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Abatract

The behavior of a hydrogen atom under the influence of
periodic impulsive electric fields ig studied. The dynamics of
excited states are examined both for weak and strong fields.
The results differ from the corresponding classical predicti-
ons even when n> 1. In the quantum calculations, the ioniza-
tion is caused by direct coupling to the ionization channels
while the initiel probability distribution remains highly lo=-
calized. There is suppresgsion of "classical stochastic diffu-
gion" over the discrete states, even for relatively strong ex-
ternal field strengths.The numerical method adopted can be
used for fields with an arbitrary time-dependence.

I. INTRODUCTION

In recent years, attentionT’E has been paid to the study
of the behaviour of highly-excited atoms in intensive external
electromagnetic fields. One of the most interesting and impor-
tant questions concerns the mechanism and condition for the
ionization of such atoms in extermal fields of frequency less
than ionization threshold. In such cases the nonlinear effects
of the field-atom interaction become very impcrtantj. To date,
field-atom interactions have generally been studied?™ for ca-
geg where the atoms populated low-excited states. '

However, for field-atom interactions involving atoms in
highly-excited states, the usual perturbative approach is not
valid. Moreover, for large n (>> 1), effects can erise which
have no analogy to the cases with small n(%1). On the other
hand the experimental situation is also complicated by the
necegsaty to firat populate the high Rydberg states. Neverthe-
less, experimental data T on the ionization of the hydrogen
atom in an initial state with n  ~ 45; 66 are available,

As is known from the general theory of ionization of
atomrs, that for a short ranged potential, the nature of the
nonlinear ionization is determined by an adiabaticity parame-

tera:

8= nE (1.1
where W and & are regpectively the frequency and atrength
of the electiric field and m is the principal quantum number of
the level under consideration. It is generally considered that
E > 1 for a multl—photun ionization, while for ionization

caused by tunnelling, E < 1. For atoms in highly excited sta-
tes, such conditions have been studledg recently. The critical

value of E for the Keplerian frequency )= 1fn3 has been fo-
und to be Ecr o~ Te

However, for large n > 1, it has been suggeatedTG that
ionization can also be caused by stochastic diffusion. This
results in a diffusive excitation of higher levels up to the
continuum. For the hydrogen atom in a circular polarized mono-
chromatic field, various analytical estimates based on the
criterion of overlapping nonlinear resan&nces12 13 have been



derived11, from which it is possible to indicate a measure of

the critical field sbove which the stochastic diffusion in the
hydrogen atom is likely to occur. These eatimates have, howe-
ver, been further refined and ganerallzed 14

The experimental feasibility of the study of ionization
of highly excited hydrogen atoms has stimulated a large number
of numerical calculatians15’17 based on semi-classical descrip-
tiong. The results of the calculations have demonstrated with
the data, and with the analytical estimates®’''. It has been
sh-:twn2 that for highly excited atoms, besides the multi-photicn
and tunnel ionization, the classical stochastic diffusion plays
an esgsential (and sometimes, major) role in the ionization pro-
cesgs.

According to refs. [2,11], the critical fields for the oc-
curance of stochastic diffusion are determined from the estima-
te '

E,'?E.m.”

cn’ (1.2)

where the parameter c ranges between

25 8e S84y (1.3)

depending on the orbital quantum number £ and on the type of
polarization of the monochromatic field. The condition eq. (1.2)
ig gatisfied when the field frequency of the electron and when
the field is strong enough. From egs. (1.1) and (1.2) it fol-
lows that the ionization due to tunnelling can be neglected

and only the multiphoton ionization cen be compared with the
stochagtic ionization.

However, analytical end experimental data are certainly
insufficient to validate one mechanism over the other. It is
¥nown that quantum systems which are stochastic in the classi-
cal limit exhibit a considerable difference in behaviour when
compared with the classical systems18 19. The bagic distincti-
on lies in the weak20’21 stochastic properties of quantum
gystems., Strictly speaking, a correspondence in the behavior
of a quantum system with that of a classical system can be ex-
pected only for times t< td_where ty 1is the time for the
gpreading of the wave packet. Buf this time is exponentially

small for stochastic motion. Nevertheless, it turns out that
the main stochastic properties (such as diffusion) can take
place on time scales with 14 ﬁ{{&‘tr. Therefore it is of inte-
rest to determine to what extent the effects discovered in
refs. [ﬁ&-ﬂﬂ are gignificant in real systems, for instance,
in the hydrogen atom in a time-dependent field.

In the present papef we have performed extensive quantum
mechanical numerical studies of the hydrogen atom in a perio-
dic delta function field (see also [22]). In other studies we
have that some of the specific features of the behavior of
this quantum system are typical of any periodic time-dependent
external field. It also appears that by modulating the amplitu-
de of 8 ~function field it is possible to simulate a mono-
chromatic perturbation.

II. RESPONSE OF A QUANTUM SYSTEM TO AN EXTERNAL
TIME-DEPENDENT PERIODIC ELECTRIC FIELD

A quantum system under the influence of an external peri-
odic time-dependent field of period T, can be characterized by
the hamiltonian:

H@=H, “Haa @y ~HE=HGT),

where Hj is the hamiltonian of the unperturbed system and

(t) is the time-dependent hamiltonian corresponding to the
axtarnal field. We assume that the external electric field is
described by a superposition of periodic delte-functions of a
gspecified period T. Thus,

H“t(ﬂ=e[:,% )—:E({fﬁ) (2.2)

M
where ‘@ - is a one particle operator, Fo the gtrength of the
field, and @ the electric charge.

The form of the external field eq. (2.2) implies that the
system is delivered a series of impulses at specified instants
of time. Thus, before and after an impulse the propagation in
time of the system is governed by the unperturbed hamiltonian
Ho; each impulse, however, causing a modification in the ampli-
tudes of the various states of the system.
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A few comments about the form of the external field are
in order.

i) The fourier transform of the delta function field cor-
responds to the presence of all frequencies, of equal amplitu-
de, in the external field. Thus, every time the system is im-
parted an impulse, there is sufficient scope for = large num-
ber of fransitions and thus for the initial probability to
disperse over a number of states.

Tt 59V F e g thdvo Tt SR e riel Hith el i s i
sition time (time takenbya s ys tem to ma =
lctam=te ST Fien ta i A ol R o o il s A o I, 1)
is larger than theperiod T of the external fi-
eld, then, the system can experience the effect of a train of
delta function impulses during the transition. In such a casge,
the fourier decomposition of the external field (super positi-
on of periodic © = functions) has features similar to the
n-glit diffraction pattern. For large number of impulses, this
pattern haes a maxima when W = 20 where { is an integer.
Thus a resonance can occur when the frequency W of the ex-
ternal field equals the transition frequency; while the presen=-
ce of higher harmonics can couple the system directly to the
continuum and cause the damping of the resonance.

iii) It is also important to realize that the time average
of the chosen external field over one period is not Zero, asg
in the case of a sinusoidal field. It is however, possible to
generslize the definition of the chosen external field by con-
gidering e superposition of a train of delta functions actlng
alternately in opposite directions:

(L (2)
Her':: HE‘::I: " He.nt ; (2.3a)
where .
H:i =EF:.:~9‘):E(‘1:-'2,%T)& i (2.3Db)
s g ;

_H2t=;eﬂﬁils&n&th)‘ s inl

e

Such a field has a zero time average over period Z2T.

The dynamics of a quantal system described by the external
hamiltonian eq. (2.2) is governed by the time-dependeni Schro-
dinger equation.

e YED = HOYERD) (2.1)

whéra‘FCFiﬁ is the corresponding time-dependent wave function
of the system. The exact solution of this equation can be ex-

pressed in the form:

YEH=URt)YE L), i

where ljti,{;) is a unitary time~evolution operator, given by:
: ",
L H -t -*el¥ (2.6)

Ukt)=e e

Y HGH: £y "".;.; efy ‘3

Y@@y=e Pt (2.7)

Since, the external field is periodic in time, eq. (2.7) exhi-
bits quasiﬁeriodic behavior, in which cage:

+aB)t
FREIEe @9

where, in accordance with Floquet theorem, the functions (r,t)
are periodic, satisfying the condition:

.K- (-?1{) i -x (.F;-t ""T) 5

and ED is the unperturbed energy of the system and AE is the
mean energy level shift, in general complex, caused by the ex-
ternal field. For each solution of eq. (2.8), there exists a
value for the quasi-energy, N\ = E, + AE (defined module 3’5’5@
for which the associated function 7Y (r,t) is regarded as the
corresponding eigen-function [23-2{!. It may be remarked that
periodically driven systems, considered here, are distinct from
the energy-conserving system. It is known, that for quantum
systems, where the motion is bounded, the solutions of the ti-

me-independent Schrodinger equation, always yield a discrete

Thus,



energy spectrum., As g consequence, the time evolution of both
the wave function and its density matrix (or in the classical
limit, the associated Wigner function) is nearly periodic. In
classical mechanics this type of motion implies that the sys-
tem is completely integrahle. While for " quantum systems,
the near periodicity in motion suggests that asymptotically in
time (t 200 ), the quantum system may never attain the charac-
ter of & stochagtic motion. Nevertheless, in such a long-time,
the gquantum motion .can be ergodic, In contrast, for the non-
-congerving systems (like the one under study), the spectrum
of quasi-ener n principle, be continuous. Therefore, for

such systems one may expect a close resemblance to the stochas-

tic properties of the corresponding classical systems.

Ll 4

IIT. HYDROGEN ATOM IN AN EXTERNAL IMPULSIVE FIELD

We consider hydrogen atom gsubjected in an external perio-
dic impulsive uniform electric fiell (of th= form of eq. (2.2)
with ¥=2 '
tly solvable, since the matrix elements of the field operator

) directed along the z-axis. This problem is exac-

. exp(- % eF %) (see eq. (2.7)) can be expressed in an analy-

tical form provided the hydrogenic wave function are expanded
in parabolic coordinates.

Since the hydrogen atom is a single electron system, the
solution of the corresponding time-dependent Schrodinger equa~
tion exactly describes the time evolution of a (coherent) sta-
te

"%EF,“I
lzy=€ [ny (3o}
where
+
=0, 105, (3.2)

describes the initisl state of the electron, and I 0% is the
fermion vacuum, with a' (a) as the creation (annihilation) fer-
mion operators. Eq. (3.1) can be expanded over a complete set
of orthonormal basis states:

12y=B,. [n>+), B |mY,
wtn (3.3)

= &, [4+7, Do ] |0,
™ oEn

where B and D are some complex parameters, defined as:
-

;]

Nt (3.4)

Thus the state |z> spans en infinite dimensional Hilbert spa-
ce containing both discrete and continuum states of the Hydro-
gen atom. As a consequence, the state |2> acquires in time,
both the spreading width as well as the escape width. Such a
calculation thus goes beyond the usual studies of time-depen-

9



dent quantal systems.

The hamiltonian for the Hydrogen atom in a periodic im-
pulsive electric field can be explicitly written as (in what

follows, we use Coulomb units, wherein e =h = m, = 1):

H(ﬂ:'i _v'a—:_— +E%>;E&'J)a (3.5)

where

-k
ngﬁéq_i (3.6)

™ ¥

repregsents the hamiltonian for the unperturbed Hydrogen atom,
FO eand T are respectively the strength (momentum) and the pe-
riod (in atomic units, tD) of the external field.

The general solution of such & system is given according

to Eq- (E!T} =
-vHet -iR3

YEeh=e e Y& (3.7)

Let us denote the initial state of the system at time t = O by
a column matrix G:
=]
Cy
L)
- G!.
KP(Tﬁd):ﬂ? ¥ 5
: (3.8)
Cy
where the component cg is the amplitude of the i-th discrete
state of the hydrogen atom, satisfying the normalization con-

dition:
N 2
Z\O:l =1, (3.9)
n={

It is impliecit from eqgs. (3.8) and (3.9) that we consider only
a subset of the spectrum of hydrogen atom; limiting ourselves

to a finite number N (though, reasonably large) of discrete
gtates.

From eqs. (3.5) and (3.7), the wave function between two
consecutive impulses is governed by the unperturbed hamiltoni-

10

an H . The external impulses cause a mixing among 1 h e
dLascreta 8 tad aigliandioadthisthe ¢onitiia
nuum . Although, unbound states are not explicitly included
in the calculations probability of ionization Fion’ is defined
asa 3

P;,.,,,(JQ: i-Pﬂ(ﬂ, (3.108)

where

5.2 i 2
R®=1 B@=Y, [l R
n=i ¢ n={
is the total probability in the discrete part of the spectrum.
In eq. (3.10b), the amplitudes cn(t) evolve in time from the
initial state (see eqs. (3.7) and (3.8)), due to the external
impulse. Thus, in our calculations, the decrease in the proba-
bility among the discrete states is caused by coupling to the
continuum. Since in our calculations, the proceas of recombina-
tion (i.e., the feeding back of the discrete states by the
continuum) is ignored, P;on corresponds to an instantaneous ab-
sorption of the ionized electron.

The truncation in the number of basis states is essential
for computational tractability. In our numerical experiments,
we have chosen a reasonably large number of basis states and
in certain cases verified that by enlarging the basis space,
the results do not change appreciably. Thus, the solution
(eqs (3.5)) reduces to the calculations of cn(t), with n< N.
From eq. (3.?),

N
Gn('tn*hr‘)_ Niedhs cm('t'a), (3.11)

m=i
where cn{ts+1}_is the amplitude of the nth atate at the instant,
t5+1 = (8+1)T, corresponding to (5+1)th impulse of period T;

and qm(ts) ig the amplitude of the m ¥R state after the sth ime

pulse (tE = gT). The matrix, YV , with elements ?ﬁn is a product
of two matricea; R , which describes the changes in the ener-
gy spectrum of the unperturbed states caused by the impulse

11
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IR = € ; _ (3.12)
el o i

end the matrix W , which describes the transitions between
unperturbed states under the influence of a particular impulse,

Wiy Wit W
: : : (3.13)

Here, k,i are the unperturbed eigenvalues of the n-th hydroge-
nic state and wij are the matrix elements of the external fi-

eld; !
_I-Fui

\xf;-{*‘(ULL\E \u'

el
&> (3.14)

waere uy(F) and uj{?] are the unperturbed eigenfunctions of the
hydrogen atom. Choosing the initial state cn{U) and calculating
cn(ts) dynamics of the system is completely specified.

IV. MATRIX ELEMENTS OF THE EXTERNAL FIELD

We consider hydrogen atom initially in a state with prin-
cipel quantum number n » 1. Therefore, we assume that the hyd-
rogen atom is axially symmetric about the z-axis along which
the external field is directed. Thus, the projection m = ¢€1>
of the angular momentum along this axis is comserved. As a con-
sequence, the wave functions can be labelled by the m gquantum
number. It is also convenient to use parsbolic coordinates
(§,% ,&), defined in terms of the cartesian by the relations:

l:ﬁfigjﬂn%¢
\é: m Sim 4’
2-1(x-%)

Q<h € oo , 0¢ 2T o

12

Note that in these coordinates,

i

end the volume element dv is equal to

dvs cl':r.d.\&d&:-i;(}-dﬂ&ididcﬁ (4.3)

The corresponding unperturbed normalized wave functions for the
hydrogen atom are given by [25]:

6
u“t,ﬂl\m(‘}l,b‘: 2 { n! n,! e'mcb

V25 (na) L 2n0ne+tmi): (e simt)! (4.4)
Sy ‘“Vz, (%) f2na. ;i X bl
[w] 7 Lm [ L('ﬁ:)
where '
N=Ngtn, +m+d (4.5)

is the total prinecipal quantum number, and n, and n, are the
parabolic quantum numbers. In eq. (4.4), I™ gre generalized
Laguerre polynomials which are normalized according to the con-

vention of Gradshtayn and Ryzhik [26].

In the chosen basgis, the matrix elements (eq. (3.14)) are
characterized by five quantum numbers: (n1, N,y Dgs Doy m), and
can be written in the form

1
L R s le.‘m| e, l Uty s (4.6)
Using eq. (4.4) we obtain,
\n/ («L 1 \lwa VRS TR T _"‘fz
Wnomnim AR

2| (gt (neslm) (s D) (3 +ml) ’.J

“S S-’;n@)-ﬁn('ﬂ(‘ﬁ‘z}dz e v f (4.7
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where we have 1ntrnduced

&)=y i o s\L (%)

0 (4.8)
wi =One R 1m [l
gqmq‘ e T L ey e G
with the parameters:
g 5 tFo+dhntdy
o Z )
J. = 121 548 (4.9)
TR
dot =
na

In the above expressions, @ is the Bohr radius, equal to unity
in the chosen units. The evaluation of the matrix elements

et Wil st et B i s e 5
S §.(8)d% and R‘ﬁ‘%(‘ﬁ\di (4.10)
° o

By use of the recursion relation,

(@3l ()= (@ imbd) Ly, ) =
= (o) Lt (468 =Gt Ll 403)

it can be shown that all the integrals in eq. (4.7) reduce to
the form

il ml = .ﬁ m| Im
(e L)Ly -
; = F(.'\'\L'\'q',"r'.m\%ﬂ gm{"n‘m 5 %h'ﬁl‘-ih' i
= q'! ( o ) ( b (4.12)

ot ot G (b =dn-d)
(%“ jml-ri F(“h T ~lml*, (5“ ‘L‘:}(%“* .'L\J)
where q is equal to- n1 or to -1, and F is a hypergeomet-

ric series. For convenience of further calculations, we make
use of the transformation (see Appendix):

(4.11)

e

F(‘“LTCL 3 ‘hr‘q,"|ml‘ﬁ)

_ (nerimi) (g + 1))
Il (gt q+ i)

Fmegiit )
Then the relation (4.12) becomes:

1w gﬁ'ﬂ\g
SE R Pl (T (W FI
{ (ngtmi)L (gDt 7 o=\ /B =di\ ¥ (4.14)
llm_ll' . h!"l' qfl' ( %\w.' ( %u" ) ‘ |

% W{ l___l<_‘f‘!u"q(ﬂml+i-] 3 e )

Thus the matrix elements have a form: (%““‘ -J‘Q(%hﬂhlk‘\}

L J{wmn'.ww (uLﬂmle(nLu\-nI‘)[T :

\’\/m.h:_‘l".tha.‘m th ) "'I"'it!. ‘n,_"_ .,nl | “1 1

Iyml+2, ne

) L L\ 1Y a\(4. 15)
e\ T) () B (B)

edy dgdt™gem &, Fon, ~n;-,tmm-,dn\+e£ neenisinisd; do)]

where

Q’_-— (2h1+lml*ﬂF( h;;"ﬂt. “’-I."“i d\ “1(_" \F( ‘I"'.t,_. “1"'1 [l +4 4 d\

_(n1+'.m\+ﬂ(% lh) P( hh-mi Ik g Y d 3
G,= (‘ahu&lm’.-&-q P( Ny - h:.,l""\*i d\ 'n %t 3F h,_ 1*5_11.““1 di

[ 6™ .L.,
_(ht-r'.ml-tl\) =~y h:_*{,hhl‘*l d)
dl'ﬁ %"J-.h ! Cl g"l-u ) "i
A dw ! e’E b - do= ded,,
L

It is clear from the above expressions that the calculation of
the transformation matrix (eq. (3.11)) is not a simple problem
even for one period. The matrix W is a (N x N) dimensional

'I matrix, with each of its elements as an element of the four-
-dimensional matrix (recall that in our problem m = const).

5



The computational time for the calculation of the effects of
one impulse grows as N4, where N is the number of unperturbed
atates of the hydrogen atom. However, the CPU time can be gre-
atly reduced if the matrix elements are calculated once for
all and stored in the fast memories of the computer. But, this
is not always possible because of the limited size of the sto-
rage. For instance, for a computer with a storage M = 300,000
words, Hmax'( Mﬂ'{zj. In such cases, it is _further ugeful to
exploit the symmetries of the matrix elements. Nevertheless,
for situations with N > 30 all the matrix elements have to be

caleulated each time, thereby increasing the CPU time.

In the present paper, we consider a particular casge in
which m = <Bi> = 0. With such a choice, the expression for W,
is somewhat simplified. Separating the real and imaginary parts
of W ' * and making further transformations, one can re-

n n2$1n2
preseﬁt 13 1n a convenient form:
n.n,n'n
f s, i e
LS00 ;'Ei(“f“l““:-_“;\ 1‘61(\-1,_%;?1;-“;)

w‘ntHzHLHL= Q“M’: = C

8 \ dtlm“l \ d.

“-Lt-ﬁ-:.“ gn F(_ntm-nl.i i;d% F (_.nl:n;_-_l L', d‘h (4.17)
+i % Hn{(i-—ihp(-m;nhi; i rl-h"(ﬂbi)l:(*m;nl-u{; clt)] F(‘“:T“l;i',d.b
= [nl(t-cl.h F(-mrhlﬂ;ia o)~ (et Fomnig; L, d0)] Flngnt, iid%i

where
(LY +FX
EPEL

&,ﬂ“l =

\
'L“ lh-t-l Jl.h' lh+1
5""-'»'l i %hh‘

¥ i“ dc::

i Fo. ; e
0 e X b oS e e wow
(-lu. lh‘ Fu ( -L-n" J-m‘\t +Fa1 |
L Naaers [T g
ldl“ 3 laa‘: s
&dn ’ b | la

16

and the phases 31 and EE are determined by the relations

F“ 'Fn 1 i
e L = — = — == «19
{% i ‘Lh-—-lh ¥ Jué\%a -J_b:.-l-lh ) qu,, A ]:th h' i {4 ]

‘There is no difficulty in deriving from the general expression

(ege (4.17)) the matrix element in a dipole approximation. In
this case, the field needs to be weak:

ntn'
Wt e (4.20)
L] ,n ] } n
'y
The dominant transitions occur between levels whose principal
quantum numbers differ by unity (n->n' =n % 1). It follows

then, that for the validity of dipole approximation

Fﬂr nE T (4.21)

For such a cage, the first ferm in fthe expansion of Wn nzn'n‘
in powers of F_ exactly coincides with the known ex- i g

pression et end it is easy to obtain, if necessary, the next

term in the expansion over the field Fo'

V. NUMERICAL SIMULATIONS

We have performed extensive studies of hydrogen atom in
highly excited states and for a variety of field-atom interac-
tions. For calculations in which nQE 9, we have chosen N - =
= 20, where Nmax ia the maximum number of discrete hydrogenic
states included in the basic space. We have checked that by en-
larging the basis apace, the resulis do not change appreciably.
In a similar fashion, for the cases in which the hydrogen atom
is initially e;;';daen to be in a state with n = 15 or 17, we
have consider/N .. = 30. The dynamics of the system in each
case has been followed through 300 impulses.

As already mentioned in Sec. II, the fourier spectrum of
the external field:

' FG'EG:-%T} = % (i.kg):;i(‘_ﬂw?% ' (5.1)

has frequencies, W _(= p_l,aD) that are mlfipleé of the main
frequency, W, e'g ?[1: follows from eq. (5.1) that for a large
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number of impulses t( = sT, s >> 1), the zerceth (or primary)
harmonic corresponds to a constant electric field:
i Fo (5.2)
0 T :

For convenience of comparison between the system under conside-

ration and the system in which hydrogen atom is acted upon by
a linearly-polarized monochromatic field, we introduce: a para-
meter ¢ , which is the amplitude of the periodic component of
the impulsive field, eq. (5.1):

i

i

and a dimensionless perturbation parameter E o Which is the
ratio of the external field to the Coulomb atomic field &i:ngq)
of the hydrogen atom:

(5.3)

for a particular level n

Q
)
T=tng = Q;FF.:. ‘ﬂt : (5.4)

Then the condi+ion for smallness of the external field (weak
field) can be expressed in the form:

?Ezcr <« | 5 ; (5.5)

where \icr characterizes the onset of (significant) ionizati-
on. For example,\z = Kcr = 1, corresponds to the situation
in which the ntom can be instantly and completely ionized in
one impulse. The parameters \i and & serve as useful measu-
res in studying the na,'FUI and T dependences of the multipho-
ton absorption and ionization of the hydrogen atom.

a) RABI OSCILLATIONS

For field-atom interactions with ‘242,_,. one expects the
validity of dipole approximation and hence a dominant AVl = =
transition. Depending upon the field parameters, FG and T, the
repeated application of the impulsive field of all frequencies
can result in successive |An| = 1 transitions, thereby causing
a diffusive growth of probability over the hydrogenic basis
states., However, because of the inherent nonlinear dependence
of the solution eq. (2.7) on F  and T, the behavior of the

system is not intuitively obvious. In fact computations reveal
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some very striking peculiarities in the behavior of the system
even for fairly weak filelds.

Figure 1 exhibits some of the features of the hydrogen
atom subjected to weak perturbations. Plotted as a function of
time (or the number of impulses) 'is the probability ]cn{t)lg

_gmong the discrete states of the hydrogen atom. At time T = O,

the atom is assumed to be in the state with n =n, = T. The
external field is characterized by F, = 0.0015 vnlt—cmﬁ1-aec
and T = 2627t,, where the atomic unit of time, t, = 2.42 x Tonll
gec. Thus, the external field corresponds to _E = 0027 a.u.
Prom fig. 1, there is dramatic localization of the probability
about the initial state, although at the end of 300 impulses,
the atom is about 15 percent ionized. It is remarkable that
there is no evidence of diffusive growth of probability over
the discrete state. Instead, after a few impulses, the initial
state with n = 7 is seen to couple at the most to the state
with n = 8, while the ionization is caused by the direct coup-
ling to continuum. That for certain values of period T, the
initial state is strongly coupled to one other state whose
principal quantum number n differs by unity from that of the
initial state, appears to be a general pattefn in all the cal=
culations. In all such cases, the total probability in the spa-
ce of discrete states is almost entirely exhausted by this pa-
ir. Such a case is illustrated by fig. 2, which shows the time
dependence of the probability P for two states with ]rﬂ,E n,
= 9 and n = 10 . At time, t = 0, the hydrogen atom is assu-
med to be in the state with parabolic quantum numbers with

n, =mn, = 4, m = 0; corresponding to principal quantum number
n=n, =0, +0, + m + 1 = 9, The period T of the external
field is chosen to correspond to the transition from the state
with |n = 95 to the state with |n = 107,

Thua:

A
=, =535,

where

&
o
il

1 L |
Q= é [H-,-_ - ] : (5.6)
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The perturbation parameter E has the values:

0.005 gsls for n_ = 9
(n]
ani f

i

X

corresponding to the situation in which the probability ‘cnftjg
goes over, in time, from the state with |n, = 9)> to the state
with ]*.r:n.ﬂ = 10> and vice-versa. In the following, we consider
‘E = 0,005 a,u. Figure 2 shows a quasi-periodic nature of the

(5.7)

-10.0675 a.u. for n, =10

interaction between the two states with n = 9 and 10, and the
external field. It turns out, however, that behavior is consi-
derably more complicated than a simple two state resonance.
There is damping which arises from the removal of probability
by ionization and also a system of beats (case of Rabi oscilla-
tions). There occur significant differences between an ideal
two state resonance and the one seen above., In that, the ex-
ternal field mixes the states with different parabolic quantum
numbers (n1’n2}, which are not degenerate in energy. In fig. 2,
the two states involved are explicitly:

IMo=9%>= W4y Cﬁ-*)ﬂ »

and (5.8)

nemt05 =k [ Uugolt) ~Usuo (1.2)]

A feature of our model is that the extermal field contains ar-
bitrarily high frequencies, as & consequence there is suffici-
ent scope for direct ionization. It is mainly this direct cou-
pling of the bound hydrogenic states to_fh& continuum, that re-
gults in decreasing the total probability in the discrete ba-
gis space. For the case presented in fig. 2 the probability for
ionization over 300 impulse is negligibly small (PiOHSE 3%)e A
clogser inapection of fig. 2 shows that the system recurs to
almost the same state repeatedly often, in time, a feature si-
milar to that observed in one-dimensional problems. Our earli-
er analysis of the behaviour of the system in a weak impulsive
field shows that with decreasing F,, the behaviour of the sys-
tem closely resembles an idealized two-level system. In parti-
cular, for very small F, the period of oseillation is proporti-
onal to P
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B. COHERENT OSCILLATIONS IN A STRONG FIELD

For intense extermal fields, the dipole approximation is
ihapplicable and the matrix elements of the interaction
W, nn'y Pecome nonlipear in F . With increasing F_ direct
1uﬁi§a%18n becomes more probable. Thls cauges a cnnﬂlderable
reduction in the total probability among the discrete levels of
the H-atom. However, %@triking feature evident from the calcu-
lations is that even in cases where Pinn iz large, strong cor-
relations between the neighboring states persist for a long
time., Again, only & few neighboring (resonant with the field)
gtates are excited and no considerable diffusion is observed
in the upward direction of the spectrum,A typical situation of
this behavior occurs for § = 0.02-0.03 s.u. and for the ini-
tial state with By =y - 4, corresponding to n, = 9. Figure 3
presents three examples for different values of ¥ and T. Fi-
gures 3(a), 3(b), 3(c)) illustrate the effect of keeping the
field strength fixed (F = 8 x 10™>) end changing the period T.
For T = 5000 %, (fig. 3(b)) we are close to the 9«10 resonan-
ce (the exact resonance occurs at T (9«<—=10) = 5357 tﬂ} while
T = 4000 ty (fig. 3(a)) produces a somewhat detuned 9+—8 reso-
nance, the natural period of which is 3832 t_ . From figs. 3(a)
and (b), it is menifest that probability is again shared most-
ly by two states. The oscillations between the two states be-
ing strictly correlated with each other. Also, in time there
is a decrease in amplitudes of these two states caused mainly
by the direct coupling to the continuum. From fig. 3(c) increa-
sing the period to 6000 t, leads to the altogether more compli-
cated behavior. Here states with n = 9, 10 and 11 all have ap-
preciable probability. The principal feature again is a two-
-gtate . resonance between states with n = 9 and 11. The natu-
ral period for this resomance is 3079 t and so presumably the
transition occurs on the second harmnnic of the external field.
Neither the 9«—10 nor the 10«11 resonances is conveniently
close to T = 6000 Tye : _

It should be pointed out that two-states resonances per-
gist even in ceses where the system shows strong damping due
to direct ionization. Figures 2, 3(b) and 4 form a sequence in
which T is close to the natural period in each case but F, has
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the values 2 x 10_3, 8 x TO"B, and 1.6 x 102 a.u. The change
in the period of the oscillation with increasing Fc is appa-
rent. For very asmall wvalues of FD, the period of the oscilla-
tion is proportional to F_ . From fig. (4) the two-state reso-
nance clearly persists up to 300 impulses with the loss of
most of the probability by ionization. Even in such a strong
field ( § = 0.04 a.u.) we see no evidence of diffusion over
discrete basis.

An interesting situation arises, for the caze with T =
=400 t;, n, =9 and F = 0.008, corresponding to a very strong
perturbation parameter ‘i = 0.26 a.,u. From fig. 6, we notice
that the ionization probability increases dramatically to abo-
ut 30 per cent in first 40 impulseé and thereafter a new regi-
me arises, in which the time evolution of the system shows a
near saturation in the P. e+ Here again the probability among
the bound states is mostly exhausted by states with Ny = 9 and
n = 10. Fig. 5 shows a time variation of the probability in
these two states. It is seen that after an initial rise and
fall respectively in the intensities of the states with n = 10
and 9, the probabilities oscillate with a mean value of sbout
12 percent for the n =10 state and about 35 percent for the

= 9 state. It may be remarked that the period T = 400 ty, of
the external field is far too small compared to the natural
period of the 9e¢—10 transition, which equals 5357 t,e Thus
the system experiences a coherent influence of a substantially
large number of impulses ( 2z 12) during its natural traﬁsition
period. As a consequence, the main frequency Wo = 0.0157 1
of the external field couples the n = 9 gtate directly to the
continuum; thereby causing a substantial drop in the probabili-
ty of the n = 9 state during the early stages of the evolution.
The coherent influence of the large number of impulses experi-
enced by the system during its natural transition period, even-
tually forces the system fto resonate with the external field.
Thus, for later times, the obgerved near constancy of the pro-
babilities in the n = 9 and 10 states is highly ﬁuggestive of
"forced cscillatiuns“,'in which the time-dependent phases of
the states with n = 9 and 10 adjust to those of the external
field. Thus, these two states constitute the near "eigen-sta-
tes" of the total Hamiltonian.,
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STOCHASTIC DIFFUSION IN A STRONG FIELD

 According to the classical description, a system subjec-
ted to intense periodic perturbations should under certain
conditions exhibit a stochastic behavior. The mechanism for
the occurance of such & behavior depends on the interaction
between the nonlinear resonances in systems subjected to peri-
odic perturbations. The nonlinearity in the Hamilionian is sig-
nificant for the appearance of such resonances and leads to an
unperturbed motion containing large number of harmunlcs which
are multiples of the Keplerian frequency QL “*?!n « This imp-
lies that even in the case of a harmonic time dependence of
the external field (monochromatic wave), the resonance relati-
on:

=3
095k Sy Kl (k is an integer), (5.9)
can be fulfilled for different unperturbed levels L For an
igsolated nonlinear resonance (i.e. when the influence of all
other resonances is neglected), the oscillations of the action
variable are limited. This results only in a regular exchange
between the group of levels captured by the resonance. With
increasing field strength, the width of the nonlinear resonan-
ce (in frequency and, hence in action) grows, and can beco@e
comparable to the distance between the neighboring resonances.
In such a case, stochastic diffusion over the overlapped reso- ¢
nances occurs. Quantum systems subjected to periodic impulses
when compared to their corresponding classical analogs based
on the concepts of stochastic diffusion indicate that, for
"quantum stochastic diffusion" to occur every non-linear reso-
nance must capture a large number of levels of the unperturbed
gystenm [28] Our numerical experiments with the H-atom demon-
gtrate that an intense exchange between the neighbouring le=
vels srises for large Fﬂ. This exchange gives rise to the
spreading of the probability initially concentrated in one le-
vel., Fig. Ta illustrates the probability distribution over 30
hydrogenic levels, for different times t. Initially hydrogen
atom is assumed to be in the [n = 9» state. The perturbation
parameter, '? = i >~ 0,052 a.u. Fiﬂm.figure T such a perturba—
tion leads simultaneously both to the diffusion over discrete
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levels and direct lonization. Since for a constant Fo' direct
ianizatiqn increases with inereasing N,y the sharp decrease in
the initial probability is mainly due to diffusion over the
states with n 5 Ny from each of which, in turn, direct ioni-
zatlon occurs.

The situation indicated in figure 7 is typical for large
values of ‘1230.05 asU. Because of strong direct ionization,
obgervation in time of the diffusion over the discrete basgis
becomes difficult. Figure 8 shows the probability of direct
ionization on the parameter ¥ (and/or F ) at the end of s-num-
ber of impulses. Note a sharp increase in the ionization, for
valuesa of Fo > 0.14. The latter saturation is most likely

due to the onset of coherent (forced) oécillations, described
in Sec. V.B.

It is worth emphasizing that ionization is, in essence,
connected with the probability diffusion upward the spectrum
and is enhanced when higher levels, n>> n  are excited. Howe-
ver in situations where the ionization on the main frequency

UJG is possgible, there exists a limiting value of n =n, .,
above which (for n » n,, ) the probability among the discrete
states does not grow. If the frequency of the external field

is chosen to correspond to the resonance between the states

lnb} and [ng + 1y, then the value of n,, 1is given by
0= ﬂu(,“-a‘*'i) (5.10)
ﬂ“ L
2o+l

Thus for - 5,9,13,17 (the initial states for which the nu-

merical experiments have been performed), we have

n: =% .9 13 17 .
i (5.11)
n,.=9 21 35 52

This suggests that for n, =5 and 9 the basis space spanned by
levels with n<N = 20 should suffice for the calculations.
Indeed, calculations with an increased basis space, with N = 30
showed no noticeable difference in the dynamics of the system.

Among the other effects of importance to the problem un-
der study is the decrease of the ionization threshold caused
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by the constant electric field due to the presence of zero
harmonic, gn = A fT, of the external perturbation. A rough
egtimate for the critlcal field £ is giwven by LE?]

Eha kil (5.12)
— 16nt .

However, if one takes into account the shift of the Stark le-

vels, (see, e.g., Ref.[ﬁﬁb, then the minimum value of £ is
obtained for the cases with n, = n-1 and n, = 0. Thus,
=4
o~ 0430 |, (5.13)
Using eqe (5.13) we obtain an estimate for the threshold value
far ng: 1}2'
0.13 . (5.14)
g Tla {E* ] ;

For a fairly strong perturbation 'ﬁ ~ 0.04 a.u., we have

o= Lin, (5.15)

which for Bt s 5, 9, 13, and 17 gives respectively n, = 95 15§
22 and 29. For small n_ the diffusion can occur only over a
small number of levels n < ng (see mlso Fig. T). Thys it fol=-
lows, that for a reliable observation of the gtochastic diffu-
gion in time, n&-needa'ta be sufficiently large a;ﬁ the total
number N of the levels under consideration should not be less

than N ~ EEG.

The problem can however be gimplified by studying the
conditions under which the system exhibits a characteristic
feature of diffusion in the initial stages, followed by an in-
tense exchange'hetween unperturbed levels. Figs. 3 and 4 de-
pict a typical behavior of such a phenomenon. There is a short
characteristic time for the spreading of probasbility from an
initial state ln > to the other neighbouring stetes. Beyond
thia, the probability in the state | n 37 varies juat gbout an
average value, any further decrease occuring cumparatively
glowly.

As an exemple let us inspect fige. 4 rather closely. Fig. 9
shows & blown=up plot of flg. 4 but over a ghorter period of
time, t < 40 ﬁ . From fig. 9, curves 1 and 2, it is clear that
the_cnrralateﬂ oscillations of the probabilities in the states
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with T 9 and n = 10 are get up after about three impulses.
Also during this stage, the sum of the probebilities P9 + Pig
shows & sharp decrease, followed by its near constancy over a
long period of time. The total probability (curve 5) is weakly
decreaging indicative of a weak ionization. Let us now introdu-
ce a quantity F, as a measure of the correlation between the
states n, and n, + 1 and defined by the ratio:

(o]
Ro p“ﬁ-tpht“'l
e P (5.16)
=
where Py = 1 - P,  is the total probability over the bound )

hydrogenic states. Clearly, %ﬂ“@.ﬁ defines a critical walue,
above which the motion is stable, and below which the motion
may be regarded as 'stochastic'.

Fig. 9, curve 3 shows the time-variation of % « The va-
lues of @ oscillate about a mean value (curve 4) of about 0.7,
even for such a fairly strong perturbation considered here.
Thus indicative of 'stable' motion of the system at least for
some stages of the time-evolution.

Figa. 10 and 11 exhibit the wvariation in ?ﬁ and Pg with
increasing » for different choices of |ny , with a uniform
distribution over the parabolic quantum numbers, n, = n, (it
corresponds to { =0 [30] ). Although, classical estimates do
indicate the { -dependence (n1 # nE} of .icr for the occu=
rance of 'stochastic' behavior, for the present we consider
the cases with E = 0, From figs. 10 and 11, the computations
reveal that for '§<_D.03 a.u., the motion is considerably more
gtable for the case with B, 9 than for those with n, = 13 or
17. The dramatic decrease of Pg~0.3 for 1::0.05, for n, = 9
arises mainly due to the direct ionization from the states,

n, and n, + 1 and is more a consequence of increasing F, than
% . For the cases, with n = 13, and 17, the critical value

of ﬁb ( ~ 0.5) corresponds to a wvalue, ‘i = 0,03 = 0.04 a.u,
For I< 0.03, a.u., the initial distribution stays highly lo-
calized with a weaker ionization. It is seen also that for

Do 5 the ionization is very strong. The reason is a rather
small threshold W (5.11). In addition, for this case, the “

multiphoton excitation proves to manifest itself much stronger
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on comparison with higher Do e

VI. AWALYTICAL ESTIMATES AND DISCUSSIONS

A. Stochastic Diffusion

As mentioned in Section I, for a highly-excited atom, be-
gides tunnelling and multiphoton ionization stochastic diffu-
gion can play a significant role in the ionization process.
Such a diffusion is encountered for a wide class of classical
non-linear systems, and is mainly featured by the absence of
random forces in the system. The stochastic diffusion occurs
in strictly deterministic syétams; it can arise even in the
gystems with a few degrees of freedom. Under certain conditi-
ons for non-linear classical systems, a local instability of
motion appears for which the otherwise closed trajectories in
a phase space show rapid exponential divergence. Because of the
limited phase volume, this results in a rapid mixing of the
trajectories and, as a consequence in the irregularity (sto-
chasticity) of motion of the system. In an autonomous system,
the exchange of energy between different degrees of freedom is
of random nature, while in the nonautonomous one, both the
stochastic diffusion and the unlimited growth of energy in the
system occur under the influence of the extermal force.

The criterion for the appearance of stochastic diffusion
is baged on the interaction between the numerous non-linear
regonances exclted in the system under the influence of a peri-
odic perturbation. Let us consider the case of hydrogen atom,
populated in a state with parabolic quantum numbers n, = n,

(8 =0) and m = 0. Following ref.[2], the Mamiltonian of the
corresponding system, regarded as classical, can be written as:

H=h§,%' +F, it 8 (4-<T) i‘% +2,>: ':E.;Cusk}x} ST a5l
K=i

where n and A are canonically conjugate defining the action
and the phase. The eleciric field is assumed to be directed
parallel to the electron orbit and the fourier component of
the dipole moment of the electron [31] is given by:



2 h@. I
— .2
n®, = - }k(k)‘ (6.2)
and the orbital eccentricity, e =‘Ji“ﬂﬁ%2 = 1. Expanding the

delta function in fourier series, eq. (6.1) can be expressed
as follows:

= =] . H

{ B R 2

L =- - —éaqn +2,£1na'>_, Cos pwet: Cos k) | (6.3)
2..“ 2.. kjp___{ :

For the values of the field F ( ﬁgn4 < 0.08) consgidered so

for, the second term in eq. (6.3) can be neglected in compari-

gon with the first term, and the resonance relation then has a

form .
P zkA=kR, (6.4)

where S is the frequency associated with the Keplerian motion
of the electron in its orbit. The value of $2 is energy-depen-
dent and is given by Sk.ii1fn3. Unlike the monochromatiec ex-
ternal field for which p = 1, the perturbation in eq. (6.3)
contains a large number of the resonant terms. As a result,
the critical wvalue of E{Hq at which the resonances overlap,
is expected to be 1nwef‘than in the case with a monochromatic
perturbation. The strongest resonance occurs when p = k =1
(the main resonance). Here the main frequency of the perturba-
tion equals the keplerian frequency: () n—.:-,.Q_ %1 ;’nGB 5 However,
as seen from eq. (6.4), same resonance condition alsoc holds
for any p = k. This implies that in order to study the effects
of the main resonance, contribution of all the terms with dif-
ferent p = k should be taken into account. If we neglect all
the other resonances and define new canonicel variables, I =
=n-n end S = k W,t» we obtain the Hamiltonian for the

0
resonance. it
A k=i '

This Hamiltonian is independent of time and describes the os-
cillations of the action variable I-in the wvicinity of the re-
sonance value n_ =$QL'1£3. Uﬁing eq. (6.5), the maximum varia-
tion of the action is given by:
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where, with the use of eq. (6.2),

G, IE);_-?xD' (‘QKI T

and the Halfwidth of the resonance (in frequency) is given by

(-‘5 51\1

The expression eqs. (6.6-6.8) define the amplitude of the non-
-linear oscillations, in the energy and frequency domain, once
the system is subjected to an external field whose frequency
is equal to the Keplerian frequency of the electron. These ex-
pressions are appliceble if i) the perturbation is weak (i.e.
the situation in which all but one resonance may be ignored),
and ii) AI is small as compared to n . For a quantum system,
described within the semi-classical approach (when n%> 1), an
additional condition must be satisfied, in that the number of
quantum states involved in the non-linear resonance should be

fairly large [28].

4/2, (6.7)

(&h)m? T = E \15&}{1 _ (6.8)

When the perturbation is increased, while still remeining
within the regimes of the applicability of a perturbation the-
ory ( &n*<x 1), the usefulness of the existence of an isolated
régonance bresks down. In such cages, the interaction between
the neighbouring resonances becomes important, which gives ri-
se to stochasticity. Thus the criterion for the occurance of
gtochastieity consiste of finding the condition for which
neighbouring non-linear resonances overlap. For this, it is
then required to analyse the resonant structure of the pertur-
bation and the identification of the most important resonances.
A detailed analysis shows that for the case of hydrogen atom,
when the frequency S of the external field is approximately
equal to the KEPlerian frequency 52"1fn , the strongest re-
gonance occurs when k = 3 and p = 2, &ccording to eqs (6.4),
it follows that for this resonance, -
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Ap= Npw = ¢ So= 5 No ik
where npk determines the lncatlon of the resonance:
Pt_,q (_) “u‘ (6.10)
Introducing the new action-phase variasbles:
IPL= n_npk, 3 E’-"pt=]‘-}\"PWDt: fbad1)
we obtain, similar to eq. (6.5),
E‘IL [+ -9
Pl A
HPk’:--E‘_T‘_ =+ E.HFK L Rarcgl)(‘rgfkﬁ‘ (6-121
| ‘nPK v=q i

For the coinciding resonances, r(BK,—E{JQt)rw 0, while from
eq. (6.12) the halfwidth of the resonance in frequency is

(aﬁﬂ [EEX;l

(6.13)

where

(6.14)

X,-4 §ealtT =008

Having obtained the total halfwidth (aS2),,+(aS2 );» end kmo-
wing §2 T between the two resonances, tha condition for their
overlap can be obtained. As shown in Ref. {HjL the effective
overlap, at which the trajectory goes randomly from one reso-
nance to the other, is achieved whence

£ (6.15)
H=25¢"= Treda,

where .
' b (hggﬁ,q' (& 5}531

Sli— Sk,
For the resonances under consideration, we eventually obtain

{ >
Be = tene~ 374 -

; §2115i51¢.

(6.16)

(6.17)
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The analysis shows that for ¥% ¥ ., two resonances with
p=2; k=3andp =1; k = 2 overlap. It turns out that the
critical value of perturbation for the overlap of the resonan-
ces with n.» n, (k = 2, p = 1) decreases with increasing n.
This suggests that the critical value of ¥ <for the onset of
diffusion from n, is determined by only a few low-order reso-
nances. For a mumuchrnmatlc perturbation (p= 1) it is suffieci-
ent to consider only two resonances with k = 1 and k = 2 (see.
Ref. rE]}. However in the case of & ~function externgl field
the high-order resonances occur close to the main resonance
(p>> 1; k¥ » p) and thus can overlap under very small perturba-
tion (in the 1limit, Ecr‘* 0 when p ~ece). For the purpose of
the further comparison of the classical results with the quan-
tum calculations, it seems sufficient to take into account on-
ly the two resonances mentioned above. A possible reason for
this is that, for other resonances k is rather large (k> 5) and
the number of quantum levels involved in the resonance turn
out taihe < 1, because of sharp decrease in the width of the
resonance.

The estimate of r ©€Qe (6.17) differs from that for
monochromatic perturbation (Ref. [2}, for which

\
3"

Thus for an impulsive periodic field, considered in the present
paper, the values of critical fields are smaller by a factor
of 2.6 compared to the monochromatic field strength.

(6.18)

The validity of the semi-classical approach is related to
the capture of a large number of levels Aw by the non-linear
resonance. An estimate for awn can be obtained from eq. (6.6)
according to which.

y&

.:m=?,(ﬂ\mﬁlm,%\]’%xpo_a},nn%xh (6.19)

For the main resonance, p = k = 1, we obtain for various wvalues

of n
o
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n 9 13 1

n -, A T2 o 5 G e

n 300 ‘1--2 5-6 if ( Ih—ﬂ."-}fl- Etu)

It is clear that the condition

An>> 1, (6.20)
can play an important role in limiting the stochastic diffusi-
on for even sufficiently large n, aﬁd'f . Nevertheless, the
numerical results show that even for'*i = 0.04 a,u., and
n, = 13 and 17 an intense exchange occurs only between a small
‘number of states in the vicinity of n,. This is contrary to
the classical estimates, according to which the resonance over-
lap condition becomes weaker with increasing n,. From eq. (6.19),
for large k the number of levels An captured by the resonance
grows as /6 thereby satisfying the condition eqe (6.20). In
contrast, the estimates (eq. (6.10) with p = 1) for the reso-
nant values of the action n, corresponding to the location of

the overlapping resonances of higher harmonics, are given as:

n, nE(k = ?) nj(k = 3) n4(k = 4)

9 11 13 14.3
13 1644 18.7 207
17 214 24.5 27

B, Influence of a Constant Field Component

As mentioned in Sectién II the external o —function fi-
eld has a constant component QO.IIn deriving the analytical
estimates, the influence of § in eq. (6.3) has been neglec-
ted, alihough without any justification. Our analysis of the
numerical results suggests that the decrease in the total pro-
bability - though caused primarily by direct ionization, is
enbenced due to small ionization threshold which depends on

£o° In order to further understand the effects of Eor Ve
have also performed a series of numerical experiments.

In the first set of calculations, we have considered hyd-
rogen atom auhjécted tc'parturhaticn eq. (2.3) but with the
constant component of the electric field Eo get to zero. The
amplitude of the first harmonic has been retained at its origi-
nal value. Thus,

Haﬂ;: %QZE({:-QT EZE{ -5,"["——3

(6.21)

or:

PAM (6.22)
Het = 7 1, Cospuet, p-odd. :
p=1 .

The behavior of the system presented in Fig, 4 for (31:0.04,
n. .= 9), now proves to be considerably more stable. In that,
the average wvalue of <% , which characterizes the relative
intengity in the states'| n&)' ani1no + 1), increases from 0.70
to 0.84, whereas the probability for direct ionization decrea-
ges sharply (Py = 0q94;instead of 0.79). The probability dist-
ribution over the hydrogenic basis is fufrther localized; the
effective excitation. practically involves only two states:
[n0§ end ng + 15 . Tt should be mentioned however that the
difference in the behaviour is not entirely due to the absence
of the constant electric-field component, but also due to the

sbsence of even harmonics, with p = 2, 4, .....

In another set of calculations; besides the perturbation

131 eqge (2.2) of period T and amplitude FD’ a gimilar perturbing
field V,, but of period T, = T/5 and amplitude F = ~F IS hasg
been added. Thus, the perturhing hamiltonian is chosen.to be of -
the form: H__,,= F_ . 0 (t-s1) - g.’i %.0(t-8"1/5). For such an
external field everyai‘ifth impulsé Sfrom V, coincides with en
impulse from V . In contrast to the perturbation eq. (2.2),
such a parturh&tinn contains no Oth, 5th, 10th, etc. harmonies.
Numerical results obtained for the cases presented in fig. 4
show gimilarities in.behavior. For Hext given above, the avera-
ge value ~c$} ~ 0,76 while total probability Pg ~ 0.85 (for
ﬁ = 40]. This close agreement between the results obtained
with and without the constant cnmpnnent in the perturbation
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suggests that the constant field component Eo is nof impor-
tant for the dynamics of the system.

C. Role of Initial Distributions

Analytical estimates [2] indicate that diffusion depends
strongly on the orbital angular momentum quantum number b
For | smell, the magnitude of the critical perturbation para-
meter, Tier' appears to be minimum, With increasing { X ?cr
increages sharply. This can be appreciated from the fact that
for small [ , the orbits extend in the direction of the exter-
nal electric field. It is thus natural that for such cases,

" the influence of the perturbation will be stronger than for
the (near) circular ones. Using the transformations for the
chenge of basis from spherical to parabolic coordinates, [3ﬁ1
we have studied seversel cases with the initial distributions
over the parasbolic quantum number (n1,n2} corresponding to

t = 0,1 and n, - 1. The state with €.= 0 corresponds to a
uniform distribution, n, = n, for a fixed n . Numerical results
for the case of a hydrogen atom, initially in. the state n, = 13,
under the influence of a periodic delta function field charac-
terized by ‘3 = 0.04 a.u., indicate that-(Pﬁ- remains nearly
constant ( ~ 0.5), for ﬁ = 0,1 and o= 1. However, in going
from E =0 and 1 to E = ﬁn - 1, the distribution over the
hydrogen levels becomes considerably sharper, with a weaker
excitation of the higher levels. Correspondingly, the direct
ionization decreases., Thus, for E = 0 and ﬂ = 1, the total
probability Py is equal to 0,72 (Fig. 11) and 0.64 respecti-
vely, while for =n, -1, Pg varies from 0.93 to 0.96).

0f special interest is the study involving parabolic sta-
tes with a large ratio nzfn17# 1. It turns out that this ratio
remains approximately congerved in time, and the excitation
covers only these specific states. Such a feature then allows
us to employ the approximation of a uné?imenaianal hamilionian
dedcribing strongly extended orbits | 32-34] . Such a model is
also used in the description of the behaviour of an electron
above the surface of liquid helium in an external time-depen-
dent field [35-36]. Indeed, the numerical experiments with tMe

parabolic initial distribution (m, = 0, ny = 12) for n, = 13

S P

e

and "i': 0.04 and 0.02 show that the excitation covers, main-
ly, the states with n, = 0. However, for large ¥ the states

with D= begin to get excited. Purther analysis of such mo-
del studies is in progress.

D. Multiphoton Excitation

Besides the stochastic diffusion, multiphoton excitation
ig' regarded as a major mechanism for the ionization of atoms,
when ¥ % T. The relationship between these two mechanisms of
ionization 1s intimately related to a more general question
concerning the validity of semi-classicel approximation for
the desgcription of quantum system with n%> 1. Comparison be-
tween the classical and quantum one-dimensional model calcule-
tions [32] show that even for very large n ( = 50 to 100),
strong multiphoton resonances dominate over the stochastic

diffusion, which substantially limits the use of a classical
description.

In our calculations involving two degrees of freedoﬁ
{n],ngj, both multiphoton ionization and direct ionization are
impliecitly incorporated. Numerical experiments for wvarious n,»

E. and e s guggest that for small perturbations multiphoton
resonances play a significant role in the ionization process.
However, with stronger perturbations their influence becomes
weaker. Also, multiphoton processes become important when there
is no mixing between n, and n,, i.e. when the situation is clo-
se to that of one-dimensional case. Such a conclusion is born
out by the case with parabolic initial excitation n, = D,n2=
=ngy=1. Although this question needs further study it is some-
what clear that the role of multiphoton resonances in a system

with two degrees of freedom is considerably weaker than in the
one-dimensional model.

E. Adiabatic Switching of the Extermnal Field
In order to compare the behavior of hydrogen atom under
en impulsive (delta-function type) extermal field, with that of

the system under an external perturbing field that grows slow-
ly in time, we have performed an additional numerical study of
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hydrogen atom with a perturbation that increases slowly in ti-
me. As in ref. [15L the emplitude dependence of such a pertur-
bing field F(t) was chosen to be of the form:

B, e ( x5 $ eyt
F({): P(h \ (3-23)
; Fo 'l.', '?"IC.*

The cﬂmparison is made for the case preaented 1n fig. 4.

For the present atudy, we have chosen, %ﬁ- 4!t y +* = 20, The
time-averaged value af’ B (%), averaged over 40 periods of ex-
‘ternal field (from t = 20 to t = 60) turns out slightly
higher than in the case of instantaneous switching on of - the

external field {(:{,3 rs 0.78) s The probability distribution va-
ries slightly, but also indicates less intensive excltatlon of
the levels in the vieinity of n and n +1. Also the ionization
probability does not change aignificantlr (Pe = 0.79)« On the
whole, the adisbatic switching on of field did not give rise
to new effects, although the value of critical perturbation is
glightly increased.

VII. CONCLUDING REMARKS

The numerical simulation shows that the behaviour of the

hydrogen atom under the influence of a periodic impulsive field,

treated quantum mechanically differs from the behaviour emer-
ging nut of a corresponding classical calculation. The diffe-
rences persist even in regions of the large quantum numbers,
n>> 1. The presence of ionization due to direct coupling of
the discrete basis to ionization channels is a quantum effect
which has no corresponding enalog in the classical system. In
the quantum calculations, this ionization is caused by the

5 i

presence of high frequencies in the external periodic delta
function field. The calculations show that for strong pertur-

bations an intense probability exchange between the neighboring

states arises. However, in order to achieve the spreading seen
in corresponding classical calculations, a substantially large

(F tum'“'3Fclaasical) gtrength is raqulred in the quantum

calculations. H5vertheleaa, in regarding the effects of direct

36 e

ionization as irrelevant to the stochastic diffusion, we found
that the excitation of the higher levels of hydrogen atom is '
gtill very restrictive compared to the diffusion emerging from
the semi-clagsical callculations. Preliminary numerical experi-
ments indicate that such a behaviour (apart from the atrﬂng

direct iomization) is also a feature of the models with mono-
chromatic external fields.
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Appendix

oxr:
AR @+ <o (k-
A hypergeometric series I is a series of the form (_‘_0-: *{,'Q 6)
VY s (Vrk-1)
) NS J»(L*L\]F.I‘zhbﬂﬁﬁ 5 A g
P[\Jh'?-}\:l-‘Q\:—_LJPT!L?:*' SR+ 12, e Then, the coefficient of Z J(k=1)1! is:
' (1) ol % kt?ﬁ?*f%'"( +h-1) ¥4 klo(neg)e oo (mak-p)
i JF('L+1§(‘L*EU\E§L?+QG:+E,} 1?:.* . Cg("ﬂ 1(‘5} cﬁ(_"ﬁq-r} (E?k : +[“-L) 55_-1'_ 3 (\L J)K
NEA Q42420 i) S(R+LY- - (V4k-R)
(7)
This series terminates 1f 4. or § is equal to a negative inte- e (. ﬁhﬁ_ R'P(?+£\ L?+k—23
ger or to zero. For N =l (K =0 1, ¥, ses), bthe hypergeo= T
: | V) e (k2D
metric series is intermediate if neither J_ nor g; iz equal to
—E (where E{.k and {, is a natural number). Thus,
In equation (4.12) the hypergeometric series Cﬂt*iﬁui k!, jiq:\;ﬂi (R&z;'? : (??h—L-%—kﬂ-f)}
@hd(%h“_ih_i#} \ 2 2 (8)
(%Q = -l =il 5 (2)
A L KUp(pr) e (prkep)
can be intermediate since the parameter n1+q+|m| can be zero 2 SICET AR Lﬂ+k—2)
(both n, and q range from zero to some value, and in our present e
calculations, m = 0). To avoid this problem, we give below a ; v
proof of the transformation in which the hypergeometric series o __( \ BT+ - Q§+k-i§ (9)
does not lead to indeterminancy. According to equation (1), we SEI T Z i
have for the series: ﬂ(ﬂ+{H"' (q K E}EQF B)
Comparing eqs. (9) and (6), we obtain
k(\t.*-i) (k- _E*t-ﬂ E(g :Q_; E*l}
= 1+ « o+ z -0 = -
F -k T"H% L ) e o P-B= N+k-d
or,
(3)
= p=v-k+
oore () KEplpeD - (predy w i s
N () KL % (W) e (Rev-keed)
= o e
ot ; | N L (=)
F (‘k\,ﬁﬁv'ﬁ}?}\: Co P(_kﬁ:,%;. i-“%\ (4) As a result, we have the relation:
; i K4 . A
The coefficient of the highest power Z7/k! in eq. (4) is: F:(‘km$3ﬂﬁqh
ko (ped) e (prk-t ]‘E ) o (k-4
! F(\}*‘) 151 j (_3 (T-' (EE ) ! (5) b {-if(t--ﬂ (ﬁh_\,_k@ F(_l,( iR {_}) (11)
BTy Sl Ny e NEH .- (VR0 g : :
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Figures Captions

Dependence of the probability on time P ({:) for the
weak field; Ne=T; fo = 0.0015; T = 2627;

X = 0.0027.

Dependence of the probability Pn on time for two
states |ny= 9> and |n = 107. The initially popu-
lated state i8 Ny= n, = 4, with the parameters:
~0.005, T = 5357, Fo = 0.002, 1t.,= 300;
Ps @, )0.97.

Coherent osgcillations of the probability for

No= 9(Wy=n,=4 ) under the different periods s
F, = 0,008, tw =300. &) X = 0.026, T = 4000;
b) %~ 0.021, | =5000; c) and ) §= 0.017,

T = 6000.

Coherent oscillations of the probability for the sta-
tes [Ne> and Ing+l> simmltanecously with the strong
direct ionization, W = 9, (Ne=m,=% ), tw = 300,
X~ 0.042, T =5000, Fo =0.016, Pg(t,)=0.3.

Coherent oscillations for the perfurbation with main
frequency, 1,.;” which is above the threshold Wwmin
for direct ionization in a strong field: "ng = 9
(W= W, =4), t, =300, ¥= 0.26, T =400,

F, = 0.008, P = 0.60.

The probability of the direct ionization Pim versus
time for the dﬂtﬂ. of Pig- 54

The probability distribution over different states
with different N for N, =9 after t., periods of
external field; "I* = 5000. a) all parabolic states
are initially populated for which { =0, Y= 0.05,

Fﬁ = 0.01; b) only one parabolic state (MNy= M, = 4)

is populated initially, Y X' 0.04, F, = 0.008,

The probability dependence on the sirength perturba-

tion for the direct ionization ( Wo 7Wwmy, ) after
periods .. = 1000 is given; the number correspond to

42

Fig. 9.

FiE- 10.

Fig' 11'

=t.. 3 Ng=9 (M =wy ), T=4000,

The typical behaviour for two regonant levels and em-
pirical value of (55} (for the data of Fig. 4) on
time 1t{tu = 40. The curves are the probabilities
for the states |Wo = 97 and [N = 10y correspon-
dingly; curve 3 - the dependence of ?'(ﬂ (see (5.16);
curve 4 - the averaged quantity (ﬁn for E?(-E')
curve 5 - the total probability P (+) .

3

The total results for the dependence of <G> on
perturbation ¥  for different initial states |ny»
with f=0, %, =40. The numbers indicate the
principal numbers W, = 9, 13, 17; the triangles cor=-
respond to p, = 5.

The dependence of the total probability Pe (tw=40)
on ¥ for different Vi, , notations are the same
ag for Fig. 10.
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