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Abstract

In this preprint we discuss applications of semiclassical
methods, based on the topologically nontrivial configurations,
the insteantons. In section 2.1 we start with the simplest prob-
lem of penetration through potential barrier in one-dimensional
quantum mechanical problem, using the Euclidean time formalism,
Generalization of the method to gauge theories is considered
in section 2.2, and the role of light querks i; discussed in
section 2.3, In section 2,4 we consider instantm interactions
and study applicability limits of t’Hooft formulae, while in
gection 2,5 we discuss various "instanton liquid" models. Fina-
1lly, in section 2.6 applications of the instanton models to

the problem of chiral symmetry breaking is discussed.



2., SEMICLASSICAL HMETHODS

Historically, discussion of semiclassical methods was the
first attempt to go out of the perturbation theory domain in
the field theory context. Its primary goal was evaluation of
agymptotic increase of the coefficients of the perturbative
gseries, but the real turning point was discovery by Polyakov
and coworkers of the topologically nontrivial extremal configu-
rations -- the instantons -- in four dimentional Yang-Mills
theory.

For several years beautiful mathematics connected with inst-
antons was intensely discussed in the literature by multiple
theoretic¢ians. Many unexpected phenomena were discovered during
this period, such as tunneling between topologically different
classical vacua. Some old problems like the U(1) problem raised
by Weinberg has found their solution, at least in principle.
Also, as it always happens, new insight has lead to new prob-
lems we never think of before., As an example, the problem of CP
congservation in strong interactions turns outzgagﬁer nontrivial.

However, attempts to make some quantitative and reliable cal-
culations based on the instanton physics have so far failed.
Among them the most widely known work is that by Callan, Dashen
and Gross [2.13] » in which some first order phase iransition
in the instanton gas in colour field was predicted. According
to this work, hadrons are some drops of "dilute" phase, which
can be more easily understood than the vacuum itself. Unfortuna-
tely, leter studies have shown that the so called dilute gas
approximation used in this work can not be in fact justified.
The fact that this problem is much more difficult than original-

ly expected was rather disappointing, and most theoreticians
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have turn to other problems.

New impetus to the instanton physics was given by the develo-
pment of the QCD sum rules. First some intriquing correlation
between the dependence of vacuum field effects on particular
correlator and the instanton quantum numbers were discovered,
and later there appeared attepts to collect all such candidates
for the instanton-induced effects using some simplified model.
The most important result of these considerations is the obser-
vation, that although instentons really interact strongly, they
are not at a8ll "melted" completely, thus the semiclassical ap-
proach is not hopeless.

Recently very interesting approach to the instanton theory
was suggested by Dyakonov and Petrov[2.22], which is based on the
Teynman varietional principle, very adequate method for the eva-
luation of the ground state energy of quantum complicated sys-
tems. Although the particuler results obtained are somehow pre-
liminary and many open guestions are so far left, but it seems
evident that this approach also point toward rather dilute "in-
stenton liquid".

Now we make some remarks about the contents of this chapter.
In order to make the formalism with imaginary time more famili-
ar to the reader, we stert with the simplest quantum mechanical
problem of tunneling through some potential barrier in section
2.1, and only then proceed to Yang-Mills case ( section 2.2 ).
Rather nontrivial role of light quarks in the instanton theory
is.considered. in section 2.3. The next section is devoted to
instenton :interactim;s, nd then, in section 2.5 we come to
"instantesn, ligquid" models. In the lest section 2.6 we dis-
cuss attempts to solve the SBCS problem using the instenton-

induced forces.

2.1, Tunneling in guantum mechanics

We start this chapter with the problem which can be found in
any téxtbook on quantum mechanics. In addition, the method of
its solution to be discussed below is much more combersome than
standard WKB method, and the result obtained will be shown to
be somehow less precise, Therefore, it is reasonable to empha-
size from the start why it still is more important for us: it

can be generalized to problems with many degrees of freedom.

Our discussion is based mainly on the work by Polyakov [2.4] .
First, let us remind the reader some elements of Feynman for-
mulation of guantum mechanics based on path dintegrals. Let us
approximete the path =x(t) by N+2 numbers, giving the coordina=-
tes at {ime moments tk=k a , k=0,1,...8+1. The initial and fi-
nal points are also called xo=xi,xN+1=xf. The limit of some N-
dimentional integral over XyeoeXy is called the path integral.
For its explicit formulation one has to compute the transfer

matrix of the transition during small time interval a

(ol,{f[g“-”ﬁl{h) = Cout [ T lins + C(a®)  (2.1)

Here H is the Hamiltonian, and T is the transfer matrix, If T
is known, the whole amplitude is the product of N its copies.
In the limit N—-e and a-~» 0 we obtain "DPyson evolution operator.
It is instructive to define T for nonrelativistic particle
without intermsl quantum numbers ( spin or colour ), moving in
time-indepentent potential V(x). The Hamiltonian is

iz £ e )

2 (2.2)
With the expression for the transfer matrix
I -;23 - ¥
a Xa
o ITh) = Kxle 2 e Tm™ ¢ 27 [ XD (2.3)
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yne should "sandwich" in between the states with definite momen-

;a, with the result

C(dp o PR MR
TR el e @
2
HERAER S e

;0 that the total amplitude is equal to

Gl beT 0 w0

Y dpedx, : g (2.5)
Lone [fre expia [Zp () Hipo,, e}

‘n the case considered it is possible to integrate over momenta,

‘or the relevant integrals are Gaussian. The result is the famous

‘eynman formula. for the nonrelativistic propagator
(i le em“‘_ )= Jaxa) exp[ff[ﬂf!]fcz.s)

here § [ X ] is the action for given path

g . 2
o éf“ (M"z_:' vx)) (2.7

he method of transfer matrix is rather general, and its further

.pplications to numerical evaluation of propagators will be consgi-

ered in section 4.4.

Our next ate§ is the famous Euclidean time transformation.
et us turn t to i7 and consider the path integral (2.6) in T
epresentation. Even at the classical level one finds that the

:quations of motion become

2 =
n E{_f( e ‘-i,—i-; (2.8)
d .[2 I

ind they allow the nontrivial solutions for the motion under the

sarrier. In quantum theory, we have new weight exp(-SE) where

g de[g_d(%)% Vx| (2.9)

For definiteness, let us consider the popular example of the two
well nonlinear oscillator with the potential

vix)= € (x* £4)* (2.10)

for which the nontrivial solutions of classical equation (2.8)
is like follows . 2 2. Y
i Wirr = < f ) 2
Xy (T) = f %[—5(4-2'6)] , W=z ( = (2.11)
Its importance is connected with the fact, that it has the mini-
mal action among all paths leading from one well to another:

¥ Jam 3
o (2.12)
Se = dis BN

If this action is large S°>>1 ( or, Vin fact, the Plank constani
+ : taken to be unity in the present work ), the tunneling pro-
bability is very small, proportional to exp(-So), and only paths
close to the classical one (2.11) are important.

So, in Feyman formulation the semiclassical approximation is

reduced to the statement that the path integral can be evaluated
in Gaussi a {2} ti near some extreme confi tions.

Let us write down the path es consisting of clessical and quar
tum parts X (7 )= Xy (t) + Y(r) with subsequent expan sion
up to 91 order to; the action

S[xtn]: So+12‘g°m, {j("g;z+ v )y} ¥ -0y
General method of the calculation of such integrals is the expan-
sion over eigenfunctions of the differential operator

da 1 = = 1
[—a}”v ]Hh(r)—f,.y,,(ﬂ h S 2 {Cu 9. (2.3




so that one obtains the result of the type
ks 2 AT
<)({|€ Hn’x;>: cousf[dzf(-gr—zi-vljl ex/)/—_fa) (2.14)
A i
det (- 5. +V Me,

There are infinitely many modes with large Wl , so the determi-

"

nent is in fact divergent. Its renormalization is made by the

consideration of its ratio to that for the free motion, using

iy 5 W P
ol ™10y = (4P, EZ g =

(== = 2 -
r—l m

- Cﬂ”sl‘ g ( 4 HZ )
h=t z_o

(2.15)

Another general problem is the appearence of one mode with zero
£ (&t [+=), so that (det...)”"/? in (2.14) is also infinits
It is easy to trace this zero mode and point out its physical
meaning: solution (2.11) shifted in time by an arbitrary emount
T, 4is also & solution. It is quite clear that the integral
over such coordinate T, is not at all Gaussian. On the contra-
ry, the action does not depend on it at all, so we have the un-
limited integral over T, , explaining the encounted infinity.
Clear, that in order to work with finite quantities one should
consider transfer amplitude per unit: T¢ An/dz ., trensi-
tion from the i:-ztegration over coefficient (, to the integration

over T, leads to some Jacobian of general type, which can be

found as follows

() = 0T, e - - [ x, 0 = 8GY,

(2.16)
dca/drc e ‘/3;

Qur result now looks as follows

T

¢ xr [ € | fREE. -
L 2 flogaupd g (2.17)

P PC“"S"* [L{Lll (‘ ;7}241/ )_J "/56 91/’[" 50)2\;
where primed determinant reminds that it corresponds only to ncn-
zero modes. Note, that the factor -,/?; for each zero mode is
the general result, which will be used in Yang-Mills case.

In order to determine the numerical constant in (2.17) one
should find all E‘,L . In the problem considered at the moment,
the two well oscillator (2.10), it wes made in Ref. [2.5], see
also rather detailed discussion in review[2.3]. The final result

looks as follows

€ 2.

(2.18)

~HE,

cfle > = (dF)

)

i ;
d= J&% wexpl-5.)
i T

The amplitude of the transition from one well to amothex is pro-
portional to time ’f; , 8o for its large values one should take
into account multiple transitions.

For large enough S’o the tunneling probability is very small,
so transitions can be considered as independent events, with

the probability of n transition to be the Foisson distribution

ook Sl M. ~T,d
th T (Tod) 4 (2.19)

so that the complete result for the transition amplitude is as

follows

1le

HT‘,J [ias “_"'2:‘

.{) - u%/ Vi (2.20)

sht,d)

These calculations naturally suggest the following termino-

logy. Tunneling events are considered as some one-dimensional
gy




gas along the time axis, which is very dilute at large Kiee
transition from one well to another takes place durind time pe-
riod u;'(2.11) being much smaller than their separation c‘lﬁ’ {2.18).
Thus, expression (2.20) is seid to follow from dilute ges sppro=
ximation, and individusl trensitions are called instantons ( or

kinks ).

Now we are going to discuss the result (2,20) further, in order

to meke contact to more familiar features of the two-well prob-
lem. First, we derive the ground state energy shift due to funne-
ling. In order to do this one has to expand the transition empli-
tude in stationary states. Evidently, for the n-th level the con~
tribution is proportional to exp(-EnTo ) and at 'Z;—a == only the
ground state survives, Thus, it follows from (2.20) that

E = ‘-‘23 - d (2.21)

c
or the shift is just equal to the instanton density.

The next instructive calculation is that of the energy of the
first excited state. Following [2.4-], let us consider the corre-
lator of coordinates

X (T) X(e)? (2.22)

WOR) S T i

Z Xz(oj -

The solution (2.11) can be substituted by the step function
‘K“, = ‘Ic 9 (7T- Z-C J' (2.23)

and, using agein the dilute gas approximation, we may average

over the ensemble of paths with n instantons with the result

2§ vt s (- 2d4'T) (2.24)

10

Agein, let us connect the definition of the correlator (2,22)
with the familiar language of stationary wave functions. The
ground state function is symmetric, so the average x in it is
zero., So, first contribution to the correlator at large T

is given by the nondiagonal trensition from the ground state to
the first excited state

K(r) ~ NKelxIn > €"P[‘ (F.‘EDJT] (2.25)

Comparing this relation with (2.24) one finds the energy level
splitting

siltecs
EwiE-s 2d fer

The reader may ask why we obtain so simple results by so com-
plicated line of arguments, rather than directly from Schredin-
ger equation, The reason is that the same method is used below
for the evaluation of the ground energy shift and lowest exci-
tations ( hadronic masses ) in QCD.

Still it is interesting to compare the results obtained with
the standard WKB result

E,<E, ~ exp (- Swws )

?[(sz(v(x)—Ea)]V‘ dx

X

(2.27)

S

The leading term at large S0 is the same, SWKB_’ 545 The pre-

(11}

wWKB

'

exponent numerical factor depends on the particular approximati-
ons near the turning points., The standard applications of Airy
functions give the result incorrect by the factor \/T/e , while
more accurate quadratic approximations for the potential around
the turning point give the result in agreement with (2.20). How=-

ever, SWEB have also some further corrections , and, as demonst-

rated by Fig.1, is more accurate at So-2-6. It means that non-

1




Gaussian fluctuations are important at such SO'

Another type of effects, also neglected in the dilute gas
approximation used above, is the instenton interactions. By ana-
lytical methods it was discussed in Refs.{2.6}and by numerical
path simulation in Ref.[3.45] by Zhirov and myself. We have ob-
served many phenomena demonstrating that the inghnton gas 'is not
ideal even at large So~;6. in particular close instanton-antiin-
stanton "molecules" and even clusters with several instantons,

However, theory of such phenomena is not so fer developed.

2.2, Instantons in gauge theories

In our discussion of the instantons in two-well oscilletor
we have not empasized the symmetry aspect cf the problem. Howe=-
ver, the classical solution (2.11) with finite action overthe
infinite time interval exists only due to the (x)e> (=x) symmet-
ry of the potential, allowing for different asymptotics at e
going to plus and minus infinity.

Looking for similar phenomena in gauge théories in four di-
mensions it is reasonable to start with discussion of A/i at

going (o infinity, Finite action implies that é&fv dec-
reases slower than 1/x3 s but A;i should not tend to zero:
the pure gauge potential -

+

P s
g fqﬂj (% o0) oy Jd s A (2.28)

responds ito zero field strength. For example, with Six)
depending on angular variables only one has A~'1/} . Can such
poteniials be "gauged away" by some continious gauge transforma-
tion *

. . M : M 1 1
'he topological analysis made in the pioneer work [2.1)] has

shown that for S with the asymptotics
B g
S __“x,, +¢x6)/JP]"

( the group is SU(2), and § are Pauli matrixes ) it can not

be done. The meaning of n is the following: it shows how many

times the tree-dimensional sphere is covered fjthe gauge group.
( Note, that both manifolds are tree-dimensional ). Evidently,
no smooth variation can change n. It is important, that there
exists some gauge invariant expression for n
2 q ~a
n o= 592-"2 j‘ﬂ,X G/,w G/‘v (2._29)

P o ]
where (,, * 3 €uvea Gs, 18 the 0 called dual field. The

proof is based on the relation
o q Qb ,8,€,¢
6262 = U [2nss (A2D,4+ 29€“AAAS)] 230

and transformation of the volume integral in (2.29) to the sur-
face one, with the use of the asymptotics of Af‘.

In the same work it was pointed out that the action can be
rewritten as the following relation
E ! 4 AL o~ ! ¢ _q,2
s o ¥ . 0 L i e 1
§ = 4 {d (6)": S'd"[quwéf-v +5(6u-CL)]
(2.31)

frem which it becomes evident that its extremum is given by the

@ _ /e
selfdusl fields (. = 6 e

letely determined by the topology. Let us give the explicit

» and the &xtreme action is comp-

form of the solution of Yang-Mills equations, the instanton,
corresponding to n=1

q g 2
Aq: E ’bl,ﬁlr [‘.z)’ g =i ‘l"f vf
F o fe gl Phove Cpe 9[[:‘,).1; )7 (232




Here Z/‘ and f are some free parameters, the so called posi-
tion and radius of the instanton. Another form of such configu-
ration is given by the so called singular geuge, in which the

topological charge i transfered to the origin -2 0 :

b-2)2(x-2)+ ¢')

b soa

iy

(2.33)

Y el sl ST A &} (pse>v)
7ol N ey o k- Mg

We have used above QV - the so called t'Hooft symbol
€ £
amv MVEY R amv b
//lV { an M=y ’)1"“’ = Jav ( 034)
O 2 V=4 o i Ja/u

q

,}I;v = E’E/‘““’“{ﬁ 774;

e oo o

B, WA Fhmo, AhLend
"y]r?v ,‘1;‘) - é:ua' B J:m {vy F.F v A

Exchanging ] and 7] one obtains the so called antiinstantox.
Now let us return from mathematics to physics. What is desc+
ribed by these configurations ?

After the introductory section 2.1 the reader surely know®

the answer: they describe tunnel between some topologicall
different states with G qfo , the so called classical vacua.
Trengitions are governed by the integer number n , so we have
infinitely many vacua connected by tunneling. The problem is
therefore similar to the well known quantum mechanical problem
'O+ the periodic potential with infinite number of wells, model-

ling some crystell. As in that problem, there appears some

set of states ( "the zone" ) numerated by the phase 6 which

the wave function gains per one period - the so called € —vacua
[2.28]. The states with D#£0 have some quasimomentum with the "time
arrow", so they are not T and CP invariant. Thus, as it was poin-
ted out by t'Hoeft [2.8] , the problem of CP comservation in
strong interactions is rather nontrivial, and there should be
some reason for the fact that © =0 in real world?)

There is no answer inside QCD - B 1is conserved in strong
interactions, so some other interaction sheuld be responsible
for it. As an electron emit phonons in solids and relaxes to the
zone botta:?wgkne’%.s :%::g degrees of freedom which can absorbe

the extra energy and lead to the lowestf=0 state. The so called

axion [2.29-2.31] was suggested, but its simplest version seems

to be ruled out by experiment., However, there are other posaibi-
1lity, the "invisible" axion with much weaker interactbns. For
them there are only some cosmological limitations“).

Let us now return from these general -remarks to the evalua-
tion of the tunneling probability or, using the terminoclogy ex=
plni?in the preceeding section, to the instanton density in
( four-dimensional ) Euclidean space.

First, let us ulcﬂate the number of zero modes., There are
four translations, one scale transformation ( small change of ¢)
and three Euler angles ( in colour or coordinate space ), As a

‘)Frm experimental limits on neutron dipole moment 9‘10'9, see
[2.32].

")Of course, the interaction should be sirong enough in order
the relaxation to take place, but it is not strong condition.
The limitations mentiomned are such that not too much energy is
stored now in stable "invisible" form, for we know its upper

limit from the Universe expansion law, see [2.33] .
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result, there appears the factor (\/?ﬂ )g' From dimensional rea-
sons the following expression for the instanton density can be

written:

an - coust ag S'L(e*so L& g’

' g% o g, 0 (2.35)
where we have substituted the instenton action 3, and
have taken into account ::hnrge renormelization, so that 3 is
changed to g(g ). In order to find the numerical constant one
has to make very lengthy calculations, see [2.8,2.9]. For the
SU(N) geauge group there are 4(N-2) extra rotations of some SU(2)
subgroup, so that there are 4N zero modes. Finally, the instanton

density is equal to

du _ dg . SZN-—S;J-CZN
az - qs  (W-1)!(n-2)! 4
2.36
295/6 (2.36)
G B O s S U :

The numbers given depend on the particular regularization method
used, namely that of Pauli-Villars, Respectively, expressing the
charge via /\ we should use APV" Transition to other schemes
is quite obvious,as far as ratios of lambdas are known,

So, using dilute gas approximation we have obtained (2.36),
which imply that the instanton density grows with ¢ as p°%.
Obviously, at large ehough S’ this result fails. We return to
this question in section 2.4, after discussion of the role of
light quarks in the instanton physics.

This follows from (2:36) snd the asymptotic freedom formulas
for the charge.

16 - -

2,3. Instantons and light quarks

Let us start with the explanation of what we mean by "light" ‘

quarks here: they ere those with mass m < 1/57 » § being the
instanton radius. The opposite case of heavy quarks is not so
interesting: they are just decoupled.

For simplicity, we start our discussion with one massless
flavour, t’Hooft [2.8] hes discovered very nontrivial phenomenon:
well localized solution of the Dirac equation in the instanton
field. Tt is usually called the zero mode ‘Y, , because the in-
tegration over fermions lead to Mattew-Salam determinant which
is computed in the standard way as the product of eigenvalues

£, ©of the Dirac operator

(f@u(ﬁ)‘f::‘ £n th.

What is remarkable, this zero mode dees not correspond. to any

evident symmetry ( as zero modes of the geuge field determinant g i
go it was not predicted beforehand. The explicit form of the

zero mode is

32
wogs Saig] (n)e , wigen 47

and in singular geuge (2.33) it looks as
-3 -
- § Al e
o (x) ‘ﬁ[(’ 0%g'] {1—7,‘&)\/1;:(? (2.38)

Note that two-component spinor ¥ means that spin and ( su(2) )
colour of the quark are directly coupled to zero sum. Another |
important observation is that chirality is fixed.

Because the fermionic determinant stands in the nominator |

( unlike the gluonic one ) its zero mode means that the amplitude
is zero ( and not infinite, as for ordinary zero modes ). The

17
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physical meaning of this tunneling suppression is connected with
direct relation between the topological and axial charges: only
transitions with the 'simnltaneous variation of both quentities
have the nozero amplitude., As it was shown by t’Hooft, this is
seen explicitly if one considers amplitudes with some external
current j(x)able to flip chirality of a quark. So, with massless
querks the instantons can be considered as some effective vertexes
with 2 Hf "legs", absorbing right-handed and emitting left-handed
fermions, As far as properties are inverse for the antiinstantons,
the "molecules" made of instanton-antiinstanton pairs can

exists, Purther discussion of relevant topics we continue in sec-
tion 2.6,

The calculations with nonzero modes are rather standard, in
particular, they contribute in the obvious way into charge renor-
malization, Apart from it, there appears some additional factor
for each fermionic flavour, For nonzeroc quark mess the instanton
density is nonzero even without external currents, and in the

limits of small and large ng? the fermionic factor is equal to

3 mg (14w ue)t ) 2
Flmg)-= TR S (mg 1)

?S‘Mf

The former expression was found in[a.B] and [2.25] while the lat-
ter is given according to [2.3) .

Now we return to the effecitive interaction among light quarks,
generated by zero modes. For practical applications we need mamiy
the case in which ¢ can be considered as small quantity, so

that some local effective Lagrangian can be writtemn for this in-
teraction. It was derived in L2.16] by the following

18

simple method. In singular gauge zero mode at large x behaves

as follows

9, Tems 2
X200 m

shs ( 1_+__§£) ¥ (2.40)

z
which can be written as free quark propagator times some x-inde-
pendent matrix. Some complications are only connected with three
flavours and imbedding of instanton SU(2) group into realistic

SU(3). The (somehow lengthy)effective interaction looks as follows
S dﬂ(g){ I,
J?{f Jdg &‘f'}}dg Q,zls (m‘-? 3 x 1 L Q;L ) ¥

3)[( e

1'/") ;MV)( g :gg ? RQ:N.)-‘-
+ ,%(—"-u g)daﬁc4

N )
Ve 2,-w -c +(2P0mt]+ 320 (({ ?3)

q@f+95f ng?ﬁ % Le> R
J J J 256 (3 g) V?J,\ J}/\/‘-} ¥ )

9,: (5X)g , 9,z (= ")‘i o & R T

Jr.-/ﬂ’ ; Qcﬂ /““Vf CZLL

As we will discuss in chapter 6, its applications are possible

(2.41)

)

also outside the Euclidean time formulation, e.g. directly for quark
models of hadrons.

This effective interaction explicitly violates U(1) chiral
symmetry, but not the SU(Nf) one. We return to this question in

gection 2.6.
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2.4, Instanton interactions
So far we have considered instantons in "empty" space~time,

in which fields decrease at infinity. Now we are going to discuss
what happens if some external fields, gluon and quark ones, are
present.

For weak external gluon field the problem was solved in Ref.
[2.7,2.12] , but we prefer to outline more simple derivation
of later work [2.16 ] . It is based on standard reduction formula

describing transition of some field Af,. to asymptotic gluon with
the polarization vector &

M - "jf’[)( Qll?xfrj QZ A/i? (x) (2.42)

Now, let the field be the instanton solution in the singular
ge.uge*z than one immediately has

& =Ly a 2 2
Fics 3 % ,11‘0!!/ qv E’a g e
For n gluons it goes similarly, and exponentiation corresponds to
the classical limit. As a result, the instanton demsity is modi-
fied by the following factor
dn au ( 25 2-q g
M exp (- S ¢ L6 00
ded . * v Cuv (2.44)
dgde A7 e, J :
So, instanton behaves in the external field as four-dimensional
€.4q.
dipole. Note also, that only field of definite duality (\fca.E used
by antiinstantons ) give the nonzero contribution to (2.44).

Now, consider small instanton in the QCD vacuum, with nonzero
fields of vacuum fluctuatioms in it characterized by [5 .i3].

y FugE -
= This point is important, because in this gauge field decrea-
ses at infinity in such a way that asymptotic states make sense.

20

<ol(96)?lo) gl s sev’ (2.45)

Using (2.44) up to the second order we find [2.16]

i
ai’ . du] J% i ) (2.46)
s et 1 4 ol 4 4253 B T .
m dgdz lg-o ( 2" 9/")
and with available estimates for the gluon condensate (2.45)
one cen see that t'Hooft formulae for the instanton density
are applicaeble for <1 Gev™!

Effect of the quark fields can be estimated with the help of

, or for very small instantons.

effective Lagrangian (2.41), considering its average value in
physical vecuum with nonzero quark fields, connected with the
quark condensate (¢¥¢> end SBCS. In Ref. [2.16] discussion of
rather complicated multiquark operators en tering (2.41) was
gimplified by the so called factorization hypothesis, to be dis-
cussed in section 8.2. In this case only the following fermionic

factor appears

du _ _du ; 1340 M, 8 (2.47)
dgd% 1 dgd?quumn {7 ( f Pﬂ)

e 2
My (3) = M, — 5 ¢2:9:28

where we have introduced the so called effective mass Meff
caused by the gquark condensate., Note, that due to SBCS the inst-
anton density in the QCD vacuum is nonzero even in the massless
quark limit.

Completing our discussion of the instanton interaction witn
!_gg.; gluon and quark fields we may conclude, that in both cases
we have found that the instanton density is increased. Using the
terminology of statistical mechanics we may say that the iderac~

tion between instantons is of the attractive type.
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in section 2,2 we have shown that instanton density is too
large for large enough jJ » 80 some repulsion is needed in order
to stabilize it, Jevicki [2.14] have suggested the existence of
some repulsive core for the instantons, and Ilgenfritz and Mueller-
Preussker [2.19,2.20] have developed some model based on the as=
sumption of its existence. However, the physical nature of this
repulsion was not understood.

The difficulty is mainly methodical: so far all attempts to
solve the problem of interacting instanton gas have failed becau-
se no well defined way to introduce some.collective variable with
the meaning of instanton-antiinstanton separation was found,

Quite radical step was recently made by Dyakonov and Petrov
[2.22) , who have left the straitforward path and have consi~-
dered the problem with the help of Feynman variational principle.
In such framework the question about the instanton interactions
is much simplified: all one has to do is to substitute the ansstz
used into the chosen action. Details of this approach will be
discussed in the next section, and here we just present the re-
sults for the simplest ansé&tz, being just linear superposition

of instantons and antiinstantons
N-

A ZA (2. 8:) + L Aulxz, g;) (28

=1

S

, defined as the difference between Z ( ) and . the

int 93(3)

complete action,is rather complicated ﬁmction of the instanton

positions and orientations. Wé give here only results for small
iwo

and large distance R  between‘instantons and instanton-antiin-

stanton, marked I] end T i respectively:
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II 2
= £
o e }(R-w)
II - :
SIW S - 0—20)2]5«/{_:) (2.49)
1T =0 né,6 R, R, 9‘242
SINT = (41/1411 O ‘7/“ gz ){({ ?.ﬂ;z i
2 ?(Y?f?} (2.5;J
15 9.5 9 (9/+¢,) 23N 920l (9. ¢, -
26 =" RF AL g 064 )
£l T ?l.?z(gt?* 27} N
S.'I'N"T' e ‘ 225-? ‘IZ;V— T 750]'* 0(‘2)

(R~e)

Here Oﬂ8 is the colour matrix, depending on the relative orienta-
tion in colour space., Note that at large R the leading term in

IT case is the femiliar dipole term. The factor in brackets

Jies within the following limits

Sy ¢ (93,0 4,16’ RR),_»? (2.51)

so for proper orientation this term is attractive., However, the
next to leading R-s term is repulsive and identical both for LI
and TSl s for most attractive orientation it produ-
ces some minimum at R2> 2.537 with depth of about 0.1-50. With
the interaction of such type the instanton density surely is
stabilized.

However, a word of worning is needed here. First obvious re-
mark is that apart from "classical" part of the interaction there
also exist "quantum " interaction, being the log of determinant
in our ansdtz background field. Second, one may well take another

ansatz. ln partlcular, the multiinstanton configurations [2.11__]
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have the property that "classical" Il interaction is exactly
zero, This observation suggests some better angdtz, with lower
energy of the QUL vacuum.

Our last remark 15 that quantum eiffects really seem to pro-
duce the necessary repulsion petween instadtows, as it i1s found
that strong enough fieid ( also strong enough temperature or
quark density - see section 7.2 ) suppress them, see [-6‘” ].
yualitative conciusion made 1n my work is, in faet, very simple,
Large ius.aulons have large prubability pecause their action
$o° BTI?/Q?(Q) 18 small, However, in strong riela & ?  all radia-
t1ve corrections are cut otr by the field at momenta K_2~ [6,‘?,,}

Concluding this section we may say, that small instantons with
¢ < 1 GeV™! make the ideal gas with well defined properties,
which is however too dilute to produce some noticable effects.
At larger g instantons interact, at large distanses attrac-
tively and at small distances ( presumably ) repulsively.

2 The instanton liguid
The qualitative properties of the instanton interaction suggest

that they may form some matter similar to ordinary liquids, thus
the title of this section. We kmow from statistical mechanics
that even simplest liquids are not so simple objects, to say no=-
thing about the instanton problem with rather uncertain interac-
tion.*) Therefore, it is natural to proceed to the problem from
the phenomenological side.

The first estimate of the instanton density made along this

*jnawever one should remember that this problem is much less
complicated than that of nonabelian quantum field theory.
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line was made in Ref,[2.17|based on the phenomenological value
of the gluon condensate, found by means of sum rules. Assuming
that instentons dominate in this quantity one finds
n,-n_: Tfi}f_dg ~ <(96)> (2.52)
6ym?
Roughly speaking, it means about 1 instanton or antiinstanton
in & cube (1 fm)%,

Now, are these instantons large or smell? In order to answer
this question in Ref, [2.17] the dilute gas t’Hootrt instanton
density was used, cut off at some {. at which total demsity
is equal to (2,52), The result was

Q= TTYT i - (2453)
comparable to the instanton separation. As a result, rather dis-
appointing conclusion was drown that main fluctuations in the
QCD vacuum are "soft" and instantons are completely "melted".

However, as we have discussed in the preceeding section,
this expression for the instanton density is strongly modified
at much smaller redii due to the interaction, Qualitatively, at
§~fwl:he main effect is attractive and density exceeds the dilute
ges expression, but than repulsion should make some cut off,
In Ref, [2.13} 1 have teken into account the dipole forces and
than compared the density with (2.52). As a result, (2.53) was
essentially modified
.
gt' 600Hev ~
If this estimate is correct, completely different picture of the

vacuum fields takes pface.

Its main qualitative feature is the vaecuum diluteness, the

ratio of Q. to avarage spacing between the fluctuations is
relatively small:

A




= 4

yC/R SR O (2.55)
At first sight it is not so small parameter, but it mainly en-
ters in the form of the standard packing fraction £ [2,12]

1(: =9 (%i?fc‘f) Vi_‘, e ?‘10 (2.56) :

( first factor 2 stands for account of instantons and antiinstan-
o b ] 2 ‘f
tons, 'while _7%'_' Qe is the volume of the four-dimensional sphe-
re ).
Moreover, the value of the typical action of the instantons
is in this case rather large

Lo L

so thaet one may ignore quantum fluctuations around instantons and
Justify the semiclassical framework used,

Finally, the correction to the instanton action due to the
interaction with other instantons is of the order*)

Seoaiis = (259 (2.58)

INT

so that it is reasonably smaller than S, (2.57) and instantons
are not in fact "melted" by the interaction,

On the other hend, § , is large enough so that it is impore
tant for the estimates of the absolute probabilities

exp (- Sy ) ~ 20100 (2.59)

It means that the dilute gas approximation is inadequate,

) Although the matter is rather dilute (2.56), in four dimen-
pions each instanton has about 8 closest neighbours, which exp-
leins why this quantity is relatively large.
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The vacuum picture outlined above was tested wusing some
correlators in Ref,[2.18] , which we discuss in details in chap-
ter 5. Monte-Carlo data on beta~function, first compared with
the instenton calculations in Ref,[2,15], where than treated
by Ilgenfritz and Mueller-Preussker [2.19] , with fitted core
gsize leading to nearly the seme parameters for the instanton
gize and spacing., Discussion of SBCS in this model is given in
the next section, while its relation to "constituent quark"
model of hadrons is discussed in chapter 6, With the increase
of the number of successful applications, the confidence to such
picture is growing.

1t is instructive to compare the instanton density which fol-
low Prom these considerations to parameters obtained by Callan,
Dashen and Gross in Ref[21 3). In the absence of repulsive inter-
action or empirical limitations like the (@ 6)7> value,they
pave predicted too much instantons, We remind that in Ref.[2.13]
considerations start with the simplest case of strong applied

field with small instanton density, and than the field decreases.
With larger density of instantons it is claimed that some instabili-
ty is observed, so that weak enough field is expelled from va=-

cuum, At Fig.2 we compare the instanton density at various sta-

ges of this process with empirical data considered above. It is

seen, that for this instability to take place too many instantons
are needed, much larger than it is allowed by known value of

the gluon condensate. (See also wmarks ‘ [220]).

Now we pass from the general discussion of the empirical in-
formation to recent variational approach suggested by Dyakonov
and Petrovp,22]. Previously Peyuman variational ﬁéﬁgéple [2.21)
wes used in somehow similar problems, say that of"hekium.
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It is based on simple and very general relation
e M N e (2.60)
where x is random variable with arbitrary distribution, It is
just a reflection of the fact that exponent is the convex curve,
it is most instructive to check (2,60) for two arbitrary pointa,
Now, suppose we substitute the exact action S 6@ approximate
one 81 , than from (2.,60) it follows that

(o9 > v (S-@W por ! ) exp [- <S—§_1)1] (2.61)

where QD is some field and the index "1" near the brackets means
averaging with 31. Remember that statistical sum can be under-

stood as

»

(oo ~ exp[-5.7V] (A0

where § is the vacuum energy density and [‘'l/ is the four
volume considered, Therefore, one may rewrite (2.61) in more trans-

parant way
£S-5, 2

€ < E’l * TV (2.63)

which means that we estimate the vacuum energy from above,
This idea was used in [2.22] as follows. Let us take the
angiitz (2.48) for classical field A’ and write
q acee ) [}
3 .2 (2.64)
;L“ l]/* o g
The asgiqn is now expanded in quantum field Cg: as follows

S 850%) * fdrjﬂ a, t fedxdx’ @,0x) W, O 0)at. -

: = (2.65)
Jﬁ 622"(;“'23 lﬁﬁ;v = (' ;Z) gi;v +é?(€;Ay;%e

n

I

|

Existence of the linear term shows that /), is not a solution

of the classical equations, The radical idea is to omit this

lineer term and consider new action 51 without it, for which

geussian integration can be made. In perticular, such choice
of 5, leads to
&= 8P = &dx,',u Wy =G (2,66)

80 the additional term in (2.,63) does not arize, Approximately
determinants for multiinstenton configurations is substituted
by the product of determinants: diluteness & posteriori justifies
it, Now the problem is formuleted as that of statistical mecna-
nics, with only "classicai" interaction discussed in the prece-
eding section depending on the instanton configurations.

Of course, such problem is very nonirivial by itself, In
particular, in [2.18] I came across the uncomfortable fact that

the minimum of energy is definitely given by some cubic crystall

of NaCl type, with aiteﬁ%ting instantons and antiinstentons.
Obviously, we do not need spontaneous violation of Lorentz and

" . 3 % -
colour symmetiry in QCD )- However, the instanton problem hasz

=]

some analog of nonzero temperature in i%, # (¢), so the mini-
mum of free energy is in fact relevant, As it is shown int2.221,

: . e ¢ o b
it safely corresponds to the liquid phasec f“ NE 2

- L Tt

Moreover, some features of the problem turns out to be sini-
lar to those previously obtained from the phenomenology, Sy
X o o o

E{ F‘/iﬂr’[_-":‘ yo &l g5

g( /’Q iz [,’3 red (8l = ‘\Ent‘.l'.:’
*)Tnis pheromenon may be wellcomed in other context, say in
theories of gravitation in which zero mass of the graviton is
connected to Goldstone theorem, In this casc cne needs tensor

condensate (&_ > % O in space-time,
gl
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Evaluation of the absolute value of the vacuum energy by
tl}is method is not so easy to make, and they have used another
variational principle. Note, that also variation of the insten-
ton shape f(xz) :

A P N xZ (2,68)
7 S e Xy £(5)
was shown to increase the vacuum energy by the factor 2. The

final estimate of Ref,[2.22] is as follows

((36),3.,> = (3-26/',91/)7 (2.69)

which coinsides with the phenomenological one at AP-:'.'SU MeV,
Recent lattice calculations to be discussed in chapter 3 give
for gluodynamics /\PV': 150-200 MeV, also they have produced
{4 9 6)? ) one order iarger than the empirical one in QUD with
quarks, Therefore, the result (2.09) can be said to be too
small.

Two possibilities are therefore open, The first one is that
with more accurate calculation, better ansatz and inclusion of
quarks we will be able to obtain more reasonable value for the
vacuum energy. Another case is that some other fluctuations
are dominah¢ in QCD vacuum. Anyway, the variational principle
is very valuable methodical tool, and its better understanding
and more wide applications is needed.

In connection with this, one more remark is in order here.
It is possible to evaluate corrections to variational energy
density by the evaluation of ((S-—S.l)a) which, if small, tell

us that we are really near the true vacuum energy.
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2.6, Instantons and SBCS

We have already mentioned in section 2.3 that t’Hooft effec-
tive interaction induced by instantons in the presence of light
quarks violates the U(1) chiral symmetry, but not the SU(Nf)
one, so in order to explain its spontaneous breekdovmn in QCD
vacuum ( SBCS ) we need some other mechanism.

Callan, Dashen and Gross [2.247) have suggested the second
order interaction induced by instanton-antiinstenton pair
( see diagrem at Fig.3 ) as a candidate for the attraction
between quark and sntiquark in the scalar channel, leading
to the instebility of the symmetric vacuum. lis contribution

to Bethe-Sdlpeter kernel was found to be as follows

[&IVI du J'/L 210"[!{?3?,3‘

249 4749’
S Y cap[- (5031 19-41)] Lol

2,98

(2.°70)

where [ is the totael momentum of the pair. The instanton
density enters in power 1/2 because each instanton belongs
to two lLoops, --see Fig.3 . Using some ap-
proximate formula for the integral over ¢ (valid at pf< 1)

one has
1

5 13
’ 2[dn  dn [4 i
Z’p (pg)= 32T [ai_;ag dﬂe’dg'] (S;%lexpfp(p;;}(z.?ﬂ

The condition for the instability reads as the condivion 1or
the eigenvaiues or the kernel under consideration

) > 1 (2.72)
Jdo' 2, (e.0') ¥ (3') = Ep) % (8)
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and the gquestion we adress now is whether the instanton para-
meteys, considered above are sufficient to do the job.

Both in the work by Callan, Dashen and Gross [2.24_] and‘}gny

paper [2.2’7] the answer to this question is positive: the con- _

dition (2,72) is satisfied. However, there is important quanti-
tative difference,

In Ref, [2.24] the instability was found to appear at rather
large p £ 1 GeV, while in my work much smaller instanton den-
sity has resulted in more modest effect, with the instability
present only for p £ 200 MeV, The latter case implies that the con-
densate(developing due to the instability)ia rather homogeneous,
with important support from evaluation of four-fermion operator
averages 6y the sum rules, see section 8,2,

The next point deals with the eveluation of the quark con-
gensate value, The necessdry equations were first considered
by Caldi [2.23] , with also important contribution by Carlitaz
and Creemer [2.25]. In our condensed notations, there are two
equations, First, given instanton density generatejthe following
contribution to the condensate

5 J ol a9

e (2.73)
az dg Mey(?)

Ly > <
On the other hand, the instanton density for massless quarks
is nonzero only due to effective mass Meff (2.9%F)
L T 2 >
In general, we have some integral equations, but with instentons

of the same size ¢= ¢. it can easily be solved[g.zT]
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I/
/ey 2o M, Zmge (4 * (2.75)
With the instanton density (2.52) and gc:.1/3 fm it gives

¥ty == 162 6ev? Moy =~ 200 MeV (2.76)

which is slightly smaller than phenomenological values, but ob=-
viously of reasonable order of magnitude.

As it follows from our discussion above, we are rather far
from accurate evaluation of the instanton parameters from first
principles, It is also far from being clear whether they fally
are dominant in SBCS phenomenon, but the results given now
shows that it may well be the case,

Apart from some numbers, not very reliable at the moment,
these estimates demonstrate possible existence of one more

unexpected smell parameter in the QCD vacuum, namely
0 Moy (5c) ~ .% W1 (2.77)

Important, that its smallness seems to show up in real world,
sey it makes the instanton-induced effects in the pseudoscalar
channel to be much smaller than in vector or axial one ( see
chapter 5 ).

Interesting, that its smallness is in agreement with vacuum
dailuteness (2.55) in the instanton liquid model: M .. is caused
notv by single instanton, but by the instanton- antiinstanton
pair, so its smallness reflects large spacing in vacuum between
them, On the other hand, diluteness may well follow from the
power of (2.77) in the rermionic factor oi the instanton den-

sity. At the moment, we do not understand well enough all these
%gﬁgars, but "empiricel" small parameters like (2.77) are well-
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FIGURE CAPTLION
1. Splitting between two first states of the nonlinear two-well
oscillator E,~E, in unites Tfi=c=2m=1 as a function of S the

0
action for the one-instanton solution., The dashed, dash-dotted
and solid lines correspond to the instanton dilute gas approxi-
mation, the standard WKB and exact depemnndence, respectively,
Points marked "X" and "e" are taken from Monte-Carlo calcula-
tions [3.44. 3-45] .

2. Instenton density versus their radius g Gev™'), t’Hooft
dilute gas density for gluodynamics is shown by the dashed curve,
the solid curve marked "SVZ" corresponds to QCD with quarks,

it includes the effect of quark and gluon condensates [2.16] .
Three dotted lines correspond to Ref, [2.13] for (a) "dilute
phase" in strong field, (b) instability point and (c¢) "meron
ionization", The shaded histogramm corresponds to phenomenolo-
gical estimates[2.18] with 08/9=0.2 , similar paremeters cor-
respond to Ref, [2.19].

3« Second-order interaction in terms of t’Hooft effective inter-
action caused by the instanton-antiinstanton pair, It results

in attraction in scalar qq channel, presumably leading to SBCS.
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