
axis the radiative polarization degree and relaxation time in
the given above simple examples.

An ideal storage ring

In this case. Es-é: and the orthogonal solutions are Tr0o-
tating around Z =-axis with an inastantaneous frequency
(gee 4+1)« In an ideal storage ring

J(x:J(;T:O 3 K=K , ﬁ‘frzc‘?xi':o
Equations for X and Z oscillations
2”_" ?2 2 .y 0
x"+ 9 = RJC

Prom the formulae {5.4) and (b.5) one get the expreaﬂiuns for
an angular velocity of the epin rotation

W,= XL

(7.1)

(1:2)

W, = vE -*;15?2 - V("JK— ”)-_-,)gx%*

With the help of the fomula (5« 3) for veriation &k one has )

e ARE %x |
_ISE:—JM{(E:"‘{E;)E—I :[};‘(?E% 5 G’&} (7.3)

Consequently in an ideal storage ring a variation of
ig only associated with vertical deviation from the motion
plane. This is an obvious fact since only vertical deviations
lead to appearance of the radial component of magnetic field,
and the particla radial deviations remein the magnetic field
direction vertioal.

Let us write down (with formula (7.3) the expreasions
first for the amocﬁhed focuging and circular storage ring
(K =1I). In this case

*)

Ri 1. aki the T ul

steﬁngﬂfus 2 E%ﬁ %erp ?Jre{: i 3.15119.%'} a%prn%m%%:’im% {1 %111-::3
connected wi e

partlclg veinclty s-.ng‘le re’latively aqu’ilihrium, is non-reso-
nant and it cannot be stored.
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(V.8 % -8

?_f'Q:QE + 8 e

4

where & = const is an amplitude of vertical nacilla‘bioné.
Substituting this expression into (T 3‘1 one can get

S =~V i{»c;;"[(e HE “)E’(@ E”‘pﬂﬂﬂa f” H‘JE)JQ
*‘ -flf’;&

"*’t
_..-'})]) M J.’EJ') L(}Jfﬁi) i (v' )}é) jj

S—!
Whence H is eqgual to

S U o Y (T+4)
ddid V) bRt ),

From the latter expressions one can see that the precession
axisg deviation comprises only frequencies of vertical motion

i.ui L]

In the vicinity of the spin resonances ),z -y, the va-
riation is strongly depend on the orbital parameter deviationse.

The formula (7.4) can easily be generalized for any case.
The betatron oscillations are described with the Floquet solu-
tion £,

2 < af,6) + a*4,(e) T olns

where @ = const is an amplitude,
ig the Flogquet solution for the vertical oscillation eguation:

f# ?& : . 3. : {T-E}

The normalizing condition is the following: Jm;g_ i = f_
For the smoothed focusing f A we/jcp ((Vs8) Shifting to
summation over turns in the integral of the formula (7.3) we
have

a Yo e tﬁ{ﬂ Yo 2 *e“’ﬂ
Sh --Jm(e + e’)e [FI{ a-fﬁfp 5’&[ & Epi[rff i (T.7)
1-expl-(F00)])  1-exp[i % -]
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where P is the number of
superperiods of the storage ring. From the relation &=
—(Ef)(* 27(’)/‘21 one can express &p through 2 and
2/ FProm the expression for §i in a hard focusing storage
ring the following resonances are possible
W 2+ KP

where K is an integer number.

ity
Calculation of a deviation Mg —é’; in the
storage ring with the emall radial field

The formula (7.3) is also applicable to calculations of a
gmall deviation of }f! from é:_, at a slight inconsistency of
the storage ring to its ideal model. Let, for example, there
ie small radial field J(,, on the orbit. The field causes the

ver'bical distortion 2; of the closed orbit (2)+g2,=RK: )
p . X oo
N voe < BIRAR
s 2[4 - enpl-i2in)] (7.
s —
Therefore for the deviation af n from EE one can have
T
-¥ f -?s -~ de
=Y, g«{e -HE) ; ﬁ__g_m ~ (7+9)
[1-exp (-(271%5)]
where Z, is vertical distortion of (7.8). Sometimes instead
of summing on turns the underintegral expression is splitted
over harmonics 2
s 2 n(t-6)_ < w, ot (7.10)
we™ =~ v, TQE e = K .
K

Then the expression equivalent to (7.9) can be written in the
form

- "-Q;“[(e ﬂre N(f 9)2

rfﬁ :
(T.i1h

ff’»z- k) 4.

Let us give the real expressiona for the spin rescnance pcwars'
. By integrating over all parts of (7:10) we have :
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R=E
(T«12)

‘}" I:X/ ) (e)c—:-z afa

where the response periodical funciion A (8)= Fe (B+27) is
determined by the vertical 7':-_. - function of the storage ring:

¢ (%8 +£;'fﬁ' % (h(E-0)+ikp
V) Y4 f-:k/?( ) J’Rl{ 5{&
Fr :f e 8-25 /P - &rz'fp

1- exf[-rg i+ %)] 1 - expl-i & (k-]

(7+13)

Por a circular storage ring (X = 1) and homogeneous fo-
cusing the response function is equal to

B K Vs

£ T RI-)2
If the ﬁt - function {ﬁ-,n J‘Uf{"’ ) depends on azimuth, the
value as a function of azimuth is approcimately proportional

to V;’Z -
If the radial field is introduced at a point @=8&, of
gn orbit (in the form of ® - function), we have
.-]llt"iﬁ'rj\f ;
wh= VRO 1. FlB )8 (7.14)
avhere ?4:84 /ETFE is an orbit fraction occupied with the ra-
dial fleld X, .

caloulation of the degree and timeof relaxation
for radiative polarization in the storage ring
model cloge to an ideal storage ring

TLet us calculate the degree ; and time of relaxation T
for the radiative polarization in an ideal storage ring. From
the relations (see (7+5)):

%: aﬁ+a"‘£*



because of continuity of Z and 2”:
oq*, +
o 40, fﬁt? /

whence } 951/63'*0 and consequently 3’9;!.%5';: O (gee (T.7)).
Therefore from general formulae (5.4) *ﬁe get

- - bt r':" = fl"'i i Ize 3
K-Wg-gifﬁ SR L {’K!> (7.15)
where A.=%/m, 7, =e*/uw o Since in an ideal gstorage ring
the only effecis are significant of the direct interaction of

- the spin and radiation (§PW/97 = O ) the latter result can
be obtained on the gpin flip probabilities| directly in acte
irradiation. In this way the result (7.15) '|has been first
obtained for a homogeneous magnetic field (¥ = 1) in Ref. /22/
and that for an inhomogeneous magnetic fields in Refs. /23,24/.

Only with the magnetic field deviatipns from the ideal the
orecesglion axis Ff becomeg dependent of elilnergy. The deviations
can be associated, for example, with the 'turn of quadrupoles
around an orbit direction causing the 2Z-X motions coupling.
Another reason, more substantial, at very high energies
(¥.>>1) can be radial fields of various kind. One can calcu-
late an accuracy for an accelerator design to provide an exie-
tence of radiative polarization. For gome more detalls one can
refer to Ref. /9/. Here we shall demonstrate a calculation of
introducing the radial field into an orbit by a simple example
at #=0; . Let, for example, radial field generated by a ver-
tical shift 8Zg of one quadrupole.

Then ‘j‘/x: g:424/R . Such a field, of course, varies
the whole closed orbit. Total influence of this field on the
epin is described by the response function F (#). From (7.11)
end (7.14) we have™’

“ Total change of the spin precesesion frequency is described
by the perturbation (6.5) #Hj= 1%;(?5‘.’- %ﬂ) « In the formula
{(T«16) we have confined ourgelves by the main (at high energl-
es) effect - the precession mean frequency {upd> = V¥, 82/7
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e -0
<![r«rll.?(trf3; 5 } WIE,.;E&{ :
<in’> ( @f e (T+16)
wee 9 (Wi [ *

- <I£ (Ve —K)* !> - ‘g (Vo—K)%
where (Wi [1_».__; gi @2)/13 /f': (E,,)Iz ] (rgﬂ'/‘;f:f)-

Thus, say, the polarization degree ; is equal to

_I'fo <4
L'f + E v {p.ﬂ__rj.rf] : {TO‘IT)

The formula (7.17) enables one %o calculate a depolarizing
effect at a lense shift by a value of 8Zg

An ideal storage ring with the fields introduced into
the straight section restoring the output orbital and
gpin motions.

Let it be an ideal storage ring with the straight secti-
ons. In such a storage ring the level of polarization is of
92% and polarization time is defined by the Sokolov-Ternov
(7«15)e Let us introduce into a straight gection an insert
with radial fields (see Fig. 2)). Let us calculate the spin-
-orbital coupling which means calculations of the level and
time of relaxation for radiative polarization in this simple
case. The spin perturbations (6.5) take the following forms

,-v,gtz,_/,e ) We = Ve g X/e ; b
- X S O A are &
where 31»“ yx h’ - PHyfox * = X, + >
motion equation parameters

if P
o e ?EE"K" (7.18)
i 4
xf+g x = &I
3}’ 3/ »E ;(E
gince there is no quadrupoles in the gection with radial fields

j";.=$ff,f-. From the formula (5.3) the variation of
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dR” is equal "

SH = Jm [fw& tde + fw;-faafe] (7.19)

Since #, (see (4.6)) is equal to zero on the main part of the
storage ring #£<& <2%  the product &4 f; = ¢ at any azi-
muth & . Therefcra we have

Sn——ugm?ffiﬁzaé VJL"’f( I _)? t?-zo).

The equation golution for 2 -motion we write down in the form

2_ 4 ] x /K
2= ?3'55 - a f + c:?ijé , (7.21)

where H"E' ig the dispersion function of the closed orbits, &
is an amplitude of betatron oscillations. Substituting the lat-
ter into the farmula (7.20) we get

:,,;J;f’[ijﬁ’e wﬁ‘;tfeff*](?w&"Lﬁfﬁ faﬁs]

The derivative g’gﬂa/c?g is obtained from the relation
el 2l  AF. s rE .4 ) s
Ae= ik [ OF - Fu)h - (R-FH)%
end it 18 equal to

12 L (rfo = (hh'- L)
ng the value 5’1 in the region O< P < €, were equal to ze-

ro, the value g‘faﬁ'/agx on the main part
of the storage ring would also be equal to zero. Heally, in
this case, the dispersion function ¥ on the main part

B.< @< 27 would remain to be zero: ':"'(9;{-‘2?})* 0 y and
therefore, 3’9{3*/33-{9#%23)4; 0 « The value of ¢; is not
equal to zero, really (?z (0+6,) = J(x- # 0) -« Therefore not
any scheme conserve the zeroth % function on the main part.
Though the correction due to X, at W >>1 ig rather small
(3’9“"'{3&"1 Bl a)  and can neglected in our coneiderations
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given below.

The value of 7'3‘“/3] exists only at the section with the
fields introduced and it is equal to

n .r —» | ¥ :
?% = ‘;‘"‘? J’J{r[f‘ef grcqg{é')jc?’& (7.22)

where Fvg (9) is a periodic response function of (T7.3) where
"En ig replaced by " ¥, "« In particular, for the circular sto-
rage ring and the smoothed focusing we have (see 4.6):

R o iy
(TE;"?;);:T'E, Ve ?* oar T (2% e le e‘*)'

With the value 3"3#?/33' known it is easy to calculate the
level and time of radiative polarization by (5.4). For example,
in the scheme in Fig. 2 for the polarization level we have

'__8; E 2 : i 'I)g ==
T_Fﬁ {f“" V‘, 91’ [’f 74 (‘yt_’vlj} i

From the formula we see that the high level polarization is
feasible only in the case when the radiation in the insert field
is negligible. Since the contribution into radiation is propor=-
tional to [X[? one can neglect the radiation on the insert sec-
tion if

|%.]?8, 2
oLl FE L
(Ixtde o %

-

x'er

this condition can be written down as the condition on the mi-
nimum pogeible length of the ingert f

£ > R (3??/»%.}% £7423)

The use of quadrupoles

In order to provide the high-luminosity colliding beams it
is agsumed to use the strong quadrupcles near the collision
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point. In this case, obtaining the zeroth ¥, function on the
main section is the condition insufficient making 7@k /2F
egual to zero on this section. An additional requirement is
that the expression is equal to zero (see (7.19))

o4 &
g?-iiug 7y A = %%_fo% y,d6 =0

which :L..-. equivalent to the requlrement

Sfr 7 ‘de = ffkfg”" fod6 =0 (7.24)

This condition can be satisfied, for example, if the quadrupo-
' les are situated near the collision point £ -4< 8<g,~4
where $m 'ﬁg: *+5/2 . In thie case

[;Jm‘g b ﬁf{%}*‘d) = 7{:{@&;}'}:&) =0, (7.25)

Suba'tl‘cut:.ng the know form of 7(1.

F=VB/R exp[i f@'éﬂx)dﬁj

the condition (7.25) can be rewritten in s symmetric scheme

(B(G+0) = BlGy2) , BG4 = ﬁ,’(’%-ﬂ) in the fol-

lowing way

(Be (2R )b 8) = t‘ég[ j(z/}sx)dej

The equilibrium polarization &eg,ree remains innevitably
high in the scheme with gquadrupoles with the condition (7.23)
satisfied, when the insert section radiation can be negiected.
‘The use of quadrupoles opens up additional poseibilities for
getting high degree of polarization with the violated conditi-
on (7.23)« Really, if in the section 0< < ¢, the optimum va-
lue Ig@ﬁ'fag{ ~{ ie procided, the polarizing effect of radiation
occura also in the insert section. ' '
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One should also note the possibility of using the quadru-
poles turned around the orbit which extend the possibilities
for the beam control. For making r’ﬁﬂfﬁ‘f equal to zero on the
main section one should meet the following regquirements in this
case:

1) there is no coupling z-X motion in the transformation
matrix of betatron motion through the section (0 # €o);

2) ¥, - function remaina to be equal to zero in the main
gection;

3) in addition to ff sm¥,do =0

the folluwiéng re quirement im adﬂed
[ -] #. ;
[ 4 'sm¥ds =0
o
which in the general case is not a consequence of the first one.

An example with one siberian enake

Introducing the strong fields into the stralght gection
can lead not only to variation in the direction h. but aleo can
increase the spin orbital coupling parameter 3—93’,"}9{ « A good
illustration is en example with one siberian snake. In .this
case, an equilibrium polarization in the main section lies in
the storage ring plane and it is directed along the velocity
in the opposite section at B=J (4.9):

R (655 27) =€ 59m Vy (B -T)) + % cos V(X -Ji)

At very high energies the main depolarizing effect is the spin
angle diffus:.on n  with a velocity

(ﬁﬂ Vnz(f*'jl’-)z*
at =0 W8
Thus y9R/d y=07V8d achieves its maximum value &Y, near
the insert section. Since <{7’3n/3§’}2,> f_y*ﬂ >> 1 the
radiative polarization degree in this casa tends to zeros A po-
larization produced on the initial stage vanishes for a time
approximately |

'!'ﬁ a -1

rﬂrfﬁ J- V_
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which is approximately by ﬂf times lower than the polarization
time for an ideal gstorage ring without an insgert.

An example with two snakes

If in the high energy storage ring the introducing of one
gnake increases significantly depolarizing effects, two snakes
enable one to have the equilibrium polarization direction wver-
tical and depolarizing effects of the same order as those in
the case without snakes. More than that, the snakes completely

remove the resonance diffusion of spins (the latter will be
considered below).

Calculation of the spin orbital coupling 2o/py  with
the presence of two mmakes is practically the same as for cal-
culatione in the case of an ideal storage ring with the insert

restoring the output orbit and direction of equilibrium polari-
zation.

In the mein sections of the storage ring <8< 7 ,
T+8,< 6 < 21 the value 3"35’/3?' is equal to zero if all re-
quirements met similar to those given on p. 29:

1) in transformation matrices for betatron oscillations
through the insgert sections there is no coupling of Z2-X - mo-
tiones

2) a dispersion function ‘ﬁ remains to be equal to zero
on the main sections;
3) in the insert sections the gquadrupoles should be pla-

ced in such a way not to violate the following conditions for

any trajectory el
o

S (Fx,- Z)pde=0 35(%&;%)?{/&: o

In particular, sll three conditions turn out to be satis=-
fied if there is no focusing elements in the inseri.sections

(in this cage, ";—’IE:R’* —.I'H=5’kxf-"{?}

If the conditions (7.23) are satisfied, radiation in the
sections themselves can be neglected. With the presence of two
enakes in a gymmetric storage ring there is no pelarizing ef-
fects under conditione (7.23) satisfied because of the gpin
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re-orientation on the beam orbit. Though, palarizgtian can be
provided either with the wigglers (sections with a large value
of-(ﬂ(%>or with the laser /21,25,26/. The role of a snak? ?an
be served, in particular, DBy the spin turn sectio?s (cnnstl?ns
(7.3) in thie case are violated). Note that in this case it 18
not necessary to have the field value larger in the places
where jE; ig directed along the field (in thie case, a.degree
g tends to 92%). There are many possibilitiss for getting the
high degree of polarization at any angle between the field and
ﬁ;_directiona because of ar:angement of the required vectzr ;
?9?/93" (see general formula (5.4) for ; }.'Sn, the exhireh
mum ¢ 95% > 92% is achieved in the section with a very hig

—

value of {ﬁ(‘) where we have ;

o o TR TE = oF _ 27 [ /A WT] - 3%
nf‘ﬁ'—-—’li it T3 = 7 /"—H?*I +.Hy.]'

(7] ’

-

‘Even in the case when the direction n, is perpendicular to the

W+ )18 [OF bles one to get the
field the arrangement 3"_:_;__ s [jﬁ“_.'; ena
degree of 2 ©60%.

In conclusion of this section let us note the following.
fven at two spin overturn along the orbit the spin resonant
diffusion is removed (which is quite agubstantial at ?‘,,4?’/?.«?.’;1}
ag well as the resonance dependence of polarization degree on
energy. Introducing 2M enakes enables one decrease at least by
1° times an influence of nonresonance depolarizing fantors'
{ﬂrﬁﬁﬁﬁjifv MR } and therefore to attenuate by M tlm?a
the design accuracy requirements for the storage ring magnetlc
gystem. This method of an increase in spin stability one com-
pare with the use of gtrong focusing instead of the soft one
for betatron oscillations of a particle.

8. Spin resonance diffusgion

Depolarizing influence of energy fluctuations increases
sharply with an approach +o the spin resonances bec%fae of an
increase in the spin orbital coupling parameter Fonjay .
'In order to avoid the high power resonances one ghould select
the storage ring magnetic gystem parameters and particle ener-
gy in appropriate way{ Though, tk:+e always exist resonance
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harmonics of sufficiently high order and one should aware how
the weak resonances could still influence on the polarization
degree. In addition, there are some situations when it is impos-
elble to avoide the powerful resonances. As an example could
serve the conventional storage rings at sufficiently high ener-
gies such that precession freguency spread in a besm becomes

on the order of the resonance distances.

Another important example is the eolliding beam depolari-
zing effect.

Let us clear up the physical meaning of the resonance dif-
fusion. Let Wy, be the spin resonance power, /A is a decre-
ment of radiative damping, 6’,,2: {53[5(”"’15:1])//1 is an es-
tablished spread of the spin resonance posgition where the dif-
fusion rate caused by the energy quantum fluctuations. At very
high energies C,& V, 8 — Ja ‘53' where da' is a beam energy
gpread. T 1o

Let us first evaluate the diffusion rate in the resonance
region for the case when Gu>>Wx and B,>> A . In thig case,
at every instant in the resonance region where the spin diffu-
sion rete is maximum quite & amall portion of particles appea-
red. Of course, eny particle comes to the resonance region be-
cauge of the diffusion and damping processes. Each particle
comes to the resonance region on average times per time unit.
If the resonance ig sufficiently powerful [w’ 2 AG};J and

rescnance crossing (because of diffusion and damping processes)

proceeds slowly then even at single in resonance a strong ran-
dom deviation of a particle spin is occured. For a time A‘f
when in the resonahce region nearly all particles have been
the entire disappearance of polarization took place. Thus, the
characteristic time of depolarization at sz%ﬁﬁy is equal
to : -4 '
T‘h}, ~ A /
2 3 b
At W, << ByA polarization diesappears for the multiple
fast resonence crogsing with aversge velocity Gy A . During the

. - |
time A ' approximately one crossing at average will occur with
a velooity 6, A 1 |

53#5: WE/FS}JA )
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By mean quadratically adding the passing results one can get
that the depolarizing rate "Eﬂ,; is approximately equal to
*f S WK? Ng_z
Zd’f " L /1 - —
T A Sy
In this case, an exact formula gives

t,;’; J'fé (JWel* & (V=) > J (B.1)

where g(?-});) is a delta function and brackets <..,> mean an
averaging over the particle distribution in a beam.

At calculetion of the equilibrium polarization degree one
should add the rate Z};f found out by formula (8.1) to v
(see (5.4))« It is important that in the radiative polarizati-
on region when Tgep ™ poe there always takes place the case
of the fast uncorrelated origins where the formula (8.1) is
valid. It is associated with that the damping decrement A is
much in excess of 'Z-'f;? . The calculation result does not depend
on the certain character of the diffusion and demping source,
it is only determined by equilibrium distribution over particle
energies and amplitudes of betatron oscillations.

This formula describes the cases of superhigh energy and
depolarizing effect of a colliding beam. For completeness let
us give the rate of a resonance depolarization for another ca-
se when there is a small spread at Gy<<A. At*] Wi 3> N\
polarization vanishes for a timgfjus-b becauge of power spread

W, associated with a particle deviation from the equilibrium
orbit. Since A >> 21:,.;-':.‘:@‘f this is the case when there is no ra-
diation polarization. At Wk << A  the depolarization rate is
evaluated in the following way. The time _{é:-r an eventual varia=-
tion of the main perturbation direction %) is on the order of
A~! . Therefore one should mean quadratically add the results
of the value variation for time ~ A~! (FSp ~Wi/A) ..

* Generally speaking, here A is an inverse characteristic
time for perturbation direction 1-;"” because of the diffusion
and damping processes. This inverse time can be in excess of a
radiative demping for the spin reconances of higher orders,
for example, for the resonances of synchrotron osclllations

(with large numbers).

5



Whence we get )
— 1" w"" 1 2 ]
- i e ]
Ldgf; ’r‘t" "-‘;1_1 /1 -_— M /A X A I
This is a maximum feasible depolarization velocity in an exact
regonance at amall Gy . '

The resonance diffusion studies in more detail are consi-
dered in Refs. /4,6,7,9,27/, where also considered areé the
examples of calculations of resonance diffusion at very high

energies with a presence of colliding beam in conventional sto- &

rage rings.

The author would like to express hisg gratitude to
Ya.S.Derbenev and A.N.Skrinsky for useful discussions.
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